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Abstract 
We present an overview of some rates of approxima- 
tion with respect to  various computational units in 
the hidden layer of a one-layered feed-forward neu- 
ral network. The problem of estimating the number 
of units in the hidden layer is examined to ensure 
a given degree of approximation for a given function 
class. The results are discussed in terms of their com- 
plexity and functional characteristics. 
Keywords: feed-forward network, rates of approxima- 
tion, activation function, polynomial and exponen- 
tial complexity 

1 Introduction 
Feedforward neural networks with a single hidden 
layer and with various activation functions has been 
recently widely studied ([ll], [7], [l], [2], [9]). It is a 
well known that a network using any non-polynomial 
locally Riemann integrable activation can approxi- 
mate any continuous function of any number of vari- 
ables on a compact set t o  any desired degree of 
accuracy (i.e. it has the universal approximation 
property), Mhaskar and Micchelli, [13]. This re- 
sult presents another question: To approximate a 
function from a known class of functions within a 
prescribed accuracy, how many neurons are neces- 
sary to realize this approximation for all functions in 
the class? De Vore et al. ([3]) proved the following 
result: if one approximates continuously a class of 
functions of d variables with bounded partial deriva- 
tives on a compacta, in order to  accomplish the or- 
der of approximation O($) ,  it is necessary to use at  
least O ( n d )  number of neurons, regardless of the ac- 
tivation function. In other words, when the class of 
functions being approximated is defined in terms of 
bounds on the partial derivatives, a dimension in- 
dependent bound for the degree of approximation is 
not possible. 
We present an overview of some known rates of ap- 
proximation of multivariable functions by feedfor- 
ward neural networks. The paper is organized as 
follows: In chapter 2.1 we present the approximation 
rate for networks with spline activation functions by 
Mhaskar ([ll]). Our rate for kernel basis function 

networks and radial basis function networks is in 
chapter 2.2. Chapter 2.3 examines networks with 
perceptron-type computational units: Barron’s rate 
for sigmoidal networks ([l]) and our rates for Heav- 
iside activation functions and the class of real val- 
ued activation functions ([SI). The last two sections 
(2.3.2 and 2.3.3) consist in Mhaskar and Micchelli’s 
results ( [13]) on approximation rates for networks 
with trigonometric polynomials and sigmoidals of or- 
der k and a general perceptron activation function. 
Chapter 3 is discussion of these approximation er- 
rors. 

2 Feedforward Networks with 
One Hidden Layer 

For a bounded function f : Rd -+ R the uniform 
norm is defined by 11 f i l m  =: SUPXERd I f(x)I and 
IlfllA = supXEA If(.)[ for some A c ad. Denote 
C(A) the space of continuous functions on compact 
A c Rd with the uniform norm and correspond- 
ing topology. In the paper, we deal only with feed- 
forward networks with one hidden layer. 

2.1 Approximation by the Network 
with Spline Computational Units 

Let A = njd=l[aj, b j ] .  The modulus of smoothness 
U:( f ,  A )  of a function f : A -+ R is defined by 
w : ( f , A )  = infmaxxEA If(x) -- P(x)l, where the in- 
fimum is taken over all polynomials P of degree at  
most m - 1 in each of its d variables. Modu- 
lus of 6-smoothness is defined by u i ( f ,  5, [ O , l l d )  = 
sup{w$(f,A) : A subcube of [ O ,  lid, diam(A) I: 5). 
The estimation of the error of approximation by 
multivariable spline functions with fixed knots is by 
Mhaskar [ll]. Let d 2 2 be the number of input vari- 
ables. The tensor product quasi-interpolatory spline 
operator is defined by Q:( f ,  x) = E; X;Ni(nx - i), 
where x = ( z ~ , z z , .  . . , ~ d )  E Rd, i = (il,. ..,id) 

and the tensor product (cardinal) B-splane of order 

~ z ( x )  = n , d = , ~ , ( x j ) .  Let I = [o,lld. We say 
that interpolotang p o i n t s  are properly  spaced if there 
are some interpolating points between any two knots. 

m 

UKACC International Conference on CONTROL ‘98, 1-4 September 1998, 
Conference Publication No. 455, 0 IEE, 1998 727 

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on February 17, 2009 at 07:52 from IEEE Xplore.  Restrictions apply.



The hidden units of the corresponding network are 
of the form N i ( n x  - i). 

