
Visualization of Open Community Runtime Task Graphs

Jiri Dokulil
University of Vienna, Austria

jiri.dokulil@univie.ac.at

Jana Katreniakova
Comenius University, Bratislava, Slovakia

katreniakova@dcs.fmph.uniba.sk

Abstract
The emergence of new types of high performance hard-

ware also drives the need for new programming models.
The Open Community Runtime (OCR) proposal uses a
task-based programming model to target some of these ar-
chitectures. In OCR, the whole program from start to end
needs to be expressed using tasks and synchronized using
task-to-task dependences, significantly limiting the appli-
cability and usefulness of existing approaches to applica-
tion development and debugging. In this paper, we present
our approach to visualizing tasks and their synchroniza-
tion, based on trace data from application execution. This
way, the application developer may compare the intended
organization of the tasks with the actual dependences as
they are seen by the OCR runtime system.

1 Introduction
The Open Community Runtime (OCR, [9]) is a task-

based distributed runtime system. It is by far not the first
task-based programming model, but unlike many of the al-
ternatives, like the Intel Threading Building Blocks (TBB,
[8]), it requires the whole application to be expressed as
tasks. In TBB, the application developer only uses tasks
to parallelize the performance critical parts of the code. In
OCR, even the application entry point is a task. The ex-
ecution of tasks is synchronized using task dependences.
From a high-level point of view, a dependence specifies
that one task (source of the dependence) needs to finish
before another task (destination of the dependence) is al-
lowed to start. The tasks and their dependences form a
DAG.

The OCR memory model requires all data to be stored
in data blocks managed by the OCR runtime. To make a
data block accessible inside a task, the runtime needs to be
made aware of this before the task starts. If the compu-
tation needs access to a new piece of data, it is necessary
to end the running task and create a new task, which is
given access to the new data. As a result, the applications
are likely to be split into many small tasks, creating a long
chain. Furthermore, a task contains only serial code. To
allow for parallel execution, multiple tasks need to be run-
ning at the same time. So, there isn’t just one, but many of

the (long) task chains.
All tasks and dependences are created and managed dy-

namically, while the application is running. Combined
with parallel (or even distributed) execution, this makes
the OCR application codes very difficult to debug. Visu-
alization may provide some assistance to the application
developers. In this paper, we deal with visualization of
the tasks and their dependences. We use data from the
runtime system to reconstruct the task graph and depen-
dences. This allows us to show the programmer how the
runtime interpreted the information about tasks and depen-
dences passed by the programmer. Ideally, this should be
the same as the programmer’s intent. Unfortunately, the
OCR programming model, which is very different from
those that the programmers are usually familiar with (like
MPI or OpenMP), makes it easy for the programmer to as-
sume certain ordering of tasks but he or she may fail to
specify the appropriate dependences. This way, the tasks
could be executed in a different order than the programmer
intended, producing incorrect results or even making the
application crash.

The rest of the paper is organized as follows. First, we
provide a brief description of the relevant aspects of OCR
in Section 2. Then, Section 3 describes the way we collect
and visualize the task data. Section 4 provides examples of
visualized task graph of three different OCR applications.
Related work is covered in Section 5. The last section con-
cludes the paper and discusses future work.

2 Open Community Runtime
In OCR, a task is a C function. Any data block acces-

sible by a task is passed as an argument to the function.
The function contains computation, but it may also contain
calls to the OCR API, which is used to create new OCR
objects (like tasks or data blocks) and manage these ob-
jects (e.g., set up dependences). The dependences in OCR
are not specified directly among tasks. Instead, events are
used. Event is an OCR object used purely for synchroniza-
tion of tasks. Dependences may be set up between an event
(as the source) and event or task (as the destination). For
each task, there is an automatically created event (comple-
tion event), which represents the end of that task. So, if a



task B needs to start after task A finishes, a dependence
needs to be set up from A’s completion event to task B.

