
Multi Instance Anomaly Detection in Business
Process Executions

Kristof Böhmer and Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science
{kristof.boehmer,stefanie.rinderle-ma}@univie.ac.at

Abstract. Processes control critical IT systems and business cases in
dynamic environments. Hence, ensuring secure model executions is cru-
cial to prevent misuse and attacks. In general, anomaly detection ap-
proaches can be employed to tackle this challenge. Existing ones analyze
each process instance individually. Doing so does not consider attacks
that combine multiple instances, e.g., by splitting fraudulent fund trans-
actions into multiple instances with smaller “unsuspicious” amounts. The
proposed approach aims at detecting such attacks. For this, anomalies
between the temporal behavior of a set of historic instances (ex post) and
the temporal behavior of running instances are identified. Here, tempo-
ral behavior refers to the temporal order between the instances and their
events. The proposed approach is implemented and evaluated based on
real life process logs from different domains and artificial anomalies.

Keywords: Runtime Anomaly Detection, Secure Business Processes,
Multiple Instances, Temporal Anomalies

1 Introduction

Business process anomaly detection identifies anomalous behavior in recorded
(ex post) or ongoing (real time) process executions in order to expose and prevent
fraud, misuse, unknown attacks, and errors. Hence it constitutes a critical IT
security defense line in today’s interconnected business driven organizations [3,
5]. Existing process anomaly detection work analyzes single process instances in
order to distinguish if their behavior is anomalous (i.e., unlikely) or not. Doing
so does not provide protection against all possible attack vectors. For example,
assume an attack scenario where the attacker (Trudy) strives to quickly transfer
funds from an organization’s bank account. Therefore, Trudy could instantiate
a single transaction process and transfer all the money at once. Alternatively,
Trudy could start multiple transaction processes in parallel and split up the
transactions into smaller chunks. The first approach would likely be detected by
existing anomaly detection approaches while the second would not.

This is, because in the first case the transferred funds are exceptionally high,
i.e., they exceed previously transferred funds and are, therefore, unlikely. In
this case, analyzing each process instance execution individually is sufficient to
identify Trudy’s attack. In the second case each individual process instance only

rinderas8
Schreibmaschinentext

rinderas8
Schreibmaschinentext
"The final publication is available at Springer via http://dx.doi.or/10.1007/978-3-319-65000-5".

rinderas8
Schreibmaschinentext

transfers a small amount of money. Through this, the transferred funds are,
likely, comparable to transactions represented in the known historic behavior.
Accordingly the executions would not be identified as anomalous.

Hence, an anomaly detection approach is required that is able to consider
multiple instances – from the same or different process models. In the example
scenario these are instances which take place before, during, or after one of the
fraudulent transaction process executions. Through this the parallel executions
are noticed as unusual and the second attack scenario is identified. The assump-
tion behind this is that the massive parallel execution of multiple transaction
processes – which was never observed before – is unlikely (i.e., anomalous).

This paper proposes a configurable and unsupervised anomaly detection
heuristic for business processes that exploits the temporal dependencies between
multiple instances. In detail, for each instance of interest, all temporal relations
of preceding, succeeding, and simultaneous process executions are taken into
account. The business process instances and executions which are taken into
consideration can stem from various models, i.e., not all instances need to be
spawned from the same process model but, e.g., from multiple models.

This work applies design science research, cf. [14]. Doing so multi instance
process executions were identified as a problem (i.e., an unprotected attack vec-
tor). To tackle this problem artifacts are created and evaluated, here this is a
prototypical implementation of the proposed multi instance anomaly detection
approach. Stakeholders for the approach are organizations and security experts.

More precisely, we assume a set of process models R, and a set of execution
log files L. Hereby, R could be a process repository and L holds all executions of
the processes in R. The key idea is to generate an anomaly detection signature
G for a process P ∈ R so that it represents for P the behavior of P ’s instances
and temporally related instances from multiple other models. This is achieved
by mining and combining temporal relations from multiple instances, stored in
L, that take place during or close to executions of P into a signature G.

Finally, behavior that should be analyzed for anomalies, from P ’s instances
and other temporally related instances, is assumed as given. For example, such
behavior can be extracted from logs, for ex post analysis, or be collected directly
during model executions – from process execution engines – for real time analysis.
To analyze if behavior is anomalous or not it is mapped to G, which enables to
calculate its behavior likelihood. If the behavior to analyze for anomalies is found
to be unlikely, when comparing it to the logged historic behavior in L, then the
behavior is identified as anomalous. The artifacts generated in this work comprise
multi instance process behavior mining and signature generation and matching
algorithms. The presented approach is evaluated using real life process execution
logs from multiple domains along with artificially generated anomalies.

This paper is organized as follows: Related work is discussed in Section 2.
Prerequisites and the proposed approach are introduced in Section 3. The pro-
posed anomaly detection approach (i.e., signature generation and matching) is,
in detail, described in Section 4. Section 5 holds the evaluation. Finally, conclu-
sions, discussions, and future work is given in Section 6.

2 Related Work

Related anomaly detection work was searched for in the process domain and
in the security domain. The results found for the process domain were limited
as related work focuses only on single individual process models and instances.
Hence, the anomalies which this work is capable of identifying are not supported
by existing process anomaly detection work. Our systematic literature review in
[6] provides a more detailed analysis. The most comparable work [12] analyzes
temporal behavior of individual activities to identify unlikely anomalous execu-
tion behavior. However, this work also concentrates only on single instances.

In a broader context, i.e., the security domain in general, several temporal
anomaly detection approaches are suggested, cf. [10]. However, according to [10]
and our own findings, those approaches are typically domain or data specific (i.e.,
focus on specific protocols, such as, SIP or network packages) and can, because of
this, hardly be generalized, e.g., to analyze process behavior data for anomalies.
It can be concluded that an anomaly detection approach specifically tailored for
process behavior is a necessity to identify related attacks and anomalies.

