
Ensuring and Assessing Architecture Conformance to
Microservice Decomposition Patterns

Uwe Zdun1, Elena Navarro2, Frank Leymann3

1 Faculty of Computer Science, Research Group Software Architecture, University of Vienna,
Austria, Email: uwe.zdun@univie.ac.at

2 Computing Systems Department, Laboratory of User Interaction and Software Engineering,
University of Castilla-La Mancha, Spain, Email: elena.navarro@uclm.es

3 Institute of Architecture of Application Systems, University of Stuttgart, Germany, Email:
frank.leymann@iaas.uni-stuttgart.de

Abstract. Microservice-based software architecture design has been widely dis-
cussed, and best practices have been published as architecture design patterns.
However, conformance to those patterns is hard to ensure and assess automati-
cally, leading to problems such as architectural drift and erosion, especially in the
context of continued software evolution or large-scale microservice systems. In
addition, not much in the component and connector architecture models is spe-
cific (only) to the microservices approach, whereas other aspects really specific
to that approach, such as independent deployment of microservices, are usually
modeled in other views or not at all. We suggest a set of constraints to check and
metrics to assess architecture conformance to microservice patterns. In compar-
ison to expert judgment derived from the patterns, a subset of these constraints
and metrics shows a good relative performance and potential for automation.

1 Introduction

Many approaches have been proposed for service-based architecture decomposition
(see e.g. [16,19,21,28]). An approach which evolved from established best practices are
microservices, as Newman [15] points out: “The microservices approach has emerged
from real-world use, taking our better understanding of systems and architecture to do
SOA well.” Lewis and Fowler [14] describe microservices as “an approach to devel-
oping a single application as a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and independently deployable by fully
automated deployment machinery.” More detailed discussions can be found in [27,18].

This paper focuses on architecture decomposition based on the microservices ap-
proach. Many required decisions about how to perform the major architecture decom-
position into microservices have already been described in form of architectural design
patterns [21]. However, those and related patterns can lead to architecture designs in
many different variants and combinations of pattern-based design options, making it
hard to automatically or semi-automatically judge questions such as: When designing
a microservice architecture, how much did a project deviate from the established best
practices? After evolving a microservice architecture, are we still in conformance with



the chosen microservice patterns? When moving from a monolithic architecture to a
microservice architecture, how big is the gap to a microservice-based design?

For checking or assessing such questions related to pattern conformance of the mi-
croservice architecture, a high level of automation would be very useful. While it is
possible to judge these questions for a small scale architecture manually, in practice it
is rarely done in each architecture evolution step, leading to architectural drift and ero-
sion [20]. For larger scale projects, manual assessment is more difficult. For instance,
consider the work of an integration architect judging pattern conformance in hundreds
of microservices. Here, manual assessment can only work in a cost-effective way, if
every team is very disciplined and assesses their own conformance in each evolution
step. Further, without automation, at a larger scale with many different stakeholders,
judging pattern conformance objectively and uniformly across teams and stakeholders
is difficult. These points have led us to address the following research questions:

RQ1: Which measures can be defined to automatically check or assess pattern con-
formance in microservice decomposition architectures?

RQ2: How well do such measures perform in relation to expert judgment?
RQ3: Given that many defining aspects of microservices (like independent deploy-

ment) are modeled outside of a microservice decomposition architectures, what is a set
of minimal elements needed in a microservice decomposition architecture to compute
meaningful measures?

Our major contributions are the following. Based on existing microservice patterns
[21] we have hypothesized a number of constraints and metrics to make an automated
judgment on microservice architecture decomposition. To evaluate those constraints
and metrics, we have modeled 13 architecture models taken from the practitioner lit-
erature and assessed each of them manually regarding its quality and violations of mi-
croservice patterns (following as closely as possible the expert judgment of the pattern
authors). We have then compared the results in depth and statistically over the whole
evaluation model set. Our results are: A subset of the constraints and metrics are quite
close to the pattern-based assessment based on the expert judgment taken from the pat-
terns. We identified only a few necessary modeling elements in microservice decompo-
sition architectures, meaning that they are rather easy to create semi-automatically (e.g.
using the approach from [6]). Moreover, in those models not much is (only) specific
to microservices so that there is still room for improvement. Such further improvement
would require detailed modeling of the microservices and thus more manual effort.

This paper is organized as follows. Section 2 compares to related work. Next, we
discuss a minimal formal model for microservice-based architecture decomposition in
Section 3. Section 4 introduces our suggested microservice design constraints and met-
rics, and Section 5 evaluates them for 13 models from practice. Section 6 discusses the
RQs regarding the evaluation results, analyses the threats to validity, and concludes.

2 Related Work

Many studies currently study microservice-based architectures in the context of DevOps
or container-technologies like Docker (see e.g. [8,3,9]). In addition, quite a number of
studies analyse the application of microservices in various application domains such as



data centers [12], digital archives [10], or Web apps [25], to name but a few. A recent
mapping study [1] confirms that the major interests in these and other studies are mostly
the concrete system architectures often in relation to deployment, cloud, monitoring,
performance, APIs, scalability, and container-technologies. That is, these studies are
related to ours, so far, as their architectures are potential targets for our approach. The
additional aspects that are studied in those approaches (like performance, scalability, or
deployment aspects) are potential extensions of our approach, as possible future work.

First engineering approaches, specific to microservices are emerging. We have
based our work on the microservice patterns by Richardson [21]. For instance, the
API Gateway pattern is beneficial in a Microservice Architecture, but not a must. This
pattern proposes “a single entry point for all clients.” A variant of API Gateway is the
Backend for Frontend pattern that “defines a separate API Gateway for each kind of
client.” With regard to data stores, the recommended pattern is Database per Service,
i.e., “an architecture which keeps each microservice’s persistent data private to that
service and accessible only via its API.” Loosely coupled interaction is usually the only
intended way how microservices should communicate with each other. This is typically
achieved using event-driven communication or messaging [7], in both cases with focus
on an eventually consistent approach for communication of data-related operations.

Another set of microservice patterns has been published by Gupta [5], general best
practices are discussed in [14], and other similar approaches are summarized in an-
other recent mapping study [16]. So far, however, no automated software engineering
tools have been proposed for microservice decomposition in the literature. Engineering
approaches rather focus on aspects like support for modeling and composition [11] or
migration from monolithic architectures [13]. Related general service design methods
focus e.g. on QoS-aware service composition [22] or the involved architecture decisions
[28]. While much of the work on service metrics is focused on runtime properties like
QoS, some specific design metrics for Web services have been proposed, e.g. focusing
on loose coupling [19]. To the best of our knowledge, no general conformance approach
for architecture decomposition of microservices – or services in general – exists so far.