The OCR specification provides a memory model for
OCR programs. The memory model is based on three re-
lations. First, the order among operations within a sin-
gle task is defined by the sequenced-before relationship.
This is provided by the C language used to implement
the tasks and it is the natural ordering of operations per-
formed by a C program, as one would expect. Second rela-
tion is synchronized-with, which is defined by dependences
among OCR events and tasks. The simplest example is a
task, whose completion event is used as a dependence (pre-
condition, pre-slot) for another task. In this case, it is natu-
ral to expect that the second task comes after the first task.
There are more complex examples of synchronized-with,
which will be discussed in the next paragraph. The third
relation is happens-before, which is a transitive closure of
combined sequenced-before and synchronized-with.

Task dependences are not the only factor that affects the
synchronization of tasks. For example, if task A creates
task B, it is clear that task B cannot start before task A.
Also, it is possible for a task to explicitly satisfy a depen-
dence of another task. Again, the affected task cannot start
before the dependence is satisfied, also causing them to be
synchronized. All of these “implicit dependences” are also
reflected in the synchronized-with relation (and therefore
also happens-before). So, for example, the OCR API call
that creates a task has a happens-before relation with the
start of that task.

3 Task graph visualization
The OCR-Vx collection of OCR runtimes [3] also con-

tains OCR-V1 runtime, which is a single threaded imple-
mentation of the OCR specification. It was created to sim-
plify debugging of OCR applications, by providing a sim-
ple (single-threaded) environment, but also by trying to
check as many error conditions as possible. At the same
time, it also generates a list of all OCR operations invoked
by the application and their context (e.g., task). It encodes
subsets of the sequenced-before and synchronized-with re-
lations, such that the transitive closure of their union is the
happens-before relation. With some work, this informa-
tion could also be reconstructed from the logs of the other
OCR-Vx runtimes, but also the XSOCR reference imple-
mentation of the OCR specification. We use OCR-V1 be-
cause it requires minimal data pre-processing.

It may be tempting to display the complete informa-
tion available: all tasks, events, and their synchronization.
However, even for very simple OCR programs, such graph
would be too large and complex. We have discovered that
it is better to show a much smaller (and simpler) graph.

The vertices in the graph are the tasks executed by the
application. These are labeled by the task ID and the name

of the C function which serves as the body of the task. In
OCR, the first task always runs the mainEdt function.
The task always gets ID 10 in OCR-V1. Therefore, the
first task in the graph is labeled 10: mainEdt and it
is the ultimate source of all dependences (a source in the
usual graph sense), since no other task may start before
mainEdt. Many OCR programs also contain a sink – a
final task that is executed last and shuts down the runtime,
but this is not a requirement.

The edges are constructed in two steps. First, we create
a set of edges E. E contains an edge from task T1 to
task T2 iff ready(T1) happens-before ready(T2), where
ready(T ) is the OCR operation that transfers a task to the
ready state. A task becomes ready, once all dependences
have been satisfied. This is usually an indirect result of
an OCR API call made by a task or the result of another
task finishing, if T depends on the completion event of that
other task. In these cases, the API call or task completion
happens-before ready(T1).

It is important to note that an edge from T1 to T2 does
not mean that T2 starts after T1 has finished. It means
T2 becomes ready after T1. Based on this, T2 could
theoretically start before T1. However, this is never the
case, because the only way the happens-before relation-
ship can be formed between ready(T1) and ready(T2) is
that some operation performed by T1 after it has started
has a happens-before relationship with ready(T2). So, we
know that T2 may only start after T1 has started, but it is
possible that T2 starts while T1 is still running.

The second step in the construction of the set of edges
to visualize is performing a transitive reduction on E. This
means removing all edges that can be obtained using tran-
sitivity. Because our graph is a DAG (due to the way it
is constructed and because happens-before is acyclic), the
reduction is unique. Furthermore, no information is lost,
since the original edge set E is a transitive closure of it-
self. This is due to the fact that happens-before itself is a
transitive closure.