Moreover, it was found that existing approaches show, likely, an underwhelm-
ing anomaly detection performance when dealing with unexpected behavior. Ex-
isting anomaly detection work frequently classifies unexpected behavior, even if
it only slightly deviates from, e.g., a signature, as anomalous. This could po-
tentially result in a large amount of false positives [5] in flexible and dynamic
execution scenarios. Hence, this work proposes a novel approach to deal with
unexpected behavior by assigning it with an artificially calculated likelihood.

Existing approaches which are comparable to the presented artificial likeli-
hood calculation are so called soft matching techniques. Soft matching general-
izes expected behavior patterns by constructing multiple slightly deviating, but
still presumably “correct” patterns (e.g., based on expert knowledge) [2]. Hereby
the area of data or behavior which is identified as non-anomalous is widened.
Unfortunately, it frequently requires expert knowledge to soften the patterns
and through this soft matching lacks in flexibility, compared to the presented
automatic approach. Moreover, the presented approach enables to “aggregate”
multiple occurrences of slightly unlikely behavior to identify collective anoma-
lies [5] which could be missed by less sensitive detection approaches. This is
because this work does not flag each observed process execution behavior solely
as anomalous or non-anomalous. Instead a more flexible likelihood is calculated
and aggregated over multiple successive process execution events and instances.

3 Prerequisites and General Approach

This paper proposes a multi instance anomaly detection approach that enables
to distinguish process execution behavior as anomalous (i.e., unlikely) or not.
For this the behavior is compared with a signature generated from given process
execution logs L which represent historic process executions. Generating signa-
tures from logs is beneficiary as logs are frequently generated automatically by

today’s process execution engines, contain real behavior and executions, and in-
clude manual adaptations. Moreover, exploiting execution logs enables to become
independent from abstracted and potentially outdated documentation [11].

Let each execution log l ∈ L hold the associated process model name and
a bag of execution Events, i.e., l := (n,E). Each execution event e ∈ l.E, i.e.,
e := (s, c) represents an activity execution by its start and completion timestamp
s and c respectively, with s, c ∈ N>0. An exemplary log for model A with two
activity executions could be defined as lA := (A, {(s1, c1), (s2, c2)}). We assume
that each individual model execution (i.e., each instance) is held by an individual
execution log l ∈ L and that timestamps are defined in a range of N>0.

Such a brief definition is sufficient because the presented approach mainly
analyzes temporal relations between models and their instances. For this the
following auxiliary functions, inspired by a subset of Allen’s interval algebra [1],
are defined. The start timestamp of an instance execution is found by min(E) :=
{e.s|e ∈ E;∀e′ ∈ E, e.s ≤ e′.s}0. Here, {· · · }0 returns the only element held
by a set or bag if it is a singleton or a random set/bag element if it is not.
A similar definition is applied for max(E) to determined the end timestamp of
an instance execution. Through this the duration of an instance is dur(E) :=
max(E)− min(E). Moreover, execP(t, L) extracts a bag of process model names
that are executed at point t (i.e., a timestamp) based on the logs in L, i.e.,
execP(t, L) := {l.n|∃l ∈ L,∃e ∈ l.E; e.s ≤ t ∧ e.c ≥ t}. Similarly, act(t1, t2, L)
counts the activities that are executed in a specific interval given by t1, t2, i.e.,
act(t1, t2, L) := |{e|l ∈ L, e ∈ l.E; e.s ≥ t1 ∧ e.c ≤ t2}| where t1 ≤ t2. Function
next(t, L) determines the process instance start or end timestamp that occurs as
close after t as possible, i.e., next(t, L) := {t1|t1, t2 ∈ T ;@t2 < t1; t1 > t∧t2 > t}0
where T := {e.s|l ∈ L, e ∈ l.E} ∪ {e.c|l ∈ L, e ∈ l.E}. Further, mid(t1, t2) :=
t1 + ((t2 − t1)/2) calculates the average of two timestamps where t1 < t2.

Fig. 1. Proposed multi instance anomaly detection approach – overview

Fig. 1 provides an overview on the proposed anomaly detection heuristic.
The related algorithms are presented in Sect. 4. Firstly, a signature is generated
for a process P ∈ R based on a set L of historic instance executions – both are
assumed as given input. The first idea is to extract process execution events in
L that precede, succeed, or occur simultaneously to executions of P ’s instances,
cf. Fig. 2. The figure depicts three processes – A, B, and C – along with a
number of instances (i.e., the rectangles, e.g., AI1 to AI4) and activity execution
events (i.e., the vertical bars in the instance rectangles, e.g., AI3 holds 4 activity
executions). For the sake of brevity Fig. 2 depicts only a snapshot of all instance
executions, i.e., additional instances are stored in L but not depicted.

Assume a signature is generated for process B in Fig. 2. Then the signature
generation starts by identifying relevant execution events in L (i.e., historic

Fig. 2. Running example for window & behavior extraction and noise reduction

behavior) 1 . Relevant events are events which most likely affect B’s instances
(i.e., events which precede B’s instances) or which are affected by B’s instances
(i.e., events which are succeeding and simultaneous to B’s instances). Extraction
windows are applied to identify such events in the following.

An individual extraction window w := [wt1;wt2] is created for each of B’s
instances 1 . Extraction windows enable to determine which of the behavior
held by L is relevant (i.e., preceding, succeeding, and simultaneous events) for a
specific instance and model and should, therefore, be contained in the generated
signature. The beginning and end of the window (i.e., wt1 and wt2) is calculated
by multiplying the duration of the respective instance (this example uses BI3
and lBI3 ∈ L) with a user chosen window size modifier ws ∈ R>0. So wt1 :=
min(l.E) − (ws · dur(l.E)) and wt2 := max(l.E) + (ws · dur(l.E)). Hence, when
assuming ws = 2 and min(lBI3.E) = ts9, max(lBI3.E) = ts13 then wBI3 = [ts1; ts21].