Software architecture conformance checking is often based on automated extraction
techniques, which could be used as a basis for our approach as well (here following
[6]), e.g. using architecture reconstruction approaches [4,24]. Such approaches often
can check conformance to architecture patterns [4,6] or other kinds of architectural
rules [24]. Other static architecture conformance checking techniques are: dependency-
structure matrices, source code query languages, and reflexion models [17]. In such
approaches often general software engineering metrics like complexity metrics play a
role [17]. Our approach follows the same general strategy like those approaches, but
in contrast we focus on specific constraints (or more generally, architecture rules) and
metrics derived from microservices best practices – not applicable in a general context,
but at the same time more powerful in our specific microservice (or service) context.

3 Modeling Microservice-Based Architecture Decomposition

Figure 1 shows a simple sample microservice decomposition model, as they are mod-
eled in practice (see e.g. [21]). It uses UML2 component model notation with one ex-



tension: a Directed Connector is modeled using a directed arrow (not part of UML2).
Not much in such a model is (only) specific to microservices, but at the same time
many aspects may be modeled in a way which is violating some parts of the microser-
vice patterns. This might lead to severe problems in other views of the architecture or
system, such as logical, detailed design or deployment views. For instance, a decompo-
sition that would hinder independent deployment, uses many shared dependencies and
is mainly based on strongly coupled connectors, so that it would not be following the
microservice best practices well.

From an abstract point of view, a microservice-based architecture decomposition
is a decomposition into a directed components and connectors graph with a set of
component types for each component and a set of connector types for each connector,
formally: An architecture decomposition model M is a tuple (CP, CN, CPT, CNT,
cp_directtype, cn_directtype, cp_supertype, cn_supertype, cp_type, cn_type)
where:

– CP is a finite set of component nodes.
– CN ⊆ CP × CP is an ordered finite set of connector edges.
– CPT is a set of component types.
– CNT is a set of connector types.
– cp_directtype : CP → P(CPT ) is a function that maps each component node cp

to its set of direct component types,
– cp_supertype : CPT → P(CPT ) is a function called component type hier-

archy. cp_supertype(cpt) is the set of direct supertypes of cpt; cpt is called the
subtype of those supertypes. The transitive closure4 cp_supertype∗ defines the in-
heritance in the hierarchy such that cp_supertype∗(cpt) contains the direct and
indirect (aka transitive) supertypes of cpt. The inheritance hierarchy is cycle
free, i.e. ∀cpt ∈ CPT : cp_supertype∗(cpt) ∩ {cpt} = ∅.

– cp_type : CP → P(CPT ) is a function that maps each component to its set
of direct and transitive component types, i.e., ∀cp ∈ CP, dt ∈ CPT : dt =
cp_directtype(cp)⇒ cp_type(cp) = dt ∪ cp_supertype∗(dt).

– cn_directtype : CN → P(CNT ) is a function that maps each connector cn to its
set of direct connector types.

– cn_supertype : CNT → P(CNT ) is a function called connector type hierar-
chy. cn_supertype(cnt) is the set of direct supertypes of cnt; cnt is called the
subtype of those supertypes. The transitive closure cn_supertype∗ defines the in-
heritance in the hierarchy such that cn_supertype∗(cnt) contains the direct and
indirect (aka transitive) supertypes of cnt. The inheritance hierarchy is cycle
free, i.e. ∀cnt ∈ CNT : cn_supertype∗(cnt) ∩ {cnt} = ∅.

– cn_type : CN → P(CNT ) is a function that maps each connector to its set
of direct and transitive connector types, i.e., ∀cn ∈ CN, dt ∈ CNT : dt =
cn_directtype(cn)⇒ cn_type(cn) = dt ∪ cn_supertype∗(dt).

With this definition, we can rephrase RQ3 to the question: Which elements of CPT
and CNT and which type hierarchy dependencies of those are actually needed in order
to compute meaningful constraints and metrics?

4 All transitive closures in this article are assumed to be calculated with a standard algorithm for
transitive closures like Warshall’s algorithm.



«ClientComponent»
MobileApp

«ClientComponent»
Browser

«ServiceFacadeComponent»
APIGateway

«ServiceComponent»
AccountService

«ServiceComponent»
InventoryService

«ServiceComponent»
ShippingService

«WebUIComponent»
Storefront

«MongoDBComponent»
AccountDB

«MongoDBComponent»
InventoryDB

«MySQLDBComponent»
ShippingDB

«RESTfulConnector»

«RESTfulConnector»

«RESTfulConnector»

«RESTfulConnector»«RESTfulConnector»

«RESTfulConnector»
«RESTfulConnector»

«JDBCConnector»«MongoWireConnector»«MongoWireConnector»

«HTTPConnector, HTTPSConnector»

Fig. 1. Sample microservice architecture decomposition model(adapted from [21])

4 Microservice Design Constraints and Metrics

4.1 Constraints and Metrics Based on Independent Deployment

As microservices are emphasized to be independent units of deployment, one hypoth-
esis we have developed was that a good indicator for microservice-based decompo-
sition could be to check whether all components are independently deployable or to
what degree they are independently deployable. From the viewpoint of an architec-
ture decomposition model, independently deployable means that no components that
are part of a microservice have in-memory connectors (or subclasses thereof or similar
strongly coupled connectors) to other components that are part of that microservice. In
particular, we do not consider external components, as they are not part of a microser-
vice. Finally, microservice should contain components at the same level of abstrac-
tion connected only via loosely coupled interfaces. More formally, we assume there
is a supertype of all in-memory connectors (and similar strongly coupled connectors)
InMemoryConnector ∈ CNT and a supertype of all external components External-
Component ∈ CPT (with a subtype ClientComponent, i.e. ExternalComponent ∈
cp_supertype∗(ClientComponent)).

– The function imc : CP → P(CP ) maps a component to the set of compo-
nents that are directly connected to the component via connectors typed as
InMemoryConnector. We call imc(cp) the direct in-memory cluster of a
component cp with ∀cp ∈ CP : imc(cp) = {co ∈ CP | ∃cn ∈ CN : cn =
(cp, co) ∧ InMemoryConnector ∈ cn_type(cn)}.