The vertices, their labels, and the reduced edges are then
drawn using the dot layout program from the Graphviz
suite [4]. Many OCR programs work in iterations, using a
set of parallel tasks to perform each iteration. This makes
the layered layout used by dot a good fit for the graph. As-
suming that the layers are drawn horizontally, this gives us
a good distribution of the tasks along the top-down direc-
tion.

The vertex placement in the left-right direction can be
more problematic. As we have already mentioned earlier,
the OCR programs often use long “chains” of tasks, where
a chain corresponds to a single thread in a multi-threaded
program or a single rank in an MPI program. The work
of the thread/rank needs to be split into smaller pieces in



T1,l 

T2,l+1 T1,l+1 

T2,l T1,l 

T1,l+1 T2,l+1 

T2,l 

Figure 1: Considering only the graph layout, these two
drawings are equivalent. However, the figure on the right
may easily confuse the programmer, who naturally as-
sumes that task from the same chain (e.g., T1,l to T1,l+1)
are aligned, so that the next task in the chain is right below
the previous task.

places where synchronization or data exchange is neces-
sary. This is required by the OCR programming model. In
most cases, tasks in a chain are serialized – the program-
mer sets up the dependences in a way that forces the next
task to wait until the previous task finishes. In our graph, it
means that there is an edge between the tasks. So the task
chain forms a path in the graph.

However, there are exceptions. The work of the chain
may be further parallelized, corresponding to nested paral-
lelism in OpenMP or to the MPI+X programming model.
In OCR, the parallelization is achieved by creating the
tasks in a way that allows them to run concurrently, i.e.,
by not having a dependence on one another. Such tasks
are only synchronized with tasks coming earlier and later
within the chain. This is not a problem for visualization.
The path that corresponds to the chain splits and later joins
again.

Another situation where the path is not simple is syn-
chronization (usually data exchange) between the chains.
This has the form of edges going between the chains, usu-
ally from one layer to the next layer. Imagine the situation
where two chains synchronize in both ways. That is, task
T1,l in chain 1 at layer l sends data to the other chain’s next-
layer task T2,l+1 and also T2,l sends data to T1,l+1. At
the same time, the chains are also synchronized, so there
are edges connecting Ti,l to Ti,l+1. From the layout al-
gorithm’s point of view, T1,l+1 and T2,l+1 are equivalent,
since they both have incoming edges from T1,l and T2,l.
The two drawings are shown in Figure 1. In some cases,
the edge from Ti,l to Ti,l+1 may be missing, making T2,l+1

the ideal candidate for a vertex to be drawn directly below
T1,l. From the programmer’s point of view, this is unde-
sirable. He or she probably expects to see the chain as one
path, similar to the way a thread or an MPI rank would be
drawn on a sequence diagram. Such drawing may be worse
from a purely graph-drawing perspective (e.g., it may have
a larger crossing number), but it is more useful for the user.

Normally, a task’s membership in a chain is not re-
flected in the OCR model. It is only the programmer’s in-

Figure 2: The visualization of tasks in the Graph500 ap-
plication. Four tasks of each type (distribute, search, and
apply) are used per iteration and three iterations were ex-
ecuted. The numbers after task’s name are the iteration
number and chain number. The cluster for the last chain is
drawn with a rectangle around it as a demonstration.

Figure 3: When the chains are not grouped into subgraphs,
the apply tasks from chains 1 and 2 are swapped.



terpretation of the computation. However, there are two
ways in which this could be expressed. One feature of
OCR allows the creation of “labeled tasks”. Among other
things, this assigns an index to the task. In some appli-
cations, members of the chain may be labeled and use the
same index. Most of the existing applications don’t use this
feature. For those, an alternative is a debugging extension
available in OCR-Vx, which lets the application program-
mer assign debugging tags to tasks. These can be numbers
or short texts. It is easy to use the numbers to identify the
chain and often also the iteration number, as these two are
usually the key identifiers in any form of debugging. If the
chain number is known, it can be used to put all tasks in a
chain into a subgraph, forcing dot to group them also in the
left-right direction.

