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Abstract
We present a method for solving the shortest transshipment problem—also known as uncapa-
citated minimum cost flow—up to a multiplicative error of 1 + ε in undirected graphs with
non-negative integer edge weights using a tailored gradient descent algorithm. Our gradient des-
cent algorithm takes ε−3 polylog n iterations, and in each iteration it needs to solve an instance
of the transshipment problem up to a multiplicative error of polylog n, where n is the number of
nodes. In particular, this allows us to perform a single iteration by computing a solution on a
sparse spanner of logarithmic stretch. Using a careful white-box analysis, we can further extend
the method to finding approximate solutions for the single-source shortest paths (SSSP) problem.
As a consequence, we improve prior work by obtaining the following results:
1. Broadcast CONGEST model: (1 + ε)-approximate SSSP using Õ((

√
n + D) · ε−O(1)) rounds,1

where D is the (hop) diameter of the network.
2. Broadcast congested clique model: (1+ε)-approximate shortest transshipment and SSSP using

Õ(ε−O(1)) rounds.
3. Multipass streaming model: (1+ε)-approximate shortest transshipment and SSSP using Õ(n)

space and Õ(ε−O(1)) passes.
The previously fastest SSSP algorithms for these models leverage sparse hop sets. We bypass
the hop set construction; computing a spanner is sufficient with our method. The above bounds
assume non-negative integer edge weights that are polynomially bounded in n; for general non-
negative weights, running times scale with the logarithm of the maximum ratio between non-zero
weights. In case of asymmetric costs for traversing an edge in opposite directions, running times
scale with the maximum ratio between the costs of both directions over all edges.
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1 We use Õ(·) to hide polylogarithmic factors in n.

© Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa Richa; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.7
https://arxiv.org/abs/1607.05127
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


7:2 Near-Optimal Approximate Shortest Paths and Transshipment

1 Introduction

Single-source shortest paths (SSSP) is a fundamental and well-studied problem in computer
science. Thanks to sophisticated algorithms and data structures [20, 23, 41], it has been
known for a long time how to obtain (near-)optimal running time in the RAM model. This is
not the case in non-centralized models of computation, which become more and more relevant
in a big-data world. Despite certain progress for exact SSSP algorithms [6, 7, 9, 15, 28, 30, 39,
40], there remain large gaps to the strongest known lower bounds. Close-to-optimal running
times have so far only been achieved by efficient approximation schemes [10, 17, 25, 32]. For
instance, in the CONGEST model of distributed computing, the state of the art is as follows:
Exact SSSP on weighted graphs can be computed in O(D1/3(n log n)2/3) rounds [15], where
D is the (hop) diameter of the graph, and (1 + ε)-approximate SSSP can be computed in
(
√

n + D) · 2O(
√

log n log (ε−1 log n)) rounds [25].2 Even for constant ε, the latter exceeds the
strongest known lower bound of Ω(

√
n/ log n + D) rounds [13] by a super-polylogarithmic

factor. As a consequence of the techniques developed in this paper, we make a qualitative
algorithmic improvement for (1+ε)-approximate SSSP in this model: we solve the problem in
(
√

n+D) ·ε−O(1) polylog n rounds. We thus narrow the gap between upper and lower bound
significantly and additionally improve the dependence on ε. Our new approach achieves its
superior running time by leveraging techniques from continuous optimization.

It is inherent to our approach that we actually tackle a problem that seems more general
than SSSP. In the shortest transshipment problem, we seek to find a cheapest routing for
sending units of a single good from sources to sinks along the edges of a graph meeting
the nodes’ demands. Equivalently, we want to find the minimum-cost flow in a graph
where edges have unlimited capacity. The special case of SSSP can be modeled as a shortest
transshipment problem by setting the demand of the source to −n+1 (thus supplying −n+1
units) and the demand of every other node to 1. Unfortunately, this relation breaks when
we consider approximation schemes: A (1 + ε)-approximate solution to the transshipment
problem merely yields (1 + ε)-approximations to the distances on average. In the special
case of SSSP, however, one is interested in obtaining a (1+ε)-approximation to the distance
for each single node and we show how to extend our algorithm to provide such a guarantee
as well.

Techniques from continuous optimization have been key to recent breakthroughs in the
combinatorial realm of graph algorithms [8, 11, 12, 27, 31, 33, 37]. In this paper, we apply
this paradigm to computing primal and dual (1 + ε)-approximate solutions to the shortest
transshipment problem in undirected graphs with non-negative edge weights. Accordingly,
we perform projected gradient descent for a suitable norm-minimization formulation of the
problem, where we approximate the infinity norm by a differentiable soft-max function. To
make this general approach work in our setting, we need to add significant problem-specific
tweaks. In particular, we develop a gradient descent algorithm that reduces the problem
of computing a (1 + ε)-approximation to the more relaxed problem of computing, e.g., an
O(log n)-approximation. We then exploit that an O(log n)-approximation can be computed
very efficiently by solving the problem on a sparse spanner, and that it is well-known how
to compute sparse spanners efficiently. To obtain the aforementioned per-node guarantee in
the approximate SSSP problem, we additionally exploit specific properties of our gradient
descent algorithm. Further effort is required to extract an approximate shortest-path tree

2 Note that these running times refer to weighted graphs. In unweighted graphs, the SSSP problem can
easily be solved in O(D) rounds by performing a BFS tree computation.
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(i.e., a primal solution) from the dual solution (i.e., estimated distances to the source).
Our method is widely applicable among a plurality of non-centralized models of com-

putation in a rather straightforward way. We obtain the first non-trivial algorithms for
approximate undirected shortest transshipment in the broadcast CONGEST,3 broadcast
congested clique, and multipass streaming models. As a further, arguably more import-
ant, consequence, we improve upon prior results for computing approximate SSSP in these
models. Our approximate SSSP algorithms are the first to be provably optimal up to poly-
logarithmic factors.