Theorem 2.1 ([ l l])  Iff : I -+ R is continuous 
and m,n 2 1 are integers, then there exists a spline 
QZ of order k with (n  + l)d nodes so that if the in- 
terpolating points are properly spaced then 

1 
[If - ~311 L. c w i ( f ,  K l  1 ~ 1 ,  

where c is a positive constant depending only on m 
and d.  

The modulus of smoothness is a constant depend- 
ing on the dimension d exponentially. Moreover, the 
number of nodes is exponential in d. 

The more detailed work in in [5]. Let f, g : Rd -+ R 
are given functions and by f * g we denote a convo- 
Zution of f , g .  Denote [a, b] = nf=l[aj, b j ]  a given 
cube in Rd.  Define U[a,b] = {x; either xi = ai 
or z; = b;} and let ~ ( x )  denote the number of i 
so that 2; = a; ,  where x = ( 2 1 , .  . . , 2d). Denote 
f = I ~ ~ ~ ~ [ ~ , b ] ( - l ) ~ ( ” ) f ( x ) ~ .  Total varzation 
of f on [a,b] is defined by V ( f )  = V(f)l[,,b] = 
supp{C3=l f l J 3 } ,  where P = {Jl,. . . , Jk} is a par- 
tition of [a, b] so that [a, b] = Uj”=,Jj and i n t ( J j )  n 
in t (J i )  = 0 for all j # I ,  = 1,. . . , k .  (int(A) denotes 
the interior of set A . )  We say that f is of bounded 
total variation if V (  f )  is finite. 
A radial basis function (RBF) unit with d inputs is a 
unit computing a function of the form $(I\ x-c I/ / b ) ,  
where $ : R --+ R is an even function, 11 . I/ is a norm 
on R d ,  and x ,c  E Rd,  b E R, b > 0.  A radial 
basis function (RBF)  network is a neural network 
with a single linear output unit, one hidden layer 
with RBF units with the same radial function q5 and 
norm 1 1  . 1 1  on Rd,  and d inputs. The most frequent 
radial function used in application is the Gaussian 
y ( t )  = exp(-t2). 
Kernel basis function (KBF)  unit with d inputs com- 
putes a function Rd * R of the form kn(ll x -  c II), 
where {kn  : R * R} is a sequence of functions, 
1 1  . 11 is a norm on Rd,  and c E R d ,  n E N are pa- 
rameters. A kernel baszs function (KBF) network is 
a neural network with a single linear output unit, one 
hidden layer with KBF units with the same sequence 
of functions {kn ,  n E N }  and norm 1 1  . 1 1  on R d ,  and 
d inputs. By K , ( { k n ,  n E N } ,  1 1  . 1 1 )  we denote the 
set of functions computable by KBF networks with 
uniform k ,  for all hidden units. In [9], we obtained 
the universal approximation property for the class 
Ku({kn ,  n E N } ,  11 . 1 1 )  of continuous kernel func- 
tions on C ( I d )  satisfying a slight condition and every 
norm 1 1  . 1 1  on Rd.  
The classical kernels (i.e. the Fgjer kernel, the 

k 

Dirichlet kernel, the Jackson kernel, the Abel- 
Poisson kernel, the Weierstrass kernel, and the Lan- 
dau kernel) satisfy the condition and thus KBF net- 
works with any of these kernels are powerful enough 
to  approximate continuous functions. 

Theorem 2.2 ( [ 5 ] )  Let d 2 0 be an znteger. Let 
f : Rd --+ R be a continuous function, k ,  a kernel 
function, I = [O,  lid. Let f *len be of a bounded total 
variation. Then for every m E N there exists a KBF 
network with m hidden units computing a function 
9 E L ( { k n } ,  11 .11 )  SO that 

d 
Ilf - 9111 I 4 f r  h )  + ,V(h), 

where h = f * kn and ~ ~ ( f , h )  = I l f  - hllr. 

Upper bounds on E I  are known for some of the above 
mentioned convolution kernels. 

2.3 Networks with Perceptron Hid- 

2.3.1 Sigmoidal and Heaviside Activation 

den Units 

Functions 

Let U : R -+ R be a bounded measurable function 
for which 
lim,,-,a(z) = 0, lim,,,u(c) = 1.  We call 
this function sigmoidal. Feedforward neural network 
models with one layer of sigmoidal units implement 
functions on Rd of the form 

n 

fn(x) = cku(ak .x + b k )  + CO (1) 

parametrized by ak E R~ and b k ,  Ck E RI where ak.x 
denotes the inner product of vectors in E d .  
Let X be a real vector space with a norm 11.112 gen- 
erated by an inner product f . g for any f ,  g E X .  
cl conv G means the closure of the convex hull of G I  
where 6 c X .  The closure is taken with respect to  
the topology generated by the norm 11.112. N denotes 
the set of positive integers. 