4 Examples
In this section, we will present several examples of visu-

alizations produced by our approach. We use three differ-
ent applications, all of which follow the task chain pattern.

Graph500 is an implementation of the Graph500 bench-
mark – a Breadth-First Search (BFS) of a graph, repre-
sented by a sparse matrix. The implementation processes
the sparse adjacency matrix using a fixed number of chains
that communicate by sending data blocks. It corresponds
closely to an MPI implementation of the same algorithm.
An example visualization is shown in Figure 2. It is an
example of a code where dot tends to not align chains hor-
izontally. An example of such misalignment is shown in
Figure 3.

Seismic is a 2D seismic simulation code, originally dis-
tributed as an example with the Intel Threading Building
Blocks library. Like Graph500, it consists of communi-
cating chains. However, it also includes parallelism inside
a chain, where two (or more) tasks are used to perform
computation on the chain’s data. Unlike Graph500, where
synchronization and communication is realized by sending
data blocks, in Seismic the chains only synchronize using
events. Data is not explicitly sent from sender to recipi-
ent, but the recipient task requests read access to the data.
From the OCR point of view, this is a very different ap-
proach, but the synchronization pattern is the same and it
is visualized the same way – there is an edge connecting
the synchronized tasks. Figure 4 shows the task graph with
chains grouped into subgraphs. Without the grouping, the
chains do not mix like in the Graph500 example, but they
are still not as clearly separated (see Figure 5).

Stencil2D is a 2D stencil code similar to Seismic, but the
communication pattern is different. Seismic iterations are

Figure 4: The visualization of tasks in the Seismic appli-
cation. Note the two parallel update_stress_piece
tasks per chain. These synchronize not only with the

next task in the chain, but also with the next task in the
second chain, since that task also uses values they com-
pute. The synchronization goes only one way (left chain
to right chain). The other direction happens later, with
update_velocity_piece.

Figure 5: When the chains are not grouped into subgraphs,
they are still drawn together, but the distinction between
chains is less clear.

split into multiple phases and the phases only synchronize
in certain direction (e.g., only to the next chain, but not
the previous). In Stencil2D, each iteration uses just one
task per chain for computation. However, the synchroniza-
tion is performed not directly by the application, but by



Figure 6: The visualization of tasks in the Stencil2D application in top-down layout.

Figure 7: The visualization of tasks in the Stencil2D application in left-right layout.

an SPMD-style communication library, which creates sep-
arate spmdSender tasks to handle the communication.
There are two such tasks per chain after each iteration.
Once again, this causes chain grouping to have significant
effect. An example visualization (with grouping) is shown
in Figure 6. For this example, we have also generated the
visualization using left-right layered layout instead of the
top-down. The result is more compact, as you can see in
Figure 7.

5 Related Work
Existing visualization approaches mostly focus on ana-

lyzing performance and communication of MPI programs
[7]. MPI applications consist of a fixed number of commu-
nicating processes. In OCR, there may be a similar struc-
ture present (the chains), but some parts of the application
could use a more interesting organization of tasks and syn-
chronization, for example a tree-shaped graph of tasks used
for a reduction operation. Some applications completely
lack the chains, for example a divide-and-conquer algo-
rithm may be implemented by recursive task splitting.

Our goal of our task visualization is to help programmer



find problems with task synchronization. The main goal of
visualization tools for MPI codes is to explore and opti-
mize communication patterns and to identify bottlenecks
and load imbalance. They often try to not just present the
data, but further analyze it and identify the interesting areas
[6, 10]. Our goal is more similar to software visualization
[5], focusing on what the program does, rather than moni-
toring and improving performance. In [2], the authors view
MPI programs as synchronized tasks and find bugs in the
way they are synchronized.