– The transitive closure imc∗ : CP → P(CP ) defines the set of components directly
and indirectly connected to a component cp via InMemoryConnector edges. We
call imc∗(cp) the in-memory cluster of a component cp.



– The function idcc : CP → P(CP ) maps a component to its independently de-
ployable component cluster such that ∀cp ∈ CP : idcc(cp) = {co ∈ ({cp} ∪
imc∗(cp)) |ExternalComponent /∈ cp_type(co)}.

– The function idccs : M → P(P(CPm)) maps a model to the set of its inde-
pendently deployable component clusters (i.e., a set of component clusters
(CPS) computed with the function idcc): ∀m ∈ M : idccs(m) = {CPS ∈
P(CPm) | ∀cp ∈ CPm : idcc(cp) ∈ CPS}5.

Based on these definitions we can define the constraint all components are inde-
pendently deployable (CAID), CAID : M → Boolean, using the formula below,
which computes all independently deployable component clusters CPS in a model m
and checks for all CPS that their size is less or equal to 1 using the aggregate function
Fcount. Here, we use the standard aggregate function from relational algebra which
counts the number of elements in the collection to compute the size, i.e., it has the same
semantics as in SQL. Regarding CAID, the boolean value 0 means false, i.e. a constraint
violation, and 1 means true, i.e. that the constraint is not violated:

∀m ∈M : CAID(m) =

{
1 if: ∀CPS ∈ idccs(m) : Fcount(CPS) ≤ 1
0 if: ∀CPS ∈ idccs(m) : Fcount(CPS) > 1

Our implementation of the constraint additionally computes the clusters that have
failed to provide precise failure information to the user. Additionally, there is a function
for computing the components violating independent deployability, cvid : M →
P(CP ), which simply executes the CAID constraint, and returns an empty set if it is
not violated, otherwise all components in the violating clusters. We suggest two metrics
that can be derived from this constraint and its underlying functions:

– Ratio of components violating independent deployability to non-external com-
ponents (RVID) is based on the constraint CAID. It uses the function cvid to ex-
ecute the constraint, and returns the number of violating components or an empty
set in case of no violation. Then RVID sets their number in ratio to the total number
of non-external components. nec : M → P(CP ) is a helper function returning
all components in a model that are not of type ExternalComponent (non-external
components). Here, and in a number of the following metrics counting unique
non-external components, we set the component counts in ratio to the model size in
terms non-external components, which – compared to the component counts them-
selves – scales the metric to the interval [0, 1]. This, thus, makes metric results for
different models more comparable. RV ID : M → R is defined as follows:

∀m ∈M : RV ID(m) =
Fcount(cvid(m))

Fcount(nec(m))

5 We use the notation ‘CPm’, ’CNm’ etc. in formulas taking models as input to denote the tuple
of elements of the model m; in formulas considering any model, like the previous ones, we
omit notation for brevity.



– Ratio of independently deployable component clusters to non-external com-
ponents (RIDC), RIDC : M → R, sets the number of independently deployable
component clusters in ratio to the size of the model (in terms of non-external com-
ponents):

∀m ∈M : RIDC(m) =
Fcount(idccs(m))

Fcount(nec(m))

4.2 Constraints and Metrics Based on Shared Dependencies

Many of the microservice patterns [21] (for a short summary see Section 2) focus on
decompositions which avoid sharing other components or sharing them in a strongly
coupled fashion. Hence, another major idea for constraints and metrics was to base
them on the notion of shared components, sharing components, and shared dependen-
cies in the architecture decomposition. With regard to constraints we have envisioned
three basic types of constraints: no shared components which checks whether there is
no shared component; no sharing components which checks whether there is no sharing
component; no shared dependencies which checks whether there is no shared depen-
dency of two components. As typically different clients can share a microservice, and
microservices can themselves share third-party microservices, all external components
need to be excluded from these constraints (and metrics). All three constraints are based
on the same algorithm for finding the set of shared dependencies of each component in
the model, requiring the following functions for this:

– acd : CP → P(CP ) is a function which calculates all direct component de-
pendencies of a component. That is, acd(cp) is defined formally as: ∀cp ∈ CP :
acd(cp) = {cd ∈ CP | ∃cn ∈ CN : cn = (cp, cd)}. The transitive closure acd∗

defines all direct and indirect component dependencies of a component cp.
– ascd : M → P(CPm×(CPm×CPm)) is a function which maps a model m ∈M

to a set of tuples containing a component cp ∈ CPm and the set of all shared
component dependencies of that component cp (excluding external components).
Each of these shared component dependencies is itself a tuple (oc, sd) being oc ∈
CPm the other component with which cp shares a dependency and sd ∈ CPm the
component which is shared both by oc and cp, expressed formally: ∀m ∈ M :
ascd(m) = {(cp, (oc, sd)) | cp, oc, sd ∈ CPm ∧ sd ∈ acd(cp) ∧ sd ∈ acd(oc) ∧
ExternalComponent /∈ cp_type(cp) ∧ ExternalComponent /∈ cp_type(oc) ∧
ExternalComponent /∈ cp_type(sd)}.

– sic : M → P(CPm) is a function that provides the set of all sharing non-
external components, formally defined as: ∀m ∈ M : sic(m) = {cp ∈
CPm | ∃oc, sdCPm : (cp, (oc, sd)) ∈ ascd(m)}.

– sdc : M → P(CPm) is a function that provides the set of all shared non-
external components, formally defined as: ∀m ∈ M : sdc(m) = {sd ∈
CPm | ∃oc, cpCPm : (cp, (oc, sd)) ∈ ascd(m)}.

The closer study of the three types of constraints revealed that they lead to ex-
actly the same violations: as a shared dependency leads to a sharing and a shared
component, either all these constraints are violated or none of them. For this rea-
son, it is enough for us to formally define and study one of those constraints. Here,



we define the constraint no shared non-external component dependencies (NSCD),
NSCD : M → Boolean, as (0 = false, i.e. a constraint violation, and 1 = true, i.e. no
constraint violation):

∀m ∈M : NSCD(m) =

{
1 if: ∀SD ∈ ascd(m) : Fcount(SD) = 0
0 if: ∀SD ∈ ascd(m) : Fcount(SD) > 0

Further for this constraint (and all related metrics) below, we suggest – in addition
to the basic constraint – three variants.