Theorem 2.3 ([l]) [Jones-Barron] Let X be a real 
vector space with a norm 11.112 generated b y  an inner 
product on X ,  B be a posztive real number and be 
a subset o f X  such that for every g E E llgllz 5 B. 
Then for every f E cl conv E, for every real number 
c such that c > B2 - l l f l l ;  and f o r  every n E N, 
there exists fn which is a convex combinataon of n 
elements of G such that 1 1  f - f n l l n  5 E, 

k = l  

Barron showed that it is possible to  approxi- 
mate any function satisfying certain conditions on 
its Fourier transform within an ,C2 error of O( 
using a feedforward neural network with one hidden 
layer comprising of TI neurons, each with a sigmoidal 
activation function. The approximation error is mea- 
sured by the integrated squared error with respect 

z) 
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to an arbitrary probability measure p on the ball 
B,. = {x : 1x1 5 r }  of radius r 2 0. The function r 
is an arbitrary fixed sigmoidal function. 
Consider the class of functions f on Rd for which 
there is a Fourier representation of the form f (x) = lRd eau x f^ (w)dw for some complex-valued function 
f(w) for which w f ^ ( w )  is integrable, and define Cj = 
J Z d  IwIIf(w)Idw, where IwI = ( w . w ) ~ / ’ .  For each 
G > 0, let rc be the set of functions f such that 

the ,122 norm of g on B,. . The following result on ap- 
proximation by sigmoidal functions is a corollary of 
Theorem 2.3. 

cf 5 c. Let IlgllLz(B,) = d p  denotes 

Theorem 2.4 ([l]) For every function f wath Cj 
finite, and every n 2 1, there exists a h e a r  combi- 
nation of  sigmoidal functions fn(x) of the form (l), 
so that 

2rCj I l f  - fnllL@,) 5 - 

For functions in rc, the coefficients of the lin- 
ear combination in (1) may be restricted t o  satisfy 
E;=, 

fie 

5 2rC and CO = f(0). 

Kiirkovi et al. achieved an Cz error rate of the 
order 6(*) by one hidden layer networks with n 
sigmoidals in [8]. They use an integral representa- 
tion of smooth functions of d variables and express 
the rate of approximation in terms of the variation 
with respect to half spaces without using Fourier rep- 
resent at ions. 

If f is a linear but not convex combination of 
functions from Q, then Q in Theorem 2.3 can be re- 
placed by real multiples of functions from G bounded 
by a constant. This leads to the term of variation, 
first introduced by Barron for a set of characteristic 
functions of half-spaces. For a normed vector space 
(x ,  11.11) consisting of real functions on J c R~ for 
an integer d ,  let the variation of a function f E X 
wzth respect t o  a subset Q of X be V ( f , Q )  = inf{B 2 
0; f E cl conv G(B)} ,  where the closure is taken with 
respect to the topology generated by the norm 11.11 
and G(B) = {wg;  g E G , w  E R, lzol 5 B}.  This 
definition was introduced by Kfirkovi in [lo] and is 
a generalization of Barion’s definition of variation 
with respect to half-spaces. The following theorem is 
a corollary of the Jones-Barron theorem formulated 
by means of variation. Since in our applications set 
G is finite, we use a stronger formulation of the the- 
orem for compact sets g. 

Theorem 2.5 ([SI) Let (X , l l . l l )  .be a real vector 
space with the norm II.11 generated b y  an inner prod- 
uct and Q be a compact subset of X .  Then for ev- 
e r y  f E X such that  V ( f , G )  < 00 and for every 
n = 1,.  . . ,card G there exists f n  which is a linear 
combanation of n elements of such ihat I l f -  fnl12 5 
JT, where B = V(fl 6 )  supsEp Ilgll2. 

If Q is an orthonormal basis, we can prove a 
stronger estimate improving the Mhaskar and Mic- 
chelli’s result from [15] by it factor of two. For any 
orthonormal basis let A of X denote by l l . l l ~ , ~  the 
I1-norm with respect to A, i.e. for every f E X 
Il f l l l ,A = C ~ E A  I f  ’ 91. 