Our Contributions and Results. We summarize our technical and conceptual contributions
as follows:

(C1) We give a problem-specific gradient descent algorithm for approximating the shortest
transshipment, which requires access to an oracle computing an α-approximate dual
solution for any given demand vector.4 To compute a (1 + ε)-approximation, the al-
gorithm performs Õ(ε−3α2) oracle calls. If the oracle returns primal solutions, so does
our algorithm.

(C2) We provide an additional analysis of the gradient descent algorithm that allows us to
extend the method to solving SSSP in order to achieve a per-node approximation guar-
antee.

(C3) We observe that spanners can be used to obtain an efficient shortest transshipment oracle
with approximation guarantee α ∈ O(log n).

By implementing our method in specific models of computation, we obtain the following
concrete algorithmic results in graphs with non-negative polynomially bounded5 integer
edge weights:

(R1) We give faster algorithms for computing (1 + ε)-approximate SSSP:
a. Broadcast CONGEST model: We obtain a deterministic algorithm for computing

(1 + ε)-approximate SSSP using Õ((
√

n + D) · ε−O(1)) rounds. This improves upon
the previous best upper bound of (

√
n + D) · 2O(

√
log n log (ε−1 log n)) rounds [25]. For

ε−1 ∈ O(polylog n), we match the lower bound of Ω(
√

n/ log n + D) [13] (applying to
any (randomized) (poly n)-approximation of the distance between two fixed nodes in
a weighted undirected graph) up to polylogarithmic factors in n.

b. Broadcast congested clique model: We obtain a deterministic algorithm for computing
(1 + ε)-approximate SSSP using Õ(ε−O(1)) rounds. This improves upon the previous
best upper bound of 2O(

√
log n log (ε−1 log n)) rounds [25].

c. Multipass streaming model: We obtain a deterministic algorithm for computing (1+ε)-
approximate SSSP using Õ(ε−O(1)) passes and O(n log n) space. This improves upon
the previous best upper bound of (2 + 1/ε)O(

√
log n log log n) passes and O(n log2 n)

space [17]. By setting ε small enough, we can compute distances up to the value log n

exactly in integer-weighted graphs using polylog n passes and O(n log n) space. Thus,
up to polylogarithmic factors in n, our result matches a lower bound of n1+Ω(1/p)/ poly p

space for all algorithms that decide in p passes if the distance between two fixed nodes
in an unweighted undirected graph is at most 2(p+1) for any p = O(log n/ log log n) [22].

3 Also known as the node-CONGEST model.
4 Note that dual feasibility is crucial here. In particular, this rules out an oracle based on tree embed-

dings [2, 16], as such trees might have stretch Ω(n) on individual edges.
5 For general non-negative weights, running times scale by a multiplicative factor of log R, where R is

the maximum ratio between non-zero edge weights.
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7:4 Near-Optimal Approximate Shortest Paths and Transshipment

(R2) We give fast algorithms for computing (1 + ε)-approximate shortest transshipment:
a. Broadcast CONGEST model: A deterministic algorithm using Õ(ε−3n) rounds.
b. Broadcast congested clique model: A deterministic algorithm using Õ(ε−3) rounds.
c. Multipass streaming model: A deterministic algorithm using Õ(ε−3) passes and O(n log n)

space.
No non-trivial upper bounds were known before in these three models.

In the case of SSSP, we can deterministically compute a (1 + ε)-approximation to the
distance from the source for every node. Using a randomized procedure, we can additionally
compute (with high probability within the same asymptotic running times) a tree on which
every node has a path to the source that is within a factor of (1 + ε) of its true distance.

In the case of shortest transshipment, we can (deterministically) return (1+ε)-approximate
primal and dual solutions. We can further extend the results to asymmetric weights on un-
directed edges, where each edge can be used in either direction at potentially different costs.
Denoting by λ ≥ 1 the maximum over all edges of the cost ratio between traversing the edge
in different directions, our algorithms give the same guarantees if the number of rounds or
passes, respectively, is increased by a factor of λ4 log λ.

Related Work on Shortest Transshipment. Shortest transshipment is a classic problem
in combinatorial optimization [29, 36]. The classic algorithms for directed graphs with
non-negative edge weights in the RAM model run in time O(n(m + n log n) log n) [35] and
O((m + n log n)B) [14], respectively, where B is the sum of the nodes’ demands (when
they are given as integers) and the term m + n log n comes from SSSP computations.
If the graph contains negative edge weights, then these algorithms require an additional
preprocessing step to compute SSSP in presence of negative edge weights, for example
in time O(mn) using the Bellman-Ford algorithm [4, 19] or in time O(m

√
n log N) us-

ing Goldberg’s algorithm [21].6 The weakly polynomial running time was first improved
to Õ(m3/2 polylog R) [12] and then to Õ(m

√
n polylog R) in a recent breakthrough for

minimum-cost flow [31], where R is the ratio between the largest and the smallest edge
weight. Independent of our work, Sherman [38] obtained a randomized algorithm for com-
puting a (1 + ε)-approximate shortest transshipment in weighted undirected graphs in time
O(ε−2m1+o(1)) using a generalized-preconditioning approach. We refer the reader to the
full paper for a detailed comparison of Sherman’s and our approach. We are not aware
of any non-trivial algorithms for computing (approximate) shortest transshipment in non-
centralized models of computation, such as distributed and streaming models.