The size of an extraction window is defined in a direct relation to the duration
of the corresponding instance. Moreover, the parameter ws enables to adapt the
extraction window size to the density of the analyzed event logs. For example,
if a log is very dense (i.e., it holds a large amount of events in a short timespan)
then applying extraction windows with a fixed size could result in an overly
detailed signature (i.e., overfitting occurs) which could, subsequently, lead to
flawed anomaly detection results, cf. [7]. In comparison a sparse log combined
with a fixed size window could result in a signature that contains insufficient
historic behavior to identify anomalies (i.e., underfitting occurs).

Subsequently step 2 is applied to mine all the behavior that occurs in a
chosen window in a time sequence. Therefore, the window is split into multiple
slots based on the start and end of the process instances covered by the window
(i.e, the dotted lines and slot timestamps in Fig. 2). Each slot is defined as
o := (N, tss, t

s
e) where tss and tse represent the start and end timestamps of the

slot and the bag N := execP(mid(tss, t
s
e), L) holds the names of models whose

instances occur between tss and tse. For example, slot 5 in Fig. 2 would be defined
as o5 = ({A,B,C}, ts5, ts6). If multiple instances from the same process model
are executed in parallel then the related model’s name occurs in o.N multiple
times (e.g., two parallel executions of model A would result in o.N = {A,A}).
Subsequently, all slots are combined into a time sequence, i.e., an ordered list
of slots ts := 〈o1, o2, · · · , on〉, e.g., tsBI3 = 〈o1, o2, · · · , o20〉 for instance BI3, cf.

Fig. 2. Finally, noise in the mined time sequences is addressed, for example, by
removing slots which do not cover any instance execution (e.g., slot 8 in Fig. 2).

The signature generation ends by merging the resulting time sequences from
all windows (one window for each instance is generated) into one signature 3 .
The signatures are represented as likelihood graphs, which were also already
successfully applied in [5] for this purpose. Here, likelihood graphs enable to cal-
culate the likelihood of instance behavior to determine unlikely (i.e., anomalous)
ones. For this a likelihood graph encodes which and how instances and models
are typically temporally related to each other during their execution (e.g., how
instances succeed or precede each other). Moreover, it encodes the likelihood
and order of such relations based on the mined time sequences, cf. Fig. 4.

Secondly, the signature is utilized to assess if a given process instance exe-
cution behavior, for P ’s instances, is anomalous or not. Hence, given behavior
is filtered 4 , and mapped 5 to the signatures (i.e., for each process model an
individual signature is generated) to determine the likelihood of given instance
execution behavior. Of course, some of the instance behavior could be unex-
pected because it never occurred before and is, accordingly, also not represented
by the signatures (i.e., it cannot be mapped to a signature), cf. [5]. In such cases
a configurable artificial behavior likelihood is calculated to flexibly deal with
noise and slight – likely harmless – deviations from the historic behavior.

Thirdly, the likelihood of the given instance execution behavior is compared
to a reference likelihood generated from P ’s historic instance executions stored
in the historic execution log files L, 6 . If a deviation between both likelihoods
(reference likelihood and likelihood of the given instance execution to analyze) is
observed then the analyzed given instance execution is identified as anomalous.

4 Multi Instance Anomaly Detection

This section presents the algorithms for the approach set out in Fig. 1.

4.1 Temporal Behavior Mining from Execution Logs

The proposed anomaly detection approach starts with a process model P ∈ R
(i.e., a signature is generated for P) and logs containing historic process ex-
ecution behavior L. Subsequently, extraction windows are constructed for P ’s
instances, as described before. This enables to mine historic execution behavior
that takes place before, during, and after P ’s executions as time sequences.

Mining Time Sequences Each time sequence is a sequence of slots o :=
(N, tss, t

s
e) which are ordered based on their end timestamp, i.e., tse. In the follow-

ing a signature is generated by merging multiple time sequences. The presented
mining approach generates a time sequence (i.e., a sequence of slots) for each
extraction window – and through this for each instance. Therefore, the start and
end timestamps of each process instance covered by the window are exploited,
i.e., the dotted vertical lines in Fig. 2. Alg. 1 formalizes the mining of a single

Algorithm mineTS(extraction window w := [wt1;wt2], execution logs L)
Result: mined time sequence ts
ts := 〈〉; first := w.wt1 // initially ts is empty
// extract the interval between instance start and end timestamps as slots
while second := next(first, L) ∧ second < w.wt2 do

ts := ts⊕ (execP(mid(first, second), L), first, second)
first := second // preserve for next iteration

// interval from the last instance start or end till the end of the window
ts := ts⊕ (execP(mid(first, w.wt2), L), first, w.wt2))
return ts // the mined time sequence for the window w and a given log L

Algorithm 1: Mines a time sequence for a given window w and logs L

time sequence for a given window w and the historic execution logs in L. In the
following the symbol ⊕ denotes the appending of a slot to the end of a sequence.

The time sequence generated for the execution scenario depicted in Fig. 2 is
shown at the left side of Fig. 3. For the sake of brevity Fig. 3 only depicts the
number of the respective slot and the covered process model names while start
and end timestamps are omitted. Only the first eight slots are depicted.

Fig. 3. Time sequence before and after addressing noise, window size is ws = 2

Addressing Noise in Time Sequences The mined time sequences likely con-
tain slots which are not relevant for or even interfering with the following signa-
ture generation. Such noise in the time sequences could result in an overfitting
of the generated signatures, i.e., the signatures would be “too” specific and de-
tailed, cf. [7]. This could result in false positives, i.e., non-anomalous executions
which are incorrectly identified as anomalous. So, the proposed noise reduction
heuristic will deal, for a given time sequence ts, with all slots which are empty or
volatile. A slot o := (N, tss, t

s
e) is empty if o.N = ∅, i.e., if no instance is executed

at the timespan (tss to tse) covered by the slot, e.g., slot 8 in Fig. 2 is empty.