Theorem 2.6 ([SI) Let X be a Jinzte dimensional 
real vector space with a norm 11.112 generated b y  an in- 
ner product and let A be its orthonormal basis. Then 
f o r  every f E X and for every n = l , . .  . ,d im X 
there exists fn which is a linear combination of n 
elements of A such that 1 1  f - l n / 1 2  5 w. 

If I /  f 112 is also known, then the bound from Theo- 
rem 2.6 can be improved. 

Theorem 2.7 ([6]) Let X be a finite dimensional 
real vector space with an inner product, let A be its 
orthonormal basis, let f E X and let 1 5 n 5 dimX. 
Then, there exists a function g expressible as a linear 
combination of at  most n functions from A satisfying 

If both Ilflll,~ and llfllz are known, then Theorem 
2.7 yields a good bound only if 471 2 / ~ f [ ~ ~ , A / ~ ~ f ~ ~ ~ .  
Otherwise, the trivial bound llfllz for the error of 
the approximation by the zero function is better. In 
fact, these two bounds together, i.e. the minimum of 
llfll2 and the bound from Theorem 2.7, yield a bound 
that differs from the best possible bound based only 
on Ilflll,a and )I f l l 2  by a constant factor. 

In [6] we investigated subclasses of real-valued 
boolean functions, i.e. functions f : (0, l}d + R. 
Real-valued functions with multiple Boolean vari- 
ables are exactly representable by one-hidden-layer 
Heaviside perceptron networks with an exponential 
number of hidden units. We derived upper bounds 
on the approximation error of the form -& where 
e depends on certain norms of the function being 
approximated and n is the number of hidden units. 
We gave examples of functions for which these norms 
grow polynomially and exponentially with increasing 
input dimension. 

The linear space of all real functions of d Boolean 
variables (where d is a positive integer) is denoted by 
F({O, l}d). For any f,g E +({O, l}d), the standard 
Euclidean inner product is f .y = f(z)g(z). 

Here we study representations and approximations of 
functions in F((0, l}d) by functions computable by 
networks with one linear output unit and one hid- 
den layer with the Heaviside function 19 defined by 
d ( t )  = 0 for t < 0 and 6(t) := 1 for t 2 0. The 
set of functions expressible by such networks with a 
bounded number of hidden units can be denoted by: 

X E ( 0 , l ) d  

Pd(12) = {f E F({O, qd); f(.) = cy=, Wid(% . z + 
bi ) ;  20i, bi E R, TJ~ E Rd}. 
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Denote by E = {e,;u E { O , l } d }  the Euclzdean 
orthonormal basis of F({O, l}d)7 i.e. e,(u) = 1 and 
e,(z) = 0 for 4 # U .  It is easy to verify that e,  
can be computed by one Heaviside perceptron, i.e. 
e,  E p d ( 1 ) .  Together with the representation of any 

this yields that F(0, Id) = P d ( 2 d ) .  
A representation of a different type can be ob- 
tained from the orthonormal Fourier basis F = 
{ & COS(TU .x); U E (0, I } ~ }  of ~ ( ( 0 ,  I}~) .  Since 
in our context both z and U are Boolean vectors, we 
have COS(TU . z) = (-l)' ". 
Thus every function f E F({O, l }d )  can be repre- 
sented as 

function f E F((0, lid) as f(z) = ~ u ~ { o , l ) d  f ( '>eu ,  

f(z) = -& f (u ) ( - l ) " ' " ,  where the Fourier 
uE{O, l )d  

coefficients f ( u )  are given by the formula 
?(U) = & f(z)(-l)"". Note that for any 

X€{O,lP 

f E +(io, Ild) Ilfll1,F = 11?111 = CU€{0,l 
Furthermore, all functions from the Fourier 
computable by Heaviside perceptron networks. In 
contrast to the Euclidean basis, where one hidden 
unit was sufficient for one basis function, d + l  hidden 
units are needed for the members in the Fourier basis. 
Thus we have a representation of any f E F((0,  l}d) 
as an element of Pd( (d  + 1 ) 2 ~ )  if we replace (-1)"'" 
by 8 in the Fourier representation. 
Note that all norms on are topologically equiv- 
alent, in particular for every f E F ( { o ~ I ) ~ )  llfi12 5 
llflll I m l f l l z  and l l f l l z  5 11~111 I 4 l f l l n .  
Since each of these inequalities is tight, the differ- 
ences between the norms may be exponential in di- 
mension d. 