Comparison to Hop Set Based SSSP Algorithms. The state-of-the art SSSP algorithms
in the distributed CONGEST model follow the framework developed in [34], where (1) the
problem of computing SSSP is reduced to an overlay network of size N = Õ(

√
n) and (2) a

sparse hop set is constructed to speed up computing SSSP on the overlay network. An (h, ε)-
hop set is a set of weighted edges that, when added to the original graph, provides sufficient
shortcuts to approximate all pairwise distances using paths with only h edges (“hops”). In
the algorithm by Nanongkai et al. [25], the upper bound of (

√
n + D) · 2O(

√
log n log (ε−1 log n))

on the number of rounds is achieved by constructing an (h, ε)-hop set of size O(Nρ) where
h ≤ 2O(

√
log n log (ε−1 log n)) and ρ ≤ 2O(

√
log n log (ε−1 log n)). Elkin’s algorithm [15], which

takes O(D1/3(n log n)2/3) rounds, uses an exact (N/ρ, 0) hop set of size O(Nρ) similar to

6 Goldberg’s running time bound holds for integer-weighted graphs with most negative weight −N .
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the one developed by Shi and Spencer in a PRAM algorithm [40]. Elkin’s main technical
contribution lies in showing how to compute this hop set without constructing the overlay
network explicitly. Roughly speaking, in these algorithms, both h and ρ enter the running
time of the corresponding SSSP algorithms, in addition to the time needed to construct the
hop set.

The concept of hop sets has been introduced by Cohen in the context of PRAM al-
gorithms for approximate SSSP [10]. The increased interest in hop sets and their applica-
tions in the last years [5, 17, 24, 25, 32] has culminated in the construction of (h, ε)-hop
sets of size O(n1+ 1

2k+1 −1) for h = O
(
( k

ε )k
)

[18, 26]. Recent lower bounds by Abboud et
al. [1] show that this trade-off is essentially tight: any construction of (h, ε)-hop sets of size
≤ n

1+ 1
2k−1

−δ must have h = Ωk

(
( 1

ε )k
)

(where k ≥ 1 is an integer and δ > 0). This implies
that the hop set based algorithms, as long as the factor ρ has to be paid in the running time
for construction hop sets of size nρ, will never be able to achieve a running time comparable
to our SSSP algorithm exclusively by finding better hop sets.

Spanners. In our approach we use a spanner to obtain an efficient shortest transshipment
oracle.

▶ Definition 1 (Spanner). Given G = (V, E, w) and α ≥ 1, an α-spanner of G is a subgraph
(V, E′, w|E′), E′ ⊆ E, in which distances are at most by factor α larger than in G.

In other words, a spanner removes edges from G while approximately preserving distances.
It is well-known that for every undirected graph we can efficiently compute an α-spanner of
size O(n log n) with α = O(log n) [3].

Structure of this paper. In the following section, we will first describe the gradient descent
algorithm for the case of symmetric weights. More precisely, we will describe how to obtain
a primal/dual solution pair of approximation ratio (1 + ε) for an oracle yielding both primal
and dual solutions; if the oracle provides dual solutions only, so do our algorithms. In
Section 2.2, we describe how to obtain (1 + ε)-approximate distances for every node in the
SSSP case. In Section 2.3, we show how to obtain a (1+ε)-approximate primal tree solution.
In Section 3, we briefly describe how the above framework can be implemented in various
distributed and streaming models of computation. Due to space limitations, we refer to the
full paper for further details.

The full version also discusses how our techniques can be generalized to asymmetric edge
weights. The key observation is that, essentially, the gradient descent algorithm can be
guided by basing the oracle on solving the symmetrized variant problem on an (undirected)
spanner. The additional inaccuracy of the approximation slows down the progress of the
algorithm by a factor of λ4 log λ. However, while this generalization does not affect our
approach structurally, some technical obstacles need to be overcome. For the sake of a
streamlined presentation, we thus confine the discussion to the symmetric problem.

2 General Approach for Solving Shortest Transshipment and SSSP

Let G = (V, E) be a (w.l.o.g. connected) undirected graph with n nodes, m edges, and
positive7 integral edge weights w ∈ Zm

≥1. Furthermore, let b ∈ Zn be a vector of demands.

7 Note that excluding 0 as an edge weight is a only a mild restriction, because we can always generate
new weights w′ with w′

e = 1 + ⌈n/ε⌉ · we while preserving at least one of the shortest paths between

DISC 2017



7:6 Near-Optimal Approximate Shortest Paths and Transshipment

W.l.o.g., we restrict to feasible and non-trivial instances, i.e., bT1 = 0 and b ̸= 0.8 A com-
mon approach to model the undirected shortest transshipment problem as a linear program
considers the node-arc-incidence matrix A ∈ {−1, 0, 1}n×2m of the corresponding bidirected
graph,9 where we substitute each edge e by a forward and a backward arc with the same
weight we in both directions. While this may seem redundant, it is convenient in terms of
notation and generalizes to the case of asymmetric edge weights considered in the full paper.
With W being the 2m×2m diagonal matrix containing the weights, we obtain the following
primal/dual pair of linear programs:

min{∥Wx∥1 : Ax = b} = max{bT y : ∥W −1AT y∥∞ ≤ 1}, (1)

where for z ∈ Rd we write ∥z∥1 =
∑d

i=1 |zi| and ∥z∥∞ = maxi∈[d]{|zi|}. The primal (left)
program asks to “ship” the flow given by b from sources (negative demand) to sinks (positive
demand) along the edges of the graph, minimizing the cost of the flow, i.e.,

∑
e∈E we|xe|.

Note that, without changing that Ax = b or affecting the objective, we can remove “negative”
flow xvw < 0 by increasing xwv by |xvw| and setting xvw = 0. Thus, w.l.o.g., we may assume
that x ≥ 0; in particular, an optimal solution sends flow only in one direction over any edge.