Moreover, a slot is volatile if it covers only a low amount of activity execu-
tions. Typically volatile slots are placed at the beginning or end of instances and
cover only a short time span. Hence even a minor shift in an instance’s start
or end timestamp can have a large impact on the slot. For example, if instance
BI2’s duration, cf. Fig. 2, would only be a bit shorter (e.g., when it would end at
ts7 instead of ts8) then slot 7 would no longer be present or be part of the mined
time sequence. Formally, a slot o is identified as volatile if act(o.tss, o.t

s
e, L) < c,

i.e., c controls the minimum number of activities covered by the slot, cf. Alg. 2.

Empty slots are removed from a time sequence ts, using list comprehension
notation, i.e., ts := 〈o ∈ ts|o.N 6= ∅〉. For volatile slots, in comparison, it is
checked if they could be aggregated with one or more directly successive slots,
which are also volatile, to become non-volatile. If this is not possible then they
are also removed, cf. Fig. 3 (right side). For this Alg. 2 must identify directly
connected volatile slots. Hence, the algorithm stores the start of the first volatile
slot volS and the end of the most recent successive volatile slot in volE. Based on
this information act(volS, volE, L) > c enables to determine if an aggregation

of the found successive volatile slots results in a non-volatile slot. Imagine that
slot 18 ({C}, ts18, ts19) and 19 ({B,C}, ts19, ts20) in the running example Fig. 2
were found as volatile. This is because c was assumed as 3 and each of both
slots covers less than three complete activity executions, i.e, act(ts18, t

s
19, L) = 2

for slot 18 and act(ts19, t
s
20, L) = 2 for slot 19. However, by aggregating both

slots a new slot is created that is not volatile. Thus the aggregated slot becomes
({B,C}, ts18, ts20) (i.e, act(ts18, t

s
20, L) = 4) and replaces the old slots 18 and 19.

Algorithm addressVolatileSlotsInTS(time sequence ts = 〈o1, o2, · · · , on〉, execution logs
L, slot volatile threshold c ∈ N>0)

Result: noise free time sequence tsnv (volatile slots were aggregated or removed)
tsnv := 〈〉;volN := ∅; volS := 0; volE := 0 // store intermediate results for the
following steps, volS and volE are timestamps while volN holds model names

foreach o ∈ ts do
if act(o.tss, o.t

s
e, L) < c // check if o is a volatile slot then

volE := o.tse; volN := volN ∪ o.N// aggregate slots
if volS = 0 // i.e., first volatile slot found then

volS := o.tss // preserve start time of the first volatile slot found
else if act(volS, volE, L) > c // aggregated slot is not volatile then

tsnv := tsnv ⊕ (volN, volS, volE) // append aggregated slot on tsnv

volN := ∅; volS := 0; volE := 0 // purge preserved data

else
// a non-volatile slot was found, purge preserved data because only
directly successive volatile slots are aggregated
tsnv := tsnv ⊕ o; volN := ∅; volS := 0; volE := 0

return tsnv// similar to input time sequence ts but without volatile slots

Algorithm 2: Addressing volatile slots in mined time sequences

Consider the right side of Fig. 3. The original time sequence (left side, cf.
the running example in Fig. 2) was adapted to remove or address noise (right
side). Note, slots which are crossed out were removed because they are empty
(slot 8) or volatile slots which could not be aggregated with other volatile slots
(slot 1 and 3). Two volatile slots (slot 6 and 7) were replaced by an aggregated
non-volatile slot, i.e., “6&7”. The slot volatile threshold c was assumed as three.

4.2 Signature Generation from Time Sequences

Subsequently, signatures are generated for each individual process model P based
on time sequences TS which were generated for P ’s historic instances in L. For
this the noise free time sequences are merged and transition likelihoods are
calculated. Transition likelihoods represent the likelihood that slots which cover
specific instances of processes follow each other (based on all time sequences ts ∈
TS). For example, the likelihood that a slot which holds an execution of process
model A, B, and C is followed by a slot with execution A and C, cf. slots 16 and
17 in Fig. 2. In the following this likelihood information is utilized to differentiate
between likely and unlikely (i.e., anomalous) model instance executions.

This work proposes to represent the mined temporal behavior in three inde-
pendent signatures (i.e., one for behavior that happens before, during, or after
a process model’s execution). For this the mined time sequences are split ac-
cordingly into three parts – based on P ’s associated instance starts and ends, cf.
Fig. 2. This decreases the size of each signature. Also this was found to increase
the anomaly detection performance of the presented approach. The latter is be-
cause during each point in time a signature can be applied that specializes on

the specific kind of behavior that is currently observed (e.g., behavior that was
historically observed after or during an instance execution). Hereby, the applied
signature can be more specific than one large generic signature that needs to
cover all the historic instance behavior (i.e., before, during, and after) at once.

Each signature is represented as a likelihood graph G = (V,D), cf. [5]. A
likelihood graph is a directed cyclic graph that consists of a set of vertexes
v ∈ V and a set of edges d ∈ D with D ⊆ V × V × [0; 1]. Each vertex v
represents processes covered by a specific o.N for a given slot o. In comparison
each edge d = (vs, ve, tl) represents the transition likelihood tl ∈ [0; 1] from one
“slot” vs (i.e., a vertex holding the process model names covered by a slot) to
another vertex ve based on the mined time sequences ts ∈ TS.