Theorem 2.8 ( [ 6 ] )  Let d be a positive integer and 
f E F({O, l}d). Then for  every integer n 2 2 there 
exists a function fn E P d ( ( d  + 1)n) such that \ I f  - 

In [6] we presented examples of functions for which 
the upper bounds on the approximation error from 
Theorem 2.8 yield a feasible approximation. Easy 
examples for which the relative error of approxima- 
tion is less or equal to 1 are linear combinations of 
"small" number of generalized parities. An exam- 
ple for which Theorem 2.8 gives a non-trivial esti- 
mate are functions which are representable by deci- 
sion trees of polynomial size with the ratio of the 
maximum and minimum value of If( x) I bounded by 
a polynomial in d.  
We now turn to the functions for which our two bases 
do not yield a good approximation. A function from 
F({O, l } d )  is called bent, if for every z, U E (0, l}d 
lf(z)I = 1 and I j (u) l  = 1. Bent functions were intro- 
duced by Rothaus [16]. Recall that a bent function 
of d variables exists if and ocly if d is even. For ev- 
ery bent function, llflll = llflll = f i ; r l l f l l n .  Thus, 

Theorem 2.8 does not imply a good approximation 
error. 

2.3.2 Trigonometric Polynomial and Sig- 
moidal of Order k In the Hidden Layer 

The following theory is adapted from Mhaskar and 
Micchelli [13]. As pointed out by Hecht-Nielsen in 
[4], the problem of approximating any function on 
a compact set can be reduced to one in which the 
function being approximated is 27r-periodic in each 
of its variables. 

Denote Cd the class of all continuous functions on 
[-1, lId and Cd* the class of all 2jr- periodic func- 
tions. Let &J,d,$ denote the set of all possible out- 
puts of feedforward networks consisting of n neurons 
arranged in 1 hidden layers and each neuron eval- 
uating an activation function 4, where the input 
of the network is from Rd.  Let f have continuous 
derivatives of order T 2: 1 and let the sum of the 
norms of all the partial derivatives up to the or- 
der r be bounded. Without loss of generality, we 
can assume that the function to be approximated is 
normalized. Denote qd (qd* for periodic functions) 
the class of all functions satisfying this condition. 
We deal with the classes of functions that satisfy 
the universal approximation property. We want to 
estimate suPjcy,d En, l ,d ,$( f ) ,  where En,i,d,$(f) = 

En,l,d,+ (f) measures the theoretically possible best 
order of approximation of a function f by a network 
with n neurons. Or we can have an equivalent dual 
formulation 

infP€nn,,,d,+ I l f  - 41. 

1 
&,I,d,$(YP) = min{m E 2 ; s u p  Em,l,d,$(f) I ;I. 

This quantity measures the minimum number of neu- 
rons required to obtain accuracy of for all functions 
in Y: (analogically for Y:). 
Let T," denote the class of all d-variable trigonomet- 
ric polynomials of the order at most n and for a 
continuous function f, 2a- periodic in each of its 
d variables, 

The class T," can be thought of as a subclass of 
all outputs of networks with a single layer consist- 
ing of at most (271 + l)d neurons, each evaluating 
the activation function sinx. It is well known that 
supfEyp. Ei(f) 5 en-'. The dual formulation of this 
estimate gives E n , l , d , s i n ( ~ p )  = ~ ( n + > .  De Vore et 
al. proved in [3] that any "reasonable" approxima- 
tion process that aims to approximate all functions 
in Y,"* up to an order of accuracy must necessarily 
depend on at least O ( n $ )  parameters. Thus the ac- 
tivation function sin z provides optimal convergence 
rates for the class Yp*. 
Mhaskar introduced the following generalization of 

- 
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the sigmoidal function. 
Let k 2 0. We say that a function U : 
R --+ R is sigmoidal of order k if limsdm 9 = 
1, limzd-m 9 = 0 and Iu(x)I 5 c ( l +  Ixl)kl 5 E 
R. A sigmoidal function of order 0 is the custom- 
ary bounded sigmoidal function. It was proved in [?] 
that for any integer r 2 1 and any sigmoidal function 
CT of order T - 1, 

and 

Mhaskar showed in [12] that if CT is a sigmoidal 
function of order k 2 2 and r > 1, then with 
1 = O(s ) , kn , ( ,d ,a (YP)  = ( 3 ( n T ) .  Thus an opti- 
mal network can be constructed using a sigmoidal 
function of a higher order. 