The dual (right) program asks for potentials y such that for each edge e = (v, w) ∈ E,
|yv−yw| ≤ we, maximizing bT y. Note that, because bT1 = 0, shifting the potential by r×1

for any r ∈ R does neither change bT y nor yv − yw for any v, w ∈ V . The goal of the dual
is thus to maximize the differences in potential of sources and sinks (weighted according to
b), subject to the constraint that the potentials of neighbors must not differ by more than
the weight of their connecting edge.

In the special case of SSSP with source s ∈ V , we have that (i) bs = −n + 1 and bv = 1
for all v ̸= s, (ii) an optimal primal solution x∗ is given by routing, for each s ̸= v ∈ V , one
unit of flow along a shortest path from s to v, and (iii) optimal potentials y∗ are given by
setting y∗

v to the distance from s to v.

2.1 Gradient Descent
We now describe a gradient descent method that, given an oracle that computes α-approximate
primal and dual solutions to the undirected shortest transshipment problem for any specified
demand vector b̃, returns primal and dual feasible solutions x and y to the undirected shortest
transshipment problem that are (1 + ε)-close to optimal, i.e., fulfill ∥Wx∥1 ≤ (1 + ε)bT y,
using O(ε−3α2 log α log n) calls to the oracle. We then provide an oracle with α ∈ polylog(n).
For ease of notation, we assume that log α ∈ polylog n throughout this paper.

As our first step, we relate the dual of the shortest transshipment problem to its “recip-
rocal” linear program that normalizes the objective to 1 and seeks to minimize ∥W −1AT y∥∞:

min{∥W −1AT π∥∞ : bT π = 1}. (2)

We denote by π∗ an optimal solution to this problem, whereas y∗ denotes an optimal solution
to the dual of the original problem (1). It is easy to see that feasible solutions π of (2) that

each pair of nodes as well as (1 + ε)-approximations. As we assume edge weights to be integer we can
assume that ε ≥ 1/(n∥w∥∞) (as otherwise it is required to compute an exact solution) and thus our
asymptotic running time bounds are not affected by this modification.

8 Here 1 denotes the all-ones vector and thus bT1 = 0 simply means that the positive demands equal
the negative demands (i.e., the supplies).

9 The incidence matrix A of a directed graph contains a row for every node and a column for every arc
and Ai,j is −1 if the j-th arc leaves the i-th vertex, 1 if it enters the vertex, and 0 otherwise.
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satisfy ∥W −1AT π∥∞ > 0 are mapped to feasible solutions of the dual program in (1) via
f(π) := π/∥W −1AT π∥∞. Similarly, feasible solutions y of the dual program in (1) that
satisfy bT y > 0 are mapped to feasible solutions of (2) via g(y) := y/bT y. Moreover, the
map f(·) preserves the approximation ratio. Namely, for any ε > 0, if π is a solution of (2)
within factor 1 + ε of the optimum, then f(π) is feasible for (1) and within factor 1 + ε of
the optimum. In particular, f(π∗) is an optimal solution of (1).

We would like to apply gradient descent to (2). However, this is not readily possible,
since the objective is not differentiable. Hence, we will change the problem another time by
using the so-called soft-max function (a.k.a. log-sum-exp or lse for short), which is a suitable
approximation for the maximum entry (v)max := max{vi : i ∈ [d]} of a vector v ∈ Rd.10

It is defined as lseβ (v) := 1
β ln

( ∑
i∈[d] eβvi

)
, where β > 0 is a parameter that controls the

accuracy of the approximation of the maximum at the expense of smoothness. We note that
lseβ (·) is a convex function for any β > 0 and provides the following additive approximation
of the maximum:

(x)max = 1
β

ln eβ·(x)max ≤ lseβ(x) ≤ 1
β

ln
∑
i∈[d]

eβ·(x)max = ln(d)
β

+ (x)max. (3)

A trade-off in the choice of β arises because β also controls the smoothness of the lse-function.
Formally, lseβ is β-Lipschitz smooth (i.e., its gradient is β-Lipschitz continuous) w.r.t. to
the pair 1-norm/∞-norm:

∥Φβ(x)− Φβ(y)∥1 ≤ β∥x− y∥∞. (4)

Using the soft-max function, we define the potential function

Φβ(π) := lseβ

(
W −1AT π

)
.

Recalling that A was defined to represent each edge of the graph by a forward and backward
arc, we see that (W −1AT π)max = ∥W −1AT π∥∞, i.e., Φβ(π) is indeed a smooth approxim-
ation of the objective of (2). In order to control the approximation error, β is adapted in
the course of the algorithm such that the additive error ln(2m)/β is always at most ε

4 Φβ(π).
Thus, we maintain a multiplicative approximation of the dual objective function of (2), i.e.,

∥W −1AT π∥∞ ≤ Φβ(π) ≤ ∥W
−1AT π∥∞

1− ε/4
. (5)

Our gradient descent algorithm, see Algorithm 1 for a pseudo-code implementation, first
computes a starting solution π that is an α-approximate (dual) solution to (2) and an
initial β that is appropriate for π as discussed above. This can be done, e.g., by solving the
problem on an α-spanner and scaling down (by at most a factor of α) to obtain a feasible
solution for the original graph. In each iteration, it updates the potentials π using an α-
approximate solution to a shortest transshipment problem with a modified demand vector b̃

that depends on the gradient. Depending on the objective value of this approximation, the
algorithm either performs an update to π or terminates, see the check for the value of δ in
the algorithm.