– NSCD-F excludes Facade components from the constraint. Many microservice
models (as well as monolithic models) contain Facades, such as an APIGateway
in Figure 1, as an acceptable way to share microservice components [2]. We thus
assume a class Facade ∈ CPT with classes like APIGateway as its subclasses (thus
also ∈ CPT through e.g. Facade ∈ cp_supertype∗(APIGateway) and so on).
At first we envisioned to automatically compute which components are Facades,
but unfortunately this design intent is impossible to compute in an unambiguous
way. For instance, our evaluation model RB (see Table 1) contains microservices
that are directly connected to clients, and, without further information, there is no
way to automatically distinguish those from a model in which only Facades are
modeled. For this reason, all *-F variants of constraints and metrics require Fa-
cades to be explicitly modeled. The rationale behind the *-F variants is: If Facades
are modeled, we hypothesize that excluding them from the constraints and metrics
could lead to a better identification of real issues with regard to shared dependen-
cies. For space reasons, we omit the formal definition here, as it is analogous to the
functions/constraints defined above, just excluding Facades in the functions.

– NSCD-C excludes loosely coupled connectors (event-driven, publish/subscribe
style interaction, and message queuing) from further investigation. We assume a
class LooselyCoupledConnector ∈ CNT with subclasses such as EventBased-
Connector, PubSubConnector, MessagingConnector (all also ∈ CNT , using
cn_supertype∗ relations). That is, only strongly coupled connectors can lead in
*-C variants of constraints and metrics to constraint violations or lower metrics val-
ues. As the patterns suggest to use only loosely coupled interaction in event-driven,
publish/subscribe style between microservices, we hypothesize that excluding
them from the constraints and metrics could lead to a better identification of a real
issue with regard to shared dependencies. We expect that the exclusion of loosely
coupled connectors makes the results more comparable for different models in the
sense that in this way the same model, modeled at different levels of detail, leads
to the same metric values and constraint violations. For space reasons, we omit the
formal definition here, as it is analogous to the functions/constraints defined above,
just excluding LooselyCoupledConnectors in the functions.

– NSCD-FC is the combination of NSCD-F and NSCD-C.

All metrics below are defined analogously in a basic version plus three variants.
Here, however, the differences between shared components, sharing components, and
shared dependencies play a major role, and it is interesting to study which of those basic



counts is better suited as a foundation for a shared dependency metric. Firstly, we define
the ratio of sharing non-external components to non-external components (RSIC),
RSIC : M → R, based on the count of components returned by the functions sic
(defined above) set in relation to the non-external components count (based on nec) as:

∀m ∈M : RSIC(m) =
Fcount(sic(m))

Fcount(nec(m))

Secondly, we define the ratio of shared non-external components to non-external
components (RSCC), RSCC : M → R, based on functions sdc and nec:

∀m ∈M : RSCC(m) =
Fcount(sdc(m))

Fcount(nec(m))

Finally, we suggest a metric ratio of shared dependencies of non-external com-
ponents to possible dependencies (RSDP), RSDP : M → R based directly on the
number of shared dependencies returned by the function ascd. Here we scale the metric
using the number of all possible dependencies (i.e., the number of counted components
squared). As this value has no specific meaning in the context of our model, we have
also compared other scalings in our evaluation like no scaling, the model size in terms
components, and all component dependencies. We have chosen only the scaling based
on all possible dependencies here, as all other metrics perform weaker in our evaluation,
and at the same time none of the other options scales the metric to the normed interval
[0,1]. As a result, we suggest the metric:

∀m ∈M : RSDP (m) =
Fcount(ascd(m))

(Fcount(nec(m)))2

All metrics, defined in this section, also have *-F, *-C, and *-FC variants, with
analogous reasoning to the discussion for NSCD. The differences in formal definition
to the base variants are the following: The metrics must use adapted versions of the
functions, analogously to the NSCD variants, and the function nec in the divisor of the
metrics should be adapted to not consider Facades for the two *-F and *-FC variants,
as scaling should be done according to the considered components.

5 Evaluation

For performing our evaluation, we have fully implemented our formal model, con-
straints, metrics, and related algorithms using the Frag Modeling Framework (FMF),
a runtime modeling, domain-specific language and generator framework implemented
on top of Java/Eclipse which enables us to easier change design decisions made and per-
form experimentation than in comparable frameworks like the Eclipse Modeling Frame-
work (EMF) (see [26] for more details). Besides extensive test cases, a code generator
to generate R scripts has been implemented, used to perform statistical comparison of
achieved and expected results for the different constraints and metrics. In addition, we
have fully modeled and implemented 13 models in an evaluation model set, summa-
rized in Table 1. Each of the models is either taken directly from a model published



by practitioners or adapted according to discussions on the respective referenced Web
sites. While the models taken from 4 independent sources6 are still examples, they all
originate from models developed by practitioners with microservice and monolith im-
plementation experience. Hence, we assume that our evaluation models are close to
models used in practice and real practical needs for microservice decomposition (com-
pared e.g. to models created solely by ourselves).

Table 1. Summary of models used for evaluation and manual assessment of pattern compliance

ID Size Short Description Major Violations of Patterns VMP MQ

EC1 10 comp.,
11 conn.

E-Commerce model with 3 independent microser-
vices, an API gateway, a Web UI, databases per
service, inter-service communication not modeled

None 0 1.0

EC2 13 comp.,
19 conn.

Similar to EC1; additionally 1 service consists of 4
components which are realizing different business
capabilities

A service contains different subdo-
mains/capabilities or is not mod-
eled at the same abstraction level

1 0.6

EC3 11 comp.,
17 conn.

Similar to EC1; additionally models inter-service
communication using the Event Sourcing pattern None 0 1.0

EC4 11 comp.,
17 conn.

Similar to EC1; additionally models inter-service
communication using the Transaction Log Trail-
ing (or Database Trigger) pattern

None 0 1.0

EC5 8 comp.,
11 conn.

Similar to EC1; with only one database, which is
shared among the microservices Shared database 1 0.6

EC6 8 comp.,
11 conn.

Same components as in EC1 but all in one shared
address space, shared database, API gateway, Web
UI

No decomposition into multiple
services (all other violations are
secondary)

1 0.0

EC7 8 comp.,
14 conn.