a -  

2.3.3 A General Perceptron T y p e  Hidden 
Layer 

The following results are from Mhaskar and Mic- 
chelli [13] where the degree of approximation of pe- 
riodic functions using periodic activation functions 
is investigated. Their general formulation also in- 
cludes the case of radial basis functions and custom- 
ary sigmoidal neural networks. The approximation 
of functions in Cd* is considered by linear combina- 
tions of the form q5(Ax+t) where A is a s x d matrix, 
d 2 s 2 1, q5 E C'* and t E R'. When d = s, A is 
an identity matrix and q5 is a radial function, then 
a linear combination of n such quantities represents 
the output of a RBF network with n hidden neurons. 
We define the Fourier coefficients of q5 by the formula 

Let S+ C {m E ZJ : &m) # 0) and assume that 
there is a set J containing s x d matrices with inte- 
ger entries such that Zd = {ATm : m E S+, A E J } .  
If s = d and 4 is a function with none of its Fourier 
coefficients equal zero (the RBF case) then we may 
choose s+ = Zd and J = { I d x d ) .  For m E Zd,  we let 
k m  be the multi-integer with minimum magnitude 
such that m = A T k m  for some A = A m  E J. 
Denote m, := min{I+(km)l : -2n 5 m 5 2n) 
and N ,  := max{IkmI : -2n 5 m 5 2n) where 

lkml is the maximum absolute value of the compo- 
nents of k m .  In the neural netwo'rk case, we have 
m, = l$(l)l and N ,  = 1. In the radial basis case, 
N,  z 2n. Denote P = [-T,T]' .  

Theorem 2.9 ([13]) Let d 2 s 2 1, n 2 1 and 
N 2 N,  be integers, f E Cd*, q!~ E C". It 
is possible to construct a network Gn,N,+( f ;  x) := 

cj djq5(Ajx + t j )  such that 

where the constant c depends on r , d , $  but not on 
f and n. In Gn,N,+( f ;  x), the sum contaans at most 
O(ndN3) terms, A -  E J ,  t .  E Rs, and d -  are linear J J J 
functaonals o f f ,  dependtng upon n, N ,  $. 

The rate of approximation relates the degree of 
approximation of f by neura.1 networks explicitly 
in terms of the degree of approximation of f and 
q5 by trigonometric polynomials. Well known es- 
timates from the approximation theory, such as 
supfEyp. E,d(f) 5 cn-' provide close connections 
between the smoothness of the functions involved 
and their degree of trigonometric polynomial approx- 
imation. In particular, the rate achieved in The- 
orem 2.9 indicates that the smoother the function 

the better the degree of approximation. The ex- 
plicit constructions of G n , ~ , 4  is given in [14]. The 
network can be trained in a very simple manner, 
given the Fourier coefficients of the target function. 
The weights and thresholds (or the centers for RBF) 
are determined universally for all functions being 
approximated. Only the coefficients at the output 
layer depend on the function. They are given as lin- 
ear combinations of Fourier coefficients of the target 
functions. It is shown in [14] that G n , ~ , 4  for a RBF 
network contains only O(n + N ) d  summands. The 
generality of this method, however, affects the num- 
ber of hidden units which is exponential in d .  
If the activation function U is not periodic, but sat- 
isfied certain decay conditions near 00, it is still pos- 
sible to construct a periodic fiinction for which the 
general theorem can be applied (see [13]). 

3 Discussion 
In this paper, we presented some estimates of the ap- 
proximation error of a multivariable continuous func- 
tion on a compact set by neural networks with vari- 
ous activation functions in the hidden units. Each of 
the results expresses the dependence of the number 
of hidden units in the neural network on various char- 
acteristics known about the function to be approxi- 
mated. Keeping in mind the de Vore et al.'s result 
([3]), we can see from the above mentioned results 
that the polynomial or quadratical approximation er- 
rors with respect to dimension d were achieved either 
by increasing the number of hidden units to an ex- 
ponential number in d or by knowing some constants 
which are derived from function f .  Their computa- 
tion can be however exponential in d .  When such 
constants are a priori given (modulus of continuity, 
certain norms, constants derived from Fourier repre- 
sentation of the function, etc.) then the approxima- 
tion is guaranteed to be polynomial or quadratical. 
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In other words, knowledge of such constants enables 
us to avoid the exponential complexity of the approx- 
imation (so called ”curse of dimensionality”). The 
general theorem by Mhaskar confirms that the er- 
ror of approximation will be otherwise bounded by a 
function a number exponential in dimension d. 
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