The intuition behind the algorithm is the following. As the potential function is differen-
tiable, its gradient exists everywhere and it points in the opposite direction of the steepest

10 Note the difference to the ∞-norm, which is defined as the maximum of the absolute values of the
entries of a vector.
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7:8 Near-Optimal Approximate Shortest Paths and Transshipment

Algorithm 1: gradient_transship (G, b, ε)
1 Compute α-approximation π to min{∥W −1AT π∥∞ : bT π = 1}. // use oracle
2 Determine β so that 4 ln(2m) ≤ εβΦβ(π) ≤ 5 ln(2m).
3 repeat
4 Set b̃ := P T∇Φβ(π), where P := I − πbT . // project to maintain bT π = 1
5 if b̃ = 0 then return π // Special case: optimal solution found
6 Determine h̃ with ∥W −1AT h̃∥∞ = 1 and b̃T h̃ ≥ 1

α max{b̃T h : ∥W −1AT h∥∞ ≤ 1}.
// h̃ can be obtained from the oracle with demand vector b̃ = P T∇Φβ(π)

7 Set δ := b̃T h̃
∥W −1AT P h̃∥∞

. // δ measures closeness to optimality
8 if δ > ε

8α then π ← π − δ
2β∥W −1AT P h̃∥∞

Ph̃. // project to maintain bT π = 1
9 while 4 ln(2m) ≥ εβΦβ(π) do β ← 5

4 β. // find appropriate β

10 until δ ≤ ε
8α

11 return π

descent. However, our update steps must maintain the constraint bT π = 1, i.e., they must
lie in the orthogonal complement of b. To this end, we consider the projection of the gradient
P T∇Φβ(π).11 Because the gradient, and hence the direction of the steepest descent, changes
when we move away from our current solution, we use an adaptive step width restricting
the update to a region for which we know that the gradient does not vary too much.

If we had a sufficiently good guarantee on the Lipschitz smoothness of Φβ(·), using the
gradient itself (resp. its projection) as the update direction h (i.e., performing the update
π ← π − ηh for an appropriate step width η) would decrease the objective Φβ(π) fast
enough. However, we only have such a guarantee on the Lipschitz smoothness of lseβ (·).
By the convexity of the objective Φβ(π), we can argue that the (normalized) progress of
an update direction h is the ratio P T∇Φβ(π)/∥W −1AT h∥∞, which suggests finding h by
max{∇Φβ(π)T Ph : ∥W −1AT h∥∞ ≤ 1}. Note that this linear program is precisely of the
form (1), with demand vector b̃ := P T∇Φβ(π), and is thus not easier to solve as the original
problem. However, finding an approximately optimal update direction only mildly affects
the number of iterations, i.e., querying the oracle for an α-approximate dual solution with
demand b̃ yields the desired guarantee.

We then use the projection P to derive a feasible update and rescale so that the gradient
does not change too much, enabling us to prove a sufficiently strong progress guarantee –
unless the current solution is already close to the optimum. This is captured by δ, which is
guaranteed to be large in case significant progress still can be made. Conversely, a small δ

implies that we are close to the optimum. Accordingly, at termination π is a near-optimal
solution of (2), and rescaling to y = π/∥W −1AT π∥∞ yields a near-optimal dual solution
of (1). Here, scaling up β as the potential decreases ensures that the incurred approximation
error is sufficiently small. On the other hand, using large β and having the guarantee that
δ is large as long as we are not close to the optimum guarantees that the potential function
decreases rapidly and only a small number of iterations is required.

We proceed by formalizing this intuition. First, we show that a primal-dual pair that
is (1 + ε)-close to optimal in (1) can be constructed from the output potentials π and α-
approximate primal and dual solutions, say f̃ and h̃, to the transshipment problem that

11 As bT π = 1, we have that bT P h = bT (I − πbT )h = bT h − bT πbT h = 0 for all h.
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was solved in the last iteration of the algorithm. If one is only interested in a dual solution
to (1), then the α-approximate dual solution h̃ is enough and thus only an oracle providing
a dual solution is required, as done in Algorithm 1. A primal solution can be obtained from
f̃ and the vector x̃ := W −1∇ lseβ

(
W −1AT π

)
. This choice of x̃ is obtained by applying the

chain rule of differentiation to ∇Φβ(π), i.e., ∇Φβ(π) = AW −1∇ lseβ

(
W −1AT π

)
. In the

correctness proof we allow a more general choice of x̃, which we will exploit later on for
finding a tree solution for approximate SSSP.

▶ Lemma 2 (Correctness). Let 0 < ε ≤ 1/2,
π ∈ Rn and β ∈ R denote the return values of Algorithm gradient_transship,
f̃ ∈ R2m and h̃ ∈ Rn be the α-approximate pair returned by the oracle in the last iteration
of Algorithm gradient_transship, and
x̃ ∈ R2m be such that Ax̃ = ∇Φβ(π) and ∥Wx̃∥1 ≤ 1 + ε/8.

Then x := x̃−f̃
πT ∇Φβ(π) , y := π

∥W −1AT π∥∞
is a (1 + ε)-approximate pair, i.e., it holds that

Ax = b, ∥W −1AT y∥∞ ≤ 1, and ∥Wx∥1 ≤ (1 + ε)bT y.

Proof. First note that Af̃ = b̃ and b̃ = P T∇Φβ(π) = ∇Φβ(π) − bπT∇Φβ(π). Thus Ax =
∇Φβ(π)−b̃
πT ∇Φβ(π) = b. Moreover, ∥W −1AT y∥∞ = 1 follows directly from the definition of y.