Similar to EC6; with all in-memory component
dependencies explicitly modeled

No decomposition into multiple
services (all other violations are
secondary)

1 0.0

EC8 11 comp.,
19 conn.

Similar to EC2; with only one database, which is
shared among the microservices

A service contains different subdo-
mains/capabilities or is not mod-
eled at the same abstraction level;
shared database

1 0.4

RB 4 comp.,
3 conn.

Single service for restaurant booking, no clients
modeled, follows CQRS pattern, uses REDIS for
fast denormalized querying

None 0 1.0

TH1 18 comp.,
17 conn.

Taxi hailing application: 3 microservices with
a layer of 3 backend services in addition to 3
databases per service, shared payment component

Shared, strongly coupled compo-
nent 1 0.6

TH2 18 comp.,
17 conn.

Same as TH1, avoids shared component using
loosely coupled connectors None 0 1.0

TH3 15 comp.,
19 conn.

Same components as in TH1 but all in one shared
address space, 1 shared database, 1 API gateway,
1 Web UI

No decomposition into multiple
services (all other violations are
secondary)

1 0.0

SA 15 comp.,
19 conn.

Web shop app with 7 services, 5 different data
stores, 2 modular Web UIs None 0 1.0

The table also shows our manual, pattern-based assessment of the architecture con-
formance of each of the models. There are two assessments: Does the model violate at
least one of the microservice patterns (from [21])? We carefully assessed each model

6 We have adapted Models EC1-8 from [21]. Model RB is adapted from: http://eventuate.
io/exampleapps.html. The Models TH1-TH3 are adapted from: https://www.nginx.
com/blog/introduction-to-microservices/. Model SA is adapted from: https://
www.slideshare.net/smancke/fros-con2014-microservicesarchitecture. For all
models, we aimed to stay close to the original model; adaptation mainly means modeling them
using our approach to architecture decomposition modeling and in the model variants intro-
ducing the described variations.

http://eventuate.io/exampleapps.html
http://eventuate.io/exampleapps.html
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/
https://www.slideshare.net/smancke/fros-con2014-microservicesarchitecture
https://www.slideshare.net/smancke/fros-con2014-microservicesarchitecture


for major violations of the patterns. If at least one occurs, we marked it in column Viola-
tions of Microservice Patterns (VMP) of Table 1 as true = 1, otherwise as false = 0.
In addition, we tried to objectively measure the quality of the model with regard to
conformance to the microservice patterns [21]. For this, we use the following rules to
compute the Microservice Architecture Quality (Column MQ in Table 1) based on a
detailed manual inspection of the compliance of the models to the architecture patterns:

– If the Microservice Architecture pattern cannot be found at all, that is, the architec-
ture clearly follows a Monolithic Architecture, we set MQ=0.

– Otherwise we set MQ=1, and then if one of the violations listed below (each one
can occur multiple times) is found, we reduce MQ by 0.4 on the first occurrence,
by another 0.2 on the second occurrence (of the same or another pattern), another
0.1 on the third occurrence, and so on. Thus, the violation penalty is divided by
factor 2 from one violation occurrence to the next because if such a minor vio-
lation occurs, the model should not be better rated than 0.6. But even if multiple
minor violations happen, the rating should still stay better than the monolithic score
of 0. The violations analyzed are the following: (1) A minor violation of the Mi-
croservice Architecture pattern occurs, such as some microservices contain com-
ponents corresponding to multiple different capabilites or subdomains, or not all
microservices are modeled at the same abstraction level. (2) Internal components
share other internal components not using loosely coupled connectors, e.g. realized
using Event-driven Architecture (or the realization of an Event-driven Architecture
violates established patterns for event-based communication among microservices
such as Event Sourcing, Transaction Log Tailing, Database Triggers, Application
Publishes Events, Command Query Responsibility Segregation, see [21]). (3) The
Database per Service pattern is not used, but a Shared Database.

– The use of the two API Gateway patterns is beneficial, but does not change the
quality assessment. The reason is that API Gateways are also commonly used in
monolithic architectures, and a microservice architecture that does not use them
is not less well decomposed w.r.t. the microservice patterns. Note that although the
API Gateway patterns are still important for our approach, their use is important for
calculating some of our constraints and metrics (see discussion on Facades below).

We have chosen this scoring scheme because it is close to the suggestions in the
patterns and introduces no major subjective bias. In the course of our evaluations, we
have compared it to other reasonable scorings, including subjective expert judgment
by the authors, and a number of similar mechanical scorings. The sensitivity to those
scorings was generally low, as long as we followed the suggestions from the patterns
closely. The evaluation of the constraints leads to binary vectors indicating for each
model whether the constraint is violated or not. Below we discuss the results of each
of these vectors in detail. In addition, we calculated the Jaccard similarity [23] to the
vector built from VMP values in Table 1 (JS_VMP in Table 2) to get a quick estimate
of how well the respective constraint performs in relation to the manual, pattern-based
assessment for our evaluation model set. The Jaccard similarity is a common index for
binary samples, which is defined as the quotient between the intersection and the union
of the pairwise compared variables among two vectors.



Metrics evaluation leads to vectors with positive values which should indicate the
quality of the microservice decomposition. Again, we discuss them in detail below. In
addition, we compute the Cosine similarity with the vector MQ from Table 1 (CS_MQ
in Table 3) to get a quick estimate of how well the respective metric performs in rela-
tion to the pattern-based assessment for our evaluation model set. Cosine similarity is
a common measure of similarity between two vectors based on the cosine of the angle
between them [23]. Some of the metrics below are reversed compared to MQ in the
sense that their best value is 0.0, with higher values indicating better quality. Conse-
quently, we compared those metrics to the reversed MQ, which is defined as MQR =
1 – MQ (below indicated as CS_MQR). Alternatively, we could calculate the associ-
ated distance metrics, where the distance d is also defined in relation to its associated
similarity metric as d = 1 – s.