Alg. 3 creates a likelihood graph (i.e., a signature) by merging multiple time
sequences. For this, the algorithm extracts from each slot, covered by the merged
time sequences, the processes covered by that slot and stores them in the set V .
Moreover, the set V C is populated with triplets vc = (v1, v2, tc) that indicate,
based on the analyzed time sequences, that a slot v2 is preceded by a slot v1, tc ∈
N>0 times (i.e., tc denotes the transition count). Subsequently these absolute
numbers (i.e., tc) are converted into relative transition likelihoods tl and stored
into D as edges. V is initialized with a dummy entry vd that is used as a general
entry point for the signature and the following mapping of behavior to it.

Algorithm mergeTimeSequencesIntoSignature(time sequences TS, dummy vertex, i.e., the
entry point for the signature vd)

Result: likelihood graph (i.e., a signature) G = (V,D) from the behavior in TS
V := {vd}; D := ∅; V C := ∅
foreach ts ∈ TS where |ts| > 0 do

V C := V C ∪ {(vd, ts0, 1)} // add dummy vertex, ts0 identifies the first slot in
ts, i.e., tsi with 0 ≥ i < |ts| identifies the slot with the index i

for i := 0;i < (|ts| − 1);i := i+ 1 do
v1 := tsi.N ; v2 := tsi+1.N// tsi and its successor tsi+1 in ts
V := V ∪ {v1, v2};// add slots to signature graph vertex set V
tcount := 1// holds how frequently v1 is followed by v2 in all sequences
if (v1, v2, ·) ∈ V C // previous ts contained the same transition then

tcount := tcount+ {vc.tc|vc ∈ V C, vc.v1 = v1 ∧ vc.v2 = v2}0
// purge old information for v1/v2, then add updated or new information
V C := {vc ∈ V C|vc.v1 6= v1 ∧ vc.v2 6= v2} ∪ {(v1, v2, tcount)}

foreach vc ∈ V C // convert absolute numbers into likelihoods do
s := vc.tc;TC := {vc′.tc|vc′ ∈ V C ∧ vc′.v1 = vc.v1}
// create and add edges to D that connect the signature vertexes in V
D := D ∪ {(vc.v1, vc.v2, s∑

tcs∈TC tcs
)}// fraction 7→ transaction likelihood

return G = (V,D)// return signature, it was created for sequences in TS

Algorithm 3: Merge time sequences TS for P into a signature G

Fig. 4 depicts an example for the proposed signature generation. Two time
sequences (XI1 and XI2, mined for the process “X” – left side) are merged
into a likelihood graph signature representation (right side). The depicted time
sequences and represented behavior occurred after X’s instances (i.e., succeeding
behavior). So processX is placed at the start of the time sequences and signature.

4.3 Signature Matching for Execution Event Streams and Logs

The signatures are applied to calculate the likelihood of process execution be-
havior based on given execution events. Today’s execution engines store (ex post

Fig. 4. Merging two mined time sequences into a signature

analysis) or stream (real time analysis) various events. This work is mainly inter-
ested in process instance and activity start and end events. Hence, all perceived
events are filtered accordingly and mined into time sequences by applying the
presented approach. Finally the resulting time sequences are mapped to signa-
tures which were generated for the executed processes based on historic behavior.

To determine if a given process instance execution is unlikely (i.e., anomalous)
or not its likelihood is calculated (i.e., execution likelihood le ∈ R>0) by mapping
it to the signatures. Moreover, comparable executions (i.e., that show a similar
temporal execution behavior to the given execution) are identified in the historic
logs L and mapped to the same signature as the given execution to generate a
reference likelihood lr ∈ R>0. Finally, both likelihoods are compared. If the
execution likelihood is below the smallest found reference likelihood then the
analyzed execution is identified as unlikely and, because of this, as anomalous.

The execution likelihood is calculated by Alg. 4. Therefore, a signature (i.e.,
a likelihood graph G = (V,D)) is utilized along with a time sequence ts that is
mapped to the signature (i.e., the sequence ts, here, represents given instance
execution behavior that should be analyzed for anomalies). To calculate the
likelihood, the slots held by the time sequence are mapped to the signature one
after another while aggregating the transition likelihoods encoded in the edges
d ∈ D that connect all signature vertexes. Finally, when all recorded behavior
(i.e., the time sequence ts) was mapped the likelihood is returned.

Algorithm matchSig(signature G = (V,D), dummy vertex vd representing the process
which G was generated for, time sequence ts holding behavior to map, punishment factors
pNDC, pDP, pOS ∈ (0; 1])

Result: calculated likelihood lh ∈ R>0 for ts
lh := 1; vl := vd // behavior likelihood lh and most recent signature vertex vl
foreach o ∈ ts // individually for each slot do

lh′ := {d.tl ∈ D|d.v1 = vl ∧ d.v2 = o.N}
P := {(v′, sim)|v′ ∈ V ; sim :=

|v′4o.N|
|v′|+|o.N| , ∀a ∈ o.N, ∃b ∈ v

′; a = b}

MS := {(v′, sim)|v′ ∈ V ; sim :=
|v′4o.N|
|v′|+|o.N|}// 4 notates a symmetric difference

if lh′ = ∅ // unexpected behavior was found then
if o.N ∈ V // stage one: exact behavior is present in the signature then

vl := o.N ; lh := lh · pNDC
else if P 6= ∅ // stage two: present but different parallelism then

min := {p1|p1 ∈ P ; ∀p2 ∈ P, p1.sim ≤ p2.sim}0
vl := min.v; lh := lh · (1−min.sim) · pDP

else
// stage three: fallback if one and two are not applicable

min := {ms1|ms1 ∈MS; ∀ms2 ∈MS,ms1.sim ≤ ms2.sim}0
vl := min.v; lh := lh · (1−min.sim) · pOS

else
vl := o.N ; lh := lh · lh′0 // if the behavior is expected

return lh// return likelihood lh of the behavior in ts

Algorithm 4: Likelihood for a time sequence ts based on a signature G

Of course, it is possible that some behavior cannot be mapped successfully.
For example, this is the case if behavior occurs in unexpected orders, e.g., in-
stance A is succeed by B but it was expected (i.e., specified in the signature)
the other way around. Another reason could be that the parallelism of observed
and the expected behavior deviates, e.g., it was expected that a single instance
of A is executed, but two concurrent executions of A were observed.