It remains to show that ∥Wx∥1 ≤ (1 + ε)bT y.12 It can be shown (see full paper for
details) that convexity of Φβ(·) and the guarantee on β yield

πT∇Φβ(π) ≥
(

1− ε

4

)
Φβ(π) ≥

(
1− ε

4

)
∥W −1AT π∥∞ > 0. (6)

Hence, |πT∇Φβ(π)| = πT∇Φβ(π). Moreover, ∥Wx̃∥1 ≤ 1 + ε/8 by assumption and thus

∥Wx∥1
∆-ineq.
≤

1 + ε
8 + ∥Wf̃∥1

πT∇Φβ(π)
α-approx.
≤

1 + ε
8 + αb̃T h̃

πT∇Φβ(π)
=

1 + ε
8 + αδ∥W −1AT Ph̃∥∞

πT∇Φβ(π)
,

where δ = b̃T h̃
∥W −1AT P h̃∥∞

as in Algorithm gradient_transship. By the definition of P =
I − πbT and the triangle inequality for the infinity norm, we obtain ∥W −1AT Ph̃∥∞ ≤
∥W −1AT h̃∥∞+|bT h̃|∥W −1AT π∥∞. Using the upper bound |bT h̃| ≤ bT y∗ from the optimality
of y∗ and ∥W −1AT h̃∥∞ ≤ 1, we obtain ∥W −1AT Ph̃∥∞ ≤ 1 + ∥W −1AT π∥∞bT y∗. Using (6)
for the denominator, this yields

∥Wx∥1 ≤
1 + ε

8 + αδ(1 + ∥W −1AT π∥∞bT y∗)
(1− ε

4 )∥W −1AT π∥∞
≤

1 + ε
8 + ε

8 (1 + ∥W x∥1
bT y

)
(1− ε

4 )
bT y,

since bT y∗ ≤ ∥Wx∥1 by weak duality, ∥W −1AT π∥∞ = 1/bT y, and δ ≤ ε
8α at termination of

the algorithm. Thus (1 + ε
4 )/(1− 3ε

8 ) ≤ (1 + ε
4 )/(1− ε

2 ) ≤ (1 + ε) yields the result. ◀

It remains to show a bound on the number of iterations until termination. To this end,
we establish that the potential function decreases by a multiplicative factor in each iteration.

▶ Lemma 3 (Multiplicative Decrement of Φβ). Let π ∈ Rn, let β satisfy εβΦβ(π) ≤ 5 ln(2m),
and let h̃ satisfy ∥W −1AT Ph̃∥∞ > 0, where P = I − πbT . Then, for δ := b̃T h̃

∥W −1AT P h̃∥∞
,

where b̃ = P T∇Φβ(π), it holds that

Φβ

(
π − δ

2β∥W −1AT Ph̃∥∞
Ph̃

)
≤

(
1− εδ2

20 ln(2m)

)
Φβ(π).

12 Here, we omit the special case b̃ = 0, which guarantees optimality. See full version for details.
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Proof. Let us denote h := δ
2β∥W −1AT P h̃∥∞

h̃. Recall that Φβ(·) is convex, thus

Φβ(π − Ph)− Φβ(π)
Convexity
≤ −∇Φβ

(
π − Ph

)T
Ph +∇Φβ(π)T Ph−∇Φβ(π)T Ph

=
[
∇ lseβ

(
W −1AT π

)
−∇ lseβ

(
W −1AT (π − Ph)

)]T
W −1AT Ph− b̃T h

Hölder
≤ ∥∇ lseβ

(
W −1AT π

)
−∇ lseβ

(
W −1AT (π − Ph)

)
∥1∥W −1AT Ph∥∞ − b̃T h

β-Lipschitz
≤ β∥W −1AT Ph∥2

∞ − b̃T h,

where we used Hölder’s inequality13 and then the fact that the lseβ-function is β-Lipschitz
smooth (see (4)). Using the definitions of h and δ yields Φβ(π−Ph)−Φβ(π) ≤ δ2

4β−
δ2

2β = − δ2

4β .
Using the upper bound on β yields the result. ◀

This progress guarantee is sufficient to show the following bound on the number of iterations.

▶ Lemma 4 (Number of Iterations). Suppose that 0 < ε ≤ 1/2. Then, it holds that Algorithm
gradient_transship terminates within O(ε−3α2 log α log n) iterations.

Proof. Note that for all x ∈ Rn, ∇β lseβ(x) ≤ 0, i.e., lseβ is decreasing as a function of β

and thus the while-loop that scales β up does not increase Φβ(π). Denote by β0 and π0
the initial values of β and π, respectively, and by β and π the values at termination. By
Lemma 3 and the fact that the algorithm ensures δ > ε/(8α) as long as it does not terminate,
the potential decreases by a factor of 1− εδ2

20 ln(2m) ≤ 1− ε3

1280α2 ln(2m) .14 Hence, the number
of iterations k can be bounded by

k ≤ log
( Φβ(π)

Φβ0(π0)

) (
log

(
1− ε3

1280α2 ln(2m)

))−1

≤ log
(Φβ0(π0)

Φβ(π)

)1280α2 ln(2m)
ε3 .

As ln(2m) ∈ O(log n), it remains show that Φβ0 (π0)
Φβ(π) ∈ O(α). Using that π0 is an α-

approximate solution and that β0 is such that 4 ln(2m) ≤ εβ0Φβ0(π0), we obtain that

Φβ0(π0) = lseβ0

(
W −1AT π0) (3)

≤ ∥W −1AT π0∥∞ + ln(2m)
β0

≤ α∥W −1AT π∗∥∞ + εΦβ0(π0)
4

and thus Φβ0(π0) ≤ α∥W −1AT π∗∥∞/(1−ε/4). On the other hand, Φβ(π) ≥ ∥W −1AT π∥∞ ≥
∥W −1AT π∗∥∞ and thus Φβ0 (π0)

Φβ(π) ≤
α

1−ε/4 = O(α) and the bound follows. ◀

We remark that one can first run the gradient descent algorithm with ε = 1/2 and then
switch to the desired accuracy. Using this trick, the above bound slightly improves to
O((ε−3 + log α)α2 log n). From the discussion so far, we obtain the following result.