The Application Flowgraph Visualization (AFV) tool
created as part of the OCR work performed at Intel within
the X-Stack project [1] also uses OCR trace data to visual-
ize the task graph. Unlike our approach, where only tasks
are shown and their synchronization is displayed based on
the happens-before relation between the tasks, the AFV
also displays events and directly visualizes the explicit de-
pendences as they are set up by the programmer. We use
events and explicit dependences combined with implicit
dependences (e.g., task creation) to provide a higher-level
view on the task graph. When working on an OCR applica-
tion, a developer would probably first use our visualization
to check the synchronization patterns and, if some of them
are wrong, use a tool like the AFV to look at a specific task
in greater detail.

6 Conclusion and future work
Using data from the OCR runtime, we were able to visu-

alize task graphs to give the application developer a better
understanding of how the intender synchronization of the
tasks works out in reality. This may aid the difficult pro-
cess of developing an OCR application. There was already
one case where the visualization led to a discovery of a bug
in an application.

The main task for the future is tackling larger scale
graphs. An OCR application may consist of thousands
and even millions of tasks. We plan to explore two differ-
ent paths. First, an interactive visualization which allows
the developer to navigate a larger graph and filter the tasks
could allow the ideas described in this paper to be used on
a much larger scale. Second, by discovering patterns in the
graph, it may be possible to only show the developer the
interesting parts of the graph. For example, all iterations
apart from the first and the last look exactly the same in
all of our three applications. In Seismic, all chains apart
from the first and the last look the same. Therefore, only
three types of chains and three iterations are sufficient to
show all patterns present in an execution of Seismic with
any number of chains and iterations.

Acknowledgment
This work was supported in part by VEGA 1/0684/16.

References
[1] EDT visualization, X-Stack wiki. https:

//xstack.exascale-tech.com/wiki/
index.php/EDT_Visualization.

[2] Dong H. Ahn, Bronis R. de Supinski, Ignacio La-
guna, Gregory L. Lee, Ben Liblit, Barton P. Miller,
and Martin Schulz. Scalable temporal order analysis
for large scale debugging. In Proceedings of the Con-
ference on High Performance Computing Network-
ing, Storage and Analysis, SC ’09, pages 44:1–44:11,
New York, NY, USA, 2009. ACM.

[3] Jiri Dokulil, Martin Sandrieser, and Siegfried
Benkner. OCR-Vx - an alternative implementa-
tion of the Open Community Runtime. In In-
ternational Workshop on Runtime Systems for Ex-
treme Scale Programming Models and Architectures,
in conjunction with SC15. Austin, Texas, November
2015, November 2015.

[4] John Ellson, Emden Gansner, Lefteris Koutsofios,
Stephen C. North, and Gordon Woodhull. Graphviz—
Open Source Graph Drawing Tools, pages 483–484.
Springer, Berlin, Heidelberg, 2002.

[5] Denis Gračanin, Krešimir Matković, and Mohamed
Eltoweissy. Software visualization. Innovations in
Systems and Software Engineering, 1(2):221–230,
2005.

[6] Kevin A. Huck and Allen D. Malony. Perfexplorer:
A performance data mining framework for large-
scale parallel computing. In Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, SC ’05,
pages 41–, Washington, DC, USA, 2005. IEEE.

[7] Katherine E Isaacs, Alfredo Giménez, Ilir Jusufi,
Todd Gamblin, Abhinav Bhatele, Martin Schulz,
Bernd Hamann, and Peer-Timo Bremer. State of the
art of performance visualization. EuroVis 2014, 2014.

[8] Alexey Kukanov and Michael J. Voss. The founda-
tions for scalable multi-core software in Intel Thread-
ing Building Blocks. Intel Technology Journal,
11(04):309–322, November 2007.

[9] T. G. Mattson et al. The Open Community Runtime:
A runtime system for extreme scale computing. In
2016 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7, Sept 2016.

[10] Omer Zaki, Ewing Lusk, William Gropp, and Deb-
orah Swider. Toward scalable performance visu-
alization with jumpshot. The International Jour-
nal of High Performance Computing Applications,
13(3):277–288, 1999.