Table 2. Evaluation Results: Constraints (1 - constraint is violated, and 0 - it is not violated)

Constraint EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 RB TH1 TH2 TH3 RSA JS_VMP

CAID 0 1 0 0 0 1 1 1 0 0 0 1 0 0.71

NSCD 1 1 1 1 1 1 1 1 1 1 1 1 1 0.54
NSCD-F 0 1 1 1 1 1 1 1 1 1 1 1 1 0.58
NSCD-C 1 1 1 1 1 1 1 1 0 1 1 1 0 0.64
NSCD-FC 0 1 0 0 1 1 1 1 0 1 0 1 0 1.0

Table 3. Evaluation Results: Metrics

Metric EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 RB TH1 TH2 TH3 SA CS_MQ CS_MQR

RVID 0.0 0.36 0.0 0.0 0.0 0.83 0.83 0.44 0.0 0.0 0.0 0.89 0.0 0.96
RIDC 1.0 0.73 1.0 1.0 1.0 0.33 0.33 0.67 1.0 1.0 1.0 0.22 1.0 0.97

RSIC 0.63 0.73 0.56 0.89 0.83 0.83 0.83 0.89 0.5 0.33 0.33 0.56 0.64 0.73
RSIC-F 0.0 0.44 0.43 0.86 0.75 0.75 0.75 0.86 0.5 0.22 0.22 0.43 0.5 0.74
RSIC-C 0.63 0.73 0.56 0.56 0.83 0.83 0.83 0.89 0.0 0.33 0.33 0.56 0.0 0.81
RSIC-FC 0.0 0.44 0.0 0.0 0.75 0.75 0.75 0.86 0.0 0.22 0.0 0.43 0.0 0.91

RSCC 0.75 0.82 0.78 0.78 0.67 0.67 0.67 0.78 0.25 0.5 0.5 0.78 0.64 0.70
RSCC-F 0.0 0.44 0.14 0.14 0.25 0.25 1.0 0.57 0.25 0.11 0.11 0.29 0.33 0.80
RSCC-C 0.75 0.82 0.67 0.67 0.67 0.67 0.67 0.78 0.0 0.5 0.42 0.78 0.0 0.76
RSCC-FC 0.0 0.44 0.0 0.0 0.25 0.25 1.0 0.57 0.0 0.11 0.0 0.29 0.0 0.85

RSDP 0.38 0.89 0.54 0.99 0.72 0.72 1.56 1.51 0.13 0.11 0.11 0.62 0.35 0.79
RSDP-F 0.0 0.37 0.12 0.61 0.38 0.38 0.75 0.98 0.13 0.02 0.02 0.16 0.08 0.72
RSDP-C 0.38 0.89 0.3 0.3 0.72 0.72 1.56 1.51 0.0 0.11 0.07 0.62 0.0 0.85
RSDP-FC 0.0 0.37 0.0 0.0 0.38 0.38 0.75 0.98 0.0 0.02 0.0 0.16 0.0 0.79

5.1 Evaluation for Constraints and Metrics Based on Independent Deployment

Table 2 shows the results for the constraint all components are independently de-
ployable (CAID)7. We can see an acceptable Jaccard similarity (0.71) of the constraint
violation vector to the pattern-based assessment VMP. Inspecting the violations closer,

7 In Table 2, 1 means that the constraint is violated, and 0 that it is not violated.



we can see that two violations are not found (false negatives): the violations in Models
EC5 and TH1. That is, the constraint does not work well for non-monolithic structures
that share a database as in EC5 or a component as in TH1. The constraint works, how-
ever, if this issue is combined with other violations as in Model EC8.

We have suggested two metrics based on independent deployment: Ratio of compo-
nents violating independent deployability to non-external components (RVID) and
ratio of independently deployable component clusters to non-external components
(RIDC). RVID sets the unique components in the violations in ratio; that is, 0 indicates
the highest possible quality, and higher values indicate lesser quality. Thus, the metric
must be compared to the reversed microservice quality vector MQR. The cosine similar-
ity CS_MQR shows a very high similarity of 0.96. RIDC, in contrast, has values ranging
from 0 to 1, with 1 indicating the best possible quality, meaning it must be compared to
the microservice quality vector MQ. Here, we see an even slightly higher cosine simi-
larity CS_MQ of 0.97. As both metrics are based on the functions used in CAID, they
also have the same weakness of not identifying the shared database/component issues
in Models EC5/TH1, but the high similarity measures show that the indication of qual-
ity with regard to the other microservice patterns is rather good for both metrics, with
RIDC performing slightly better for our evaluation model set.

5.2 Evaluation for Constraints and Metrics Based on Shared Dependencies

No shared non-external component dependencies (NSCD) is violated by all models
(6 false positives) and has only a Jaccard similarity of 0.54; it is not a good match.
Its variant NSCD-F, which excludes sharing by Facade components, is slightly better
suited, but still has 5 false positives and a Jaccard similarity of only 0.58; the vari-
ant NSCD-C, which considers only strongly coupled connectors as leading to shared
components, is slightly better with 4 false positives and a Jaccard similarity of 0.64.
The combination NSCD-FC considering no Facades and no loosely coupled connectors
produces exactly the same vector as the pattern-based assessment VMP (and thus the
Jaccard similarity is 1.0). This very good result might be surprising, as the uncombined
constraints NSCD-F and NSCD-C produce rather weak results alone. A closer inspec-
tion revealed that in our models there was indeed in each false positive in NSCD-F a
loosely coupled connector and NSCD-C a sharing Facade that caused the violation.

For all shared dependencies metrics, the value 0.0 is the best possible value, and
higher values indicate lower quality. Thus, the metrics must be compared to the reversed
microservice quality vector MQR. The ratio of sharing non-external components to
non-external components (RSIC) shows a moderate cosine similarity CS_MQR of
0.73, which is gradually improved by its two variants RSIC-F and RSIC-C with cosine
similarities 0.74 and 0.81, respectively. The combined variant RSIC-FC shows the best
results with a high cosine similarities of 0.91.

For ratio of shared non-external components to non-external components
(RSCC) the cosine similarity CS_MQR has a moderate value of 0.70. Its variants
RSCC-F and RSCC-C perform better with cosine similarities of 0.80 and 0.76,
respectively. Again, the combined variant RSCC-FC shows the best results with a
high cosine similarities of 0.85, but it is less similar for our evaluation model set than
RSIC-FC.