▶ Theorem 5. Given an oracle that computes α-approximate solutions to the undirected
transshipment problem, using Algorithm gradient_transship, we can compute primal and
dual solutions x, y to the shortest transshipment problem satisfying ∥Wx∥1 ≤ (1 + ε)bT y

with Õ(ε−3α2) oracle calls. If the oracle only returns α-approximate dual solutions, then
Algorithm gradient_transship computes a (1 + ε)-approximate dual solution.

13 Hölder’s inequality states that xT y ≤ ∥x∥p∥y∥q for p, q satisfying 1
p + 1

q = 1, assuming 1
∞ = 0.

14 Here, we omit the technical argument that the condition ∥W −1AT P h̃∥∞ > 0 of Lemma 3 is always
fulfilled when we apply the lemma. See full version for details.
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2.2 Single-Source Shortest Paths
In the special case of SSSP, we have bv = 1 for all v ∈ V \ {s} and bs = 1 − n for the
source s. In fact, it is the combination of n − 1 shortest s-t-path problems. Let π be the
potentials returned by Algorithm gradient_transship and let us assume, w.l.o.g., that
πs = 0 (otherwise shift π ← π−πs1). Recall that in an optimal solution π∗ with π∗

s = 0 the
value of π∗

v for any v denotes the distance from s to v. Thus the approximation guarantee
from Theorem 5 yields that for the potentials π, it holds that

∑
v ̸=s πv ≤ (1 + ε)

∑
v ̸=s π∗

v ,
i.e., the distances merely approximate the optimal distances on average over all sink-nodes,
which is unsatisfactory. However, we can obtain potentials π such that for every v, it holds
that πv ≤ (1 + ε)π∗

v and equivalently y∗ ≥ yv ≥ y∗
v/(1 + ε) for the s-v-distances.

Using the tools proposed above, we can show that when running the gradient descent
algorithm with higher precision, we can determine “good” nodes for which we know the
distance with sufficient accuracy by checking, for every node v, whether the gradient would
allow further progress for the s-v shortest path problem. We then argue that a constant
fraction of the nodes will be “good” when the algorithm is finished. We then concentrate on
the other nodes by adapting the demand vector b accordingly, i.e., setting bv = 0 for all good
nodes v. We iterate until all nodes are good. The pseudocode is given in Algorithm sssp.

▶ Theorem 6. Let y∗ ∈ Rn denote the distances of all nodes from the source node s.
Algorithm sssp computes a vector y ∈ Rn with ∥W −1AT y∥∞ ≤ 1 such that y∗

v/(1+ε) ≤ yv ≤
y∗

v holds for each v ∈ V , using polylog(n, ∥w∥∞) calls to Algorithm gradient_transship.

2.3 Finding a Primal Tree Solution
In the following, we explain how to obtain primal tree solutions, for a specific implementation
of the transshipment oracle from Section 3, where we solve the subproblem on spanner.

Recall that, as shown in Lemma 2, x := x̃−f̃
πT ∇Φβ(π) is a (1+ϵ)-approximate primal solution,

where f̃ is the primal solution computed by the oracle in the last iteration of the algorithm
and x̃ := W −1∇ lseβ(W −1AT π). To also obtain a (1 + ϵ)-approximate primal tree solution,
we first sample a tree, say T1, from x̃ by sampling for each node among its incident edges a
parent edge with probabilities proportional to the values in x̃. Then we compute an optimal

Algorithm 2: sssp (G, s, ε)

1 Let ŷ = 0, b = 1− n1s, and ε′ = ε3

3840α2 ln(2m) .
2 while bs < 0 do
3 Set π = gradient_transship

(
G, b, ε′) and y = π

∥W −1AT π∥∞
.

4 Determine β so that 4 ln(2m) < ε′βΦβ(y) ≤ 5 ln(2m) and compute ∇Φβ(y).
5 for each v ∈ V with bv = 1 do
6 Set b̃ := P T∇Φβ(y), where P := [I − y

(1v−1s)T y
(1v − 1s)T ].

7 Compute h̃ with ∥W −1AT h̃∥∞ = 1 and
b̃T h̃ ≥ 1

α max{b̃T h : ∥W −1AT h∥∞ ≤ 1}. // h̃ can be obtained from the oracle
with demand vector b̃ = P T∇Φβ(π)

8 Set δ := b̃T h̃
∥W −1AT P h̃∥∞

.
9 if δ ≤ ε

8α then set bv = 0, ŷv = yv − ys and bs ← bs + 1

10 return ŷ
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tree solution xT in the graph G′ = (V, T1 ∪ S) consisting of the tree T1 and the edges of the
spanner S. As E[∥Wx(T1)∥1] = 1, using Markov’s inequality we get that, with probability
Ω(ε), the tree solution x(T1) corresponding to T1 satisfies ∥Wx(T1)∥1 ≤ 1 + ε/8. Repeating
the sampling O(ε log n) times and taking the best result, we obtain such a solution with high
probability. Thus, using Lemma 2, we can conclude that the optimal tree solution xT in G′

is (1+ε)-approximate for the problem. To obtain an approximate tree solution in the case of
SSSP, we repeat this sampling after every call of the gradient descent algorithm, obtaining
a tree Ti in the i-th call. We can then find the approximate shortest path tree in the graph
G′ = (V,

∪
i Ti ∪ S) combining the sampled edges of each iteration and the initial spanner.

