Algorithm of incremental approximation using
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Abstract

We present an algorithm of incremental approximation
by feedforward neural networks for functions in the clo-
sure of finite subsets of a Hilbert space, by using the
concept of variation of a function with respect to a set.
Since the number of hidden units and their parameters
are determined incrementally, the algorithm optimizes
one node at a time. Thus, at each step it is required
to solve an optimization problem with a small number of

parameters.

1 Introduction

The rate of approximation of real functions by feed-
forward neural networks has been recently studied
by various authors. Jones [3] introduced a recur-
sive construction of approximants with “dimension-
independent” rate of convergence. Together with
Barron [1], he proposed to apply this construction to
the functions computable by one-hidden-layer neural
networks. Several authors (e.g., Barron (1], Kirkova
et al. [5), Mhaskar and Micchelli [9]) characterized
sets of functions with d real variables which can be
approximated by networks with n hidden units of

various types, within an error (@] 71-; g

The standard approach to the construction of such
networks sets the number of hidden units in advance
and then determines the parameters of the entire net-
work. In this case, it is necessary to solve a nonlinear
optimization problem in a high-dimensional space.
Moreover, in advance it is difficult to estimate the
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number of units able to guarantee a given degree
of accuracy in the approximation. A possible pro-
cedure to optimize the network size for a class of
networks characterized by a given structure consists
in training a (supposed) larger—than-needed network
and then removing the units not actively used, i.e.
pruning of the unnecessary units, according to a re-
duction cost (e.g. [10])). In practice, the choice of the
pruning criterion is non-trivial and, moreover learn-
ing of initial huge networks is cumbersome and time-
consuming. This motivates the interest in incremen-
tal algorithms, where the number of hidden units and
their parameters are determined incrementally. Such
algorithms require solving a nonlinear optimization
problem in a lower dimensional space at each step,
since the search task consists in optimizing one node
at a time ([1], [4], [7])-

Barron [1] presents an algorithm for incremental
approximation in Hilbert spaces, which can be refor-
mulated in terms of the norm “yariation of a func-
tion with respect to a set of functions”. Such a norm,
defined by Kirkova [6], generalizes a concept intro-
duced by Barron [2] and provides a deeper insight
into the approximation capabilities of neural net-
works. In this paper, we propose an incremental al-
gorithm for approximation of functions in the closure
of finite subsets of a Hilbert space using the varia-
tion norm. The algorithm does not require knowl-
edge of the variation of the function f to be approxi-
mated, which could be difficult to compute. Instead,
it uses the variation of the n-th approximation fn of
f, which is easier to obtain.

The paper is organized as follows. Section 2 re-
views some definitions and results on incremental
approximation. Our incremental algorithm is pre-
sented in section 3, and section 4 is devoted to 1ts

discussion.

9 Preliminaries

Let (X,||-|l) be a real vector space. cl conv G de-
notes the closure of the convex hull of G, where G
‘s a subset of X; the closure is taken with respect
to the topology generated by the norm ||.|. N+




the elements of the tolerance sequence relative to the [7] Kirkovd, V.: Incremental approximatiop, by

case in which V(f,G) is known. The price for using neural networks. Computer-intensiye methodg
a sequence of approximants {(V(fa,G),n € Ny} in- in Control and Signal Processing: 4 Neurg)
stead of V(f,G) itself is the fact that minimization Networks Approach (Eds. M. Kérny, K. War.
in step n of the algorithm must be made within a wick, and V. Kirkova). Springer, London, 177.
smaller error that the error acceptable for the case 188, 1997.

in which V(f,G) is known. This drawback is not so . . L )

high in comparison to other alternative approaches (8] Kirkova, V., Savicky, P., Hlavaékové’ K. Rep-

resentations and rates of approximation of real
valued Boolean functions by neural networks
Neural Networks, in print.

to incremental learning based on pruning algorithms.
Pruning algorithms are computationally burdensome
as they require to perform the learning of big net-
wgrks" Moreover, it i.s not trivial to choose a pru‘ning [9] Mhaskar, H.N., Micchelli, C.A - Difnreais
_cnt.erlo.n: a small weight value need not be a reliable independent bounds on the degree and of ap.:
indication of redundancy. proximation by neural networks. /Bpf Jours
nal of Research and Develo ment, 38, 277-284.
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