Existing process anomaly detection work typically classifies any unexpected
behavior, such as the preceding examples, as anomalous. However, as argued in
[5] this is not always beneficial. Process models and model executions are known
to occur in flexible dynamic environments, struggling with ad-hoc changes, and
the need to cope with multiple frequently changing requirements [9]. Hence, we
assume that existing anomaly detection approaches are too strict to be success-
fully applied in today’s flexible and dynamic process execution environments. So,
the proposed anomaly detection approach provides the flexibility to deal with
unexpected behavior by calculating an artificial likelihood for it.

The flexibility that should be granted by the proposed anomaly detection ap-
proach varies between different organizations, processes, and use cases. Hence,
the flexibility can be configured in Alg. 4 based on three punishment factor
variables, i.e., pNDC, pDP , and pOS. Those enable to punish unexpected be-
havior by reducing its calculated artificial likelihood. Hence, while the scenario
in the initial motivating example is identified as anomalous – because signifi-
cantly more parallelism is observed than expected based on historic executions
– minor, probably harmless, deviations from the historic behavior are “granted”
until, e.g., a combination of multiple minor deviations becomes too unlikely.

So when calculating the execution likelihood it is checked if the current slot
o ∈ ts (i.e., the behavior to map next) is a direct successor of the last mapped
slot vl. If it is, then the likelihood is extracted from the related transition like-
lihood hold by the signature in D. Hence, when mapping the short example
timesequence ts := {({X}), ({A,C}), ({A,B,C})} (timestamps are omitted) on
the signature depicted in Fig. 4 then a likelihood of 1 · 0.5 = 0.5 is calculated.
However, if o is not a successor of the last mapped slot then unexpected behavior
was found. For this, it becomes necessary to calculate an artificial likelihood by
applying a three staged approach which is discussed in the following.

Stage one: It is checked if the unexpected behavior (i.e., slots) is represented
in the signature but occurred in an unexpected order. If this is the case then
the punishment factor pNDC it utilized as the artificial likelihood. Stage two
and three calculate the artificial likelihood based on the similarity of the given
instance behavior and the behavior represented in the signature. Stage two is ap-
plied if the expected processes are executed but with an unexpected parallelism.
For example, A,A,B was observed but expected was A,B, i.e., two parallel ex-
ecutions of process A were found but only one was expected. This stage utilizes
the punishment factor pDP . Stage three, which utilizes the punishment factor
pOS, can always be applied and is, because of this, used as a fallback. It is sim-
ilar to stage two but more relaxed, i.e., it does not enforce that the behavior to
map and the related signature behavior must only consist of the same processes.

Imagine that the slot o with o.N := {A,A} should be mapped to a signature
which only consist of A as the expected behavior. Because, the observed {A,A}
and the expected {A} behavior is different the slot cannot be found in the
signature. Hence the proposed approach falls back to stage two of the artificial

likelihood calculation. So the likelihood is calculated as |{A}4{A,A}|
|{A}|+|{A,A}| 7→

1
3 =

0.3̄ so that the final artificial likelihood becomes (1 − 0.3̄) · 0.8 = 0.53̄ when a
punishment factor pDP of 0.8 is used.

The reference likelihood lr is calculated based on logged historic executions
in L that show comparable behavior to the given behavior (i.e., given instance
execution behavior to analyze for anomalies). In this case comparable means
that the time sequence describing the given behavior and the time sequences de-
scribing the historic behavior hold similar slots. For this the presented approach
to measure the similarity between two slots (i.e., for artificial likelihood calcula-
tion, cf. Alg. 4) is generalized and applied on the historic time sequences which
were mined from L during the signature generation. The k ∈ (0, 1] percent most
similar historic time sequences are subsequently compared with the signature
G using Alg. 4. Finally the lowest likelihood found during that comparisons is
utilized as the reference likelihood lr. If le < lr then the given behavior (i.e., the
behavior that is analyzed for anomalies) is identified as anomalous. This bears
two advantages: Executions in L are never identified as anomalous and the flex-
ibility which was historically observed for the process under analysis, and which
is because of this stored in L, is taken into account during anomaly detection.

5 Evaluation

The evaluation utilizes real life process execution logs from multiple domains
and artificially generated anomalies in order to assess the anomaly detection
performance and feasibility of the proposed approach. It was necessary to gen-
erate artificial anomalies as information about real anomalies are not provided
by the log sources. The utilized logs were taken from the BPI Challenge 20151

and 20172 (BPIC5 and BPIC7), and Higher Eduction Processes (HEP), cf. [13].

The BPIC5 logs hold 262,628 execution events which origin from 5,649 in-
stances and 398 activities. The logs cover the processing of building permit
applications at five (BIPC5 1 to BPIC5 5) Dutch building authorities between
2010 and 2015. In comparison the BPIC7 logs hold 1,202,267 events from 31,509
instances, recorded in 2016 and 2017, which focused on loan application manage-
ment. The HEP logs contain 28,129 events, 354 execution traces (i.e., instances),
and 147 activities – recorded from 2008 to 2011. Each trace holds the interactions
of a student with an e-learning platform (e.g., exercise uploads). The interactions
are recorded individually for each academic year 7→ HEP 1 to HEP 3. All logs

1 http://www.win.tue.nl/bpi/2015/challenge—DOI: 10.4121/uuid:31a308ef-c844-
48da-948c-305d167a0ec1

2 http://www.win.tue.nl/bpi/doku.php?id=2017—DOI: 10.4121/uuid:5f3067df-
f10b-45da-b98b-86ae4c7a310b

(i.e., BPIC and HEP) contain sufficient details to apply the proposed approach
(e.g., instance execution events and relevant timestamps).