Finally, ratio of shared dependencies of non-external components to possible
dependencies (RSDP) has a good cosine similarity of 0.79 already in its basic vari-
ant, but interestingly RSDP-F performs weaker with a cosine similarity of only 0.72.
Close inspection of the dependencies revealed that this effect is due to the fact that,
on the one hand, the Facade dependencies make the values for high quality microser-
vice architectures worse, but, on the other hand, they make them much more worse
for monolithic architecture, as for them Facades have many more dependencies. Thus,
monolithic architectures gain in the variant RSDP-F comparatively too much. This can,
in our numbers for instance, be easily retraced using the values for Models EC1 and
EC6. While RSDP-F leads to a comparatively better result for EC1 (0.0 instead of 0.38
for RSDP), the monolith EC6 improves from 0.72 (which was close to the expected re-
versed quality of 1.0) to 0.38 (which is much more distant from 1.0). RSDP-C leads to
the expected improvement with a cosine similarity of 0.85. RSDP-FC suffers from the
same effect for Facade dependencies, and thus has only a moderate cosine similarity of
0.79.

6 Discussion, Threats to Validity and Future Work

Discussion of RQs. With regard to RQ1 and RQ2, we have suggested a number of
constraints for checking the quality of microservice decomposition in software archi-
tecture models. The variant NSCD-FC of the shared dependency based constraints per-
forms best, correctly identifying all constraint violations. The constraint CAID based
on independent deployment performs worse than NSCD-FC (but better than all other
NSCD variants), as it has issues with correctly identifying violations related to shared
databases or components. Nonetheless, both constraints are useful and should be com-
bined in their use. As both identify different lists of violations, inspecting the results of
both constraints can help developers to more easily find the root cause of a violation.
In addition, our evaluation revealed that CAID has only false negatives; that is, in our
evaluation model set, all violations identified are actually violations. Hence, it can be
used in addition to NSCD-FC with no danger of suggesting non-issues to be fixed. This
is not the case for any of the other NSCD variants, which yield false positives.

We have also suggested a number of metrics for measuring the quality of microser-
vice decomposition in software architecture models. For both of the metrics based on
independent deployment, RDIC and RVID, we can assess a very high similarity to our
pattern-based assessments, and hence they seem to be both good candidates for mea-
suring the quality of microservice decomposition. RDIC performs slightly better than
RVID, but given that the values and interpretations used in the pattern-based quality as-
sessment contain a certain level of subjectivity, our empirical evaluation does not really
identify a clear favorite. As they are based on CAID, we should be aware that the base
function suffers from some false negatives which are part of the metrics’ values. Further
research would be needed to improve the metrics in this regard.

For the metrics related to shared dependencies, we can assess that none of the met-
rics is a perfect match for our pattern-based quality assessment, but considering that
the values and interpretations used in the pattern-based quality assessment contain a
certain level of subjectivity, the achieved similarities of the two metric RSIC-FC and



RSCC-FC, with values of 0.91 and 0.85 are actually quite good matches, with RSIC-
FC performing a bit better for our evaluation model set. It is interesting that all three
*-FC metrics yield the correct value of 0.0 for well-designed microservice models, and
never assign the perfect value for a model with a violation. Unfortunately, the strength
of the effect of violations on metrics values is not optimal yet in any of the metrics. For
instance, in the best matching metric RSIC-FC, EC8 is the worst model; however, in
our pattern-based assessment we see its violations as less severe than those e.g. in EC6.
RSSC-FC is more correct in this regard, but assigns a very strong effect to the viola-
tion in EC7, which is actually the same model as EC6, but just models the violation in
more detail. It is unfortunate that the metric RSDP suffers from the issues related to the
strong effect on removing Facade dependencies, but its variant RSDP-C performs for
our evaluation model set just as well as RSCC-FC. Therefore, an interesting direction of
further research could be to investigate other ways to mitigate the effects of the shared
dependencies of the Facades instead of excluding them.

Overall, based on our empirical results using one of the metrics RDIC or RVID
seems advisable. The results show that the shared dependency metrics in their current
form are inferior. However, our results also indicate that shared dependency constraints
and metrics can be improved by modeling more details. Here, we have studied Facades
and loosely coupled connectors, as they are important structures in the microservice
patterns and rather easy to model. Please note that modeling additional details is less
needed for constraints and metrics based on independent deployment.

In the context of RQ3, we can assess that our decomposition model needs rather
minimal extensions (the few component and connector types named above) and is easy
to map to existing modeling practices. In particular, in order to fully model our evalu-
ation model set, we needed to introduce 20 component types and 42 connector types,
ranging from general notions like ExternalComponent and its sub-class ClientCom-
ponent, to very technology-specific classes like MongoWireConnector (a subclass of
DatabaseConnector connecting to a MongoDBComponent, a subclass of DatabaseC-
omponent). These would not always be easy to map automatically, but our study has
shown that for the suggested constraints and metrics, only a small subset is needed: The
constraints on independent deployment require at least that ExternalComponents (and
its subclass ClientComponent) and the connector type InMemoryConnectors are mod-
eled. The shared dependencies based constraints require two additional abstractions to
be modeled: loosely coupled connectors (as subclasses of LooselyCoupledConnector)
and Facade components. All except Facade components are relatively easy to compute
automatically, e.g. by inspecting the used technology for a connection. We can claim
that our approach can easily be mapped using an automated mapping from the source
code to an architecture model, assuming standard component model abstractions, such
as those in UML2, e.g. with approaches like our architecture abstraction approach [6].

Future Work. In our approach, we have focused only on modeling additionally details
with no to low effort, to enable a high potential for automation and less extra effort
compared to existing modeling practices. An interesting direction for future research
could be to study how modeling more details could lead to better results in the metrics.
For instance, modeling capabilities or subdomains of the microservices, or the detailed
domain model, are promising directions to further improve the metrics.