Note that, since the number of calls to the gradient descent algorithm is polylog(n, ∥w∥∞),
the resulting graph is still of size O(n polylog(n, ∥w∥∞)) for a spanner of size O(n log n).

3 Implementation in Various Models of Computation

Common to all our implementations is the use of sparse spanners. An optimal solution of
an instance of the shortest transshipment problem on an α-spanner of the input graph is
an α-approximate solution to the original problem. Thus, whenever our gradient descent
algorithm asks the oracle for an α-approximate solution to a subproblem, we solve the
subproblem on a spanner to get an approximation with α = O(log n).

Broadcast Congested Clique. In the broadcast congested clique model, the system consists
of n fully connected nodes labeled by unique O(log n)-bit identifiers. Computation proceeds
in synchronous rounds, where in each round, nodes may perform arbitrary local computa-
tions, broadcast (send) an O(log n)-bit message to the other nodes, and receive the messages
from other nodes. The input is distributed among the nodes. The first part of the input
of every node consists of its incident edges (given by their endpoints’ identifiers) and their
weights. The second part of the input is problem specific: for the transshipment problem,
every node v knows its demand bv and for SSSP v knows whether or not it is the source
s. In both cases, every node knows 0 < ε ≤ 1/2 as well. Each node needs to compute
its part of the output. For shortest transshipment, every node in the end needs to know
a (1 + ε)-approximation of the optimum value, and for SSSP every node needs to know
a (1 + ε)-approximation of its distance to the source. The complexity of the algorithm is
measured in the worst-case number of rounds until the computation is complete.

Implementing our approach in this model is straightforward. The key observations are:
Every node can locally aggregate information about its incident edges (e.g. concerning
the “stretches” under the potential of the current solution π) and make it known to all
other nodes in a single communication round. Thus, given β > 0 and π ∈ Rn, it is rather
straightforward to evaluate Φβ(π) and ∇Φβ(π) in a constant number of rounds.
An O(log n)-spanner of the input graph can be computed and made known to all nodes
quickly, following the algorithm of Baswana and Sen [3] (see full paper for details).
Local computation then suffices to solve (sub)problems on the spanner optimally. In
particular, O(log n)-approximations to transshipment problems can be computed easily.
It suffices to communicate the demand vector; in cases where the demand vector is known
a priori (e.g. when strengthening the approximation guarantee from average to worst-case
for each node in the SSSP problem), even this is not necessary.

▶ Theorem 7. For any 0 < ε ≤ 1/2, in the broadcast congested clique model a deterministic
(1 + ε)-approximation to the shortest transshipment problem in undirected graphs with non-
negative edge weights can be computed in ε−3 polylog n rounds.
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▶ Theorem 8. For any 0 < ε ≤ 1, in the broadcast congested clique model a deterministic
(1 + ε)-approximation to single-source shortest paths in undirected graphs with non-negative
edge weights can be computed in ε−9 polylog n rounds.

To compute a tree solution, the main observation is that the sampling of the tree can be
performed locally at every node.

Broadcast CONGEST Model. The broadcast CONGEST model differs from the broadcast
congested clique in that communication is restricted to edges that are present in the input
graph. That is, node v receives the messages sent by node w if and only if {v, w} ∈ E. All
other aspects of the model are identical to the broadcast congested clique. We stress that
this restriction has significant impact, however: Denoting the hop diameter of the input
graph (i.e., the diameter of the unweighted graph G = (V, E)) by D, it is straightforward
to show that Ω(D) rounds are necessary to solve the SSSP problem. Moreover, it has been
established that Ω(

√
n/ log n) rounds are required even on graphs with D ∈ O(log n) [13].

Both of these bounds apply to randomized approximation algorithms.
Our main result for this model is that we can nearly match the above lower bounds for

approximate SSSP computation. The solution is based on combining a known reduction to
an overlay network on Θ̃(ε−1√n) nodes, simulating the broadcast congested clique on this
overlay, and applying Theorem 8. Simulating a round of the broadcast congested clique for
k nodes is done by pipelining each of the k messages over a breadth-first search tree of the
underlying graph, taking O(D + k) rounds.

▶ Corollary 9. For any 0 < ε ≤ 1, in the broadcast CONGEST model a deterministic (1+ε)-
approximation to single-source shortest paths in undirected graphs with non-negative weights
can be computed in Õ((

√
n + D) · ε−9) rounds.

Multipass Streaming Model. In the streaming model the input graph is presented to the
algorithm edge by edge as a “stream” without repetitions. The goal is to design algorithms
that use as little space as possible. Space is counted in memory words, where we assume
that an edge weight or a node identifier fits into a word. In the multipass streaming model,
the algorithm may make several such passes over the input stream and the goal is to keep
the number of passes small (again using little space). For graph algorithms, the usual
assumption is that the edges of the graph are presented to the algorithm in arbitrary order.

The main observation is that we can apply the same approach as before with O(n log n)
space: this enables us to store a spanner throughout the entire computation, and we can keep
track of intermediate (node) state vectors. Computations on the spanner are thus “free,”
while Φβ(π) and ∇Φβ(π) can be evaluated in a single pass by straightforward aggregation.
It follows that ε−O(1) polylog n passes suffice for completing the computation.

▶ Theorem 10. For any 0 < ε ≤ 1/2, in the multipass streaming model a deterministic
(1 + ε)-approximation to the shortest transshipment problem in undirected graphs with non-
negative weights can be computed in ε−3 polylog n passes with O(n log n) space.

▶ Theorem 11. For any 0 < ε ≤ 1, in the multipass streaming model, a deterministic
(1 + ε)-approximation to single-source shortest paths in undirected graphs with non-negative
weights can be computed in ε−9 log (∥w∥∞) polylog n passes with O(n log n) space.
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