The logs were evenly and randomly separated into training (for signature
generation) and test data (for the anomaly detection performance evaluation).
A tenth of the test data was mutated by one (out of four) randomly chosen muta-
tors (we regard this amount as being sufficient, cf. [4]). This enables to generate
labeled non-anomalous (i.e., non-mutated) and anomalous (i.e., mutated) test
data entries, i.e., to determine if both behavior “types” are correctly differ-
entiated by the proposed approach. The applied four mutators generate multi
instance anomalies that cannot be detected by existing single business process
instance focused anomaly detection work, hence, a comparison with such existing
work is not possible: a) Parallel Executions – a process execution is duplicated
so that it occurs in parallel; and b) Sequential Executions – a process execution
is duplicated so that occurs in a sequential order; and c) Execution Order – the
process execution order is randomly changed; and d) New or Missing Process –
new process executions are artificially added or recorded executions are removed.

The mutators were adapted and extended from our work in [4] – which was
assessed by security experts as being realistic. It was chosen to combine multiple
mutators to represent that real life anomalies are diverse and affect different
aspects of process executions. In addition, the applied strategy also evaluates
the proposed handling of unexpected execution behavior. This is, because the
test data (in its mutated but also non-mutated form) contains behavior that is
not represented in the training data (e.g., manual ad-hoc changes). The following
results consist of the average of 100 evaluation runs – individually for each log
file – to even out the randomness in the data separation and mutation.

Metrics and Evaluation The feasibility of the presented anomaly detection
approach is analyzed. For this, the training data is utilized to construct signa-
tures which are applied on the test data to differentiate between known ran-
domly mutated (i.e., anomalous) the known non-mutated (i.e., non-anomalous)
test data entries. This enables to collect four key performance indicators: True
Positive (TP) and True Negative (TN) represent data entries that were cor-
rectly identified as anomalous (TP) or non-anomalous (TN). In comparison,
False Positive (FP) and False Negative (FN) represent data entries which were
incorrectly identified as anomalous (FP) or non-anomalous (FN). For example,
FP counts non-anomalous test data entries which were incorrectly identified as
being anomalous. Based on this performance indicators three standard metrics
are calculated for each log file (i.e., BPIC5 1-5, BPIC7, and HEP 1-3):

a) Precision P = TP/(TP + FP) – indicates if the identified anomalous
test data entries were in fact anomalies; and b) Recall R = TP/(TP + FN)
– indicates if anomalies were “missed”, i.e., not identified; and c) Accuracy
A = (TP + TN)/(TP + TN + FP + FN) – provides a general anomaly de-
tection performance overview; TP, TN,FP, FN ∈ N>0; P,R,A ∈ [0; 1].

For this paper we assume that the number of False Positives (FP) or Nega-
tives (FN) should be low while the number of True Positives (TP) or Negatives
(TN) should be high, i.e., the accuracy becomes close to one. In addition the

Fβ-measure, Eq. 1, is applied because it provides a configurable harmonic mean
between Precision (P) and Recall (R), cf. [8]. Hereby, β controls the balance
between P and R. So, if β = 1 then a harmonic mean between P and R is calcu-
lated. In comparison a β < 1 results in a precision and a β > 1 in a recall-oriented
result. F0.5,F1,F1.5-measures were used to present the evaluation results.

Fβ =
(β2 + 1) · P ·R
β2 · P +R

(1)

Results The results were generated based on BPIC 2015/2017 and HEP process
execution logs and a publicly available proof-of-concept implementation of the
presented approach: https://github.com/KristofGit/MultiInstanceAnomaly.
The implementation calculated a signature in minutes (i.e., about 2 minutes on
average) and required only seconds (i.e., below 3 seconds on average) to identify
a test data entry as anomalous or non-anomalous on a standard 2.6 Ghz Intel
Q6300 CPU with 8 GB of RAM. Of course, the signatures can be reused, i.e.,
calculated once and subsequently applied in order to analyze multiple follow-
ing process executions. Moreover, the presented approach can be concurrently
applied to analyze multiple instances in parallel. This suggests an applicability
even on larger process repositories and execution logs.

Primary tests were applied to identify appropriate configuration values for
the presented approach. The punishment factors for unexpected behavior were
set to pNDC = 0.60 (known behavior but unexpected order), pDP = 0.40
(known behavior but unexpected parallelism), pOS = 0.30 (unknown behavior).
A lower punishment factor results in a stronger punishment. So for example,
pDP is higher than pOS because the latter is only utilized if completely unknown
execution behavior is observed. In comparisons the former is applied if “only”
an unexpected parallel execution occurred. This is the case, for example, if three
parallel executions of process A were observed but only two were expected. As a
rule of thumb it can be assumed that a higher punishment improves on the TP/
FN side while having a negative impact on the TN/FP performance indicators.
A similar conclusion can be drawn for k = 0.3, i.e., the percentage of similar time
sequences for reference likelihood generation purposes. When k is increased then
the proposed approach becomes more relaxed because the reference likelihood
typically decreases, i.e., anomalous instances are more likely “overlooked”.

A window size ws of 4 (BPIC) and 20 (HEP) was utilized. Hereby, the differ-
ent ws values compensate that the log sources (e.g., BPIC or HEP) store events
with a different density (i.e., the BPIC logs cover more events at the same times-
pan than the HEP logs). The log dependent ws-value ensures that the generated
signatures represent a roughly comparable amount of process execution events
for all log sources. Finally, a noise prevention value of c = 8 was utilized, i.e., a
slot – either original or aggregated – has to cover at least 8 activity executions
to not be recognized as volatile or noise and being removed. The chosen values
were successfully applied on different processes and domains. Hence, we assume
that they can be applied as a valid starting point for future optimizations in
scenarios and domains which were not covered by the presented evaluation.