Major Threats to Validity. A threat to validity is that potentially the patterns or our
models are not well chosen as study objects and do not represent the domain of mi-
croservices well. However, as related practices and similar models have been proposed
by many other authors, we judge this threat to be rather low. However, many authors
also model other architectural views, and they might have an influence on architecture
decomposition – which we want to study as future work. Potentially the authors could
have been biased in their judgment, but as we have followed a quite mechanical scoring
scheme (based on the patterns, not our own judgment), this threat is mostly limited to
our evaluations based on the pattern-based quality assessments (see Section 5). Even
though we have aimed to follow the argumentations in the microservice patterns [21]
as closely as possible, a major threat remains that at least the evaluation scores intro-
duced are subjective to a certain degree. Note that we have tested in the course of our
evaluations some other kinds of reasonable scoring scheme, leading to comparable but
slightly different results. The sensitivity to those scores was generally low, as long as
we followed the suggestions from the patterns closely. In addition, this potential threat
to validity is not necessarily a problem, in the sense that a project aiming to apply the
constraints and metrics could easily re-run our evaluations with different values that
introduce scores according to the project’s needs. As we have used pretty basic and
standard statistics, we see no major threats to statistical conclusion validity.
Concluding Remarks. In summary, our results show that a subset of the constraints or
metrics are quite close to the pattern-based assessment based on the expert judgment
taken from the patterns, and we have also shown where the metrics and constraints
could be substantially improved. Our results indicate that the best way to reach this goal
seems to be more detailed modeling of the microservices (e.g. based on capabilities,
subdomains, domain-specific models, and/or modeling at different abstraction levels).
However, each of these possible future works would also mean more manual effort, and
less potential for automation, but this might not be an issue in all those application cases
where designing a well-defined architecture is the goal. With modest effort our results
are applicable to other service decomposition schemes than microservices as well.

Acknowledgment This work was partially supported by Austrian Science Fund (FWF)
project ADDCompliance: I 2885-N33; DFG ADDCompliance project: LE 2275/13-1;
Spanish Ministry of Economy, Industry and Competitiveness, State Research Agency /
European Regional Development Fund, grant Vi-SMARt (TIN2016-79100-R).

References

1. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice architec-
ture. In: IEEE 9th Int. Conf. on Service-Oriented Computing and Applications (SOCA). pp.
44–51. IEEE (2016)

2. De, B.: API Patterns. In: API Management, pp. 81–104. Springer (2017)
3. Guo, D., Wang, W., Zeng, G., Wei, Z.: Microservices architecture based cloudware deploy-

ment platform for service computing. In: 2016 IEEE Symposium on Service-Oriented Sys-
tem Engineering (SOSE). pp. 358–363. IEEE (2016)

4. Guo, G.Y., Atlee, J.M., Kazman, R.: A software architecture reconstruction method. In: Soft-
ware Architecture, pp. 15–33. Springer (1999)



5. Gupta, A.: Microservice design patterns. http://blog.arungupta.me/

microservice-design-patterns/ (2017)
6. Haitzer, T., Zdun, U.: Semi-automated architectural abstraction specifications for supporting

software evolution. Science of Computer Programming 90, 135–160 (2014)
7. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley (2003)
8. Kang, H., Le, M., Tao, S.: Container and microservice driven design for cloud infrastructure

devops. In: 2016 IEEE Int. Conf. on Cloud Engineering (IC2E). pp. 202–211. IEEE (2016)
9. Kratzke, N.: About microservices, containers and their underestimated impact on network

performance. In: Proceedings of Cloud Computing. pp. 165–169 (2015)
10. Kurhinen, H., Lampi, M.: Micro-services based distributable workflow for digital archives.

In: Archiving Conference. pp. 47–51. No. 1, Society for Imaging Science and Tech. (2014)
11. de Lange, P., Nicolaescu, P., Derntl, M., Jarke, M., Klamma, R.: Community application

editor: Collaborative near real-time modeling and composition of microservice-based web
applications. In: Modellierung (Workshops). pp. 123–128 (2016)

12. Le, V.D., Neff, M.M., Stewart, R.V., Kelley, R., Fritzinger, E., Dascalu, S.M., Harris, F.C.:
Microservice-based architecture for the nrdc. In: 2015 IEEE 13th Int. Conf. on Industrial
Informatics (INDIN). pp. 1659–1664. IEEE (2015)

13. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting microservices
from monolithic enterprise systems. arXiv preprint arXiv:1605.03175 (2016)

14. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term. http://
martinfowler.com/articles/microservices.html (Mar 2004)

15. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly (2015)
16. Pahl, C., Jamshidi, P.: Microservices: A systematic mapping study. In: 6th International Con-

ference on Cloud Computing and Services Science. pp. 137–146 (2016)
17. Passos, L., Terra, R., Valente, M.T., Diniz, R., das Chagas Mendonca, N.: Static architecture-

conformance checking: An illustrative overview. IEEE software 27(5), 82–89 (2010)
18. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.: Microservices in prac-

tice, part 1: Reality check and service design. IEEE Software 34(1), 91–98 (Jan 2017)
19. Pautasso, C., Wilde, E.: Why is the web loosely coupled?: a multi-faceted metric for service

design. In: 18th Int. Conf. on World wide web. pp. 911–920. ACM (2009)
20. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM SIGSOFT

Software Engineering Notes 17(4), 40–52 (1992)
21. Richardson, C.: A pattern language for microservices. http://microservices.io/

patterns/index.html (2017)
22. Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An end-to-end approach

for qos-aware service composition. In: IEEE Int. Conf. on Enterprise Distributed Object
Computing Conference (EDOC’09). pp. 151–160. IEEE (2009)

23. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley (2005)
24. Van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C.: Symphony: View-

driven software architecture reconstruction. In: 4th Working IEEE/IFIP Conf. on Software
Architecturen(WICSA 2004). pp. 122–132. IEEE (2004)

25. Viennot, N., Lécuyer, M., Bell, J., Geambasu, R., Nieh, J.: Synapse: a microservices archi-
tecture for heterogeneous-database web applications. In: 10th European Conf. on Computer
Systems. p. 21. ACM (2015)

26. Zdun, U.: A DSL toolkit for deferring architectural decisions in DSL-based software design.
Information & Software Technology 52(7), 733–748 (2010)

27. Zimmermann, O.: Microservices tenets. Computer Science - Research and Development
32(3), 301–310 (Jul 2017)

28. Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., Schuster, N.: Reusable architec-
tural decision models for enterprise application development. In: Int. Conf. on the Quality of
Software Architectures. pp. 15–32. Springer (2007)

http://blog.arungupta.me/microservice-design-patterns/
http://blog.arungupta.me/microservice-design-patterns/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html

	Ensuring and Assessing Architecture Conformance to Microservice Decomposition Patterns
	Introduction
	Related Work
	Modeling Microservice-Based Architecture Decomposition
	Microservice Design Constraints and Metrics
	Constraints and Metrics Based on Independent Deployment
	Constraints and Metrics Based on Shared Dependencies

	Evaluation
	Evaluation for Constraints and Metrics Based on Independent Deployment
	Evaluation for Constraints and Metrics Based on Shared Dependencies

	Discussion, Threats to Validity and Future Work