The average evaluation results are shown in Tab. 1. The accuracy metric
reached an average result of 78% but also the other metrics show promising
results (83% for recall and 77% for precision). Hence, it was found that the
proposed approach could successfully identify the constructed anomalies in the
analyzed complex multi instance execution evaluation data. It was observed that
the proposed approach could more easily identify anomalous behavior for the
HEP log based evaluation than during the BPIC based evaluation. This most
likely origins from the different complexity of the logs (i.e., the BPIC logs hold
substantially more and more complex behavior than the HEP logs). So, it was
concluded that the more complex and diverse the signature generation behavior
becomes, the harder it is to distinguish correct from anomalous behavior. Nev-
ertheless, even for the challenging BPIC log based evaluation the performance
of the presented work achieved an average of 70% anomaly detection accuracy.

BPIC5 1 BPIC5 2 BPIC5 3 BPIC5 4 BPIC5 5 HEP 1 HEP 2 HEP 3 BPIC7

Accuracy 0.70 0.71 0.73 0.71 0.71 0.94 0.92 0.92 0.66

Precision 0.69 0.68 0.70 0.67 0.67 0.96 0.97 0.96 0.63

Recall 0.78 0.83 0.84 0.84 0.82 0.92 0.88 0.89 0.70

F0.5-measure 0.71 0.70 0.72 0.70 0.72 0.95 0.95 0.94 0.64

F1-measure 0.73 0.75 0.76 0.75 0.75 0.94 0.93 0.92 0.66

F1.5-measure 0.75 0.78 0.79 0.78 0.77 0.93 0.91 0.91 0.68
Table 1. Anomaly detection performance of the presented approach

6 Discussion and Outlook

This work applies the common assumption that an anomaly is some kind of un-
likely behavior that never or hardly occurs during a business process execution,
cf. [4, 5]. Accordingly the proposed approach compares given multi instance exe-
cutions with given recorded historic executions in L to calculate their likelihood
in relation to the behavior in L, such that, unlikely process instance executions
are identified as anomalous. Hence, this work applies an unsupervised approach
as it neither assumes the historic behavior as anomalous or not. It is hard to
propose a rule of thumb for predicting the required training data size (i.e., the
amount of historic behavior in L). This is because the size of the required training
data heavily depends on the amount of execution variety that can be observed
for the analyzed instances – which is unique for each organization.

The evaluation showed an average anomaly detection accuracy of 78%, which
suggests an applicability in additional scenarios. In addition a detailed analysis
of the evaluation results revealed that the proposed behavior likelihood assess-
ment based anomaly detection approach substantially improved the detection
results for the analyzed complex real life execution behavior. This is, because
the utilized real life evaluation data showed a substantial amount of behavior
drift in the analyzed multi instance behavior data, caused, e.g., by fluctuating
instance durations or varying parallel instance execution behavior. Hence, not
taking these dynamics, by design, into account would have resulted in substan-
tially worse evaluation results, e.g., by causing a high number of false positives.

Note, a large amount of false positives could harm an organization’s performance,
e.g., through process executions which are unnecessarily halted or terminated.

The presented approach determines process executions as anomalous based
on their relations to other preceding, succeeding, or simultaneous instances. In
comparison to existing work this is a rather big picture focused approach which,
by purpose, ignores more fine granular details (e.g., which resource has executed
an activity or what data was exchanged between two activities). Hence, in fu-
ture work we will strive to combine both worlds. Hereby, multiple views on the
instance behavior can be taken into consideration to identify diverse and com-
plex anomalous behavior. We assume this as necessary to identify inside threats
that actively hide their malicious intentions. Moreover, we will assess the appli-
cability of the proposed approach to analyze complex dynamic parallel activity
executions. Finally, we will strive to integrate correlation features to respect
contextual aspects, e.g., by adding support for filters to analyze only process
instances that meet specific conditions (e.g., based on the involved resources).

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. ACM 26(11), 832–
843 (1983)

2. Atallah, M., Szpankowski, W., Gwadera, R.: Detection of significant sets of episodes
in event sequences. In: Data Mining. pp. 3–10. IEEE (2004)

3. Bezerra, F., Wainer, J., van der Aalst, W.M.: Anomaly detection using process
mining. In: Enterprise, Business-Process and Information Systems Modeling, pp.
149–161. Springer (2009)

4. Böhmer, K., Rinderle-Ma, S.: Automatic signature generation for anomaly detec-
tion in business process instance data. In: Business Process Modeling, Development
and Support. pp. 196–211. Springer (2016)

5. Böhmer, K., Rinderle-Ma, S.: Multi-perspective anomaly detection in business pro-
cess execution events. In: COOPIS. pp. 80–98. Springer (2016)

6. Böhmer, K., Rinderle-Ma, S.: Anomaly detection in business process runtime be-
havior – challenges and limitations. arXiv (2017)

7. Chaoji, V., Rastogi, R., Roy, G.: Machine learning in the real world. VLDB En-
dowment 9(13), 1597–1600 (2016)

8. Chinchor, N., Sundheim, B.: Muc-5 evaluation metrics. In: Message understanding.
pp. 69–78. Computational Linguistics (1993)

9. Fdhila, W., Rinderle-Ma, S., Knuplesch, D., Reichert, M.: Change and compliance
in collaborative processes. In: Services Computing. pp. 162–169. IEEE (2015)

10. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data:
A survey. Knowledge and Data Engineering 26(9), 2250–2267 (2014)

11. de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Information Systems 56, 235–257 (2016)

12. Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes.
In: Business Process Management. pp. 234–249. Springer (2014)

13. Vogelgesang, T., et al.: Multidimensional process mining: Questions, requirements,
and limitations. In: CAISE Forum. pp. 169–176. Springer (2016)

14. Wieringa, R.J.: Design science methodology for information systems and software
engineering. Springer (2014)

