
Fully Dynamic Approximate Maximum Matching and

Minimum Vertex Cover in O(log

3 n) Worst Case Update

Time

Sayan Bhattacharya⇤ Monika Henzinger† Danupon Nanongkai‡

Abstract
We consider the problem of maintaining an approximately
maximum (fractional) matching and an approximately min-
imum vertex cover in a dynamic graph. Starting with the
seminal paper by Onak and Rubinfeld [STOC 2010], this
problem has received significant attention in recent years.
There remains, however, a polynomial gap between the best
known worst case update time and the best known amortised
update time for this problem, even after allowing for ran-
domisation. Specifically, Bernstein and Stein [ICALP 2015,
SODA 2016] have the best known worst case update time.
They present a deterministic data structure with approxima-
tion ratio (3/2+ ✏) and worst case update time O(m1/4/✏2),
where m is the number of edges in the graph. In recent
past, Gupta and Peng [FOCS 2013] gave a deterministic data
structure with approximation ratio (1+✏) and worst case up-
date time O(

p
m/✏2). No known randomised data structure

beats the worst case update times of these two results. In
contrast, the paper by Onak and Rubinfeld [STOC 2010]
gave a randomised data structure with approximation ratio
O(1) and amortised update time O(log2 n), where n is the
number of nodes in the graph. This was later improved by
Baswana, Gupta and Sen [FOCS 2011] and Solomon [FOCS
2016], leading to a randomised date structure with approxi-
mation ratio 2 and amortised update time O(1).

We bridge the polynomial gap between the worst case

and amortised update times for this problem, without

using any randomisation. We present a deterministic data

structure with approximation ratio (2 + ✏) and worst case

update time O(log3 n), for all su�ciently small constants ✏.

1 Introduction

A matching in a graph is a set of edges that do not
share any common endpoint. In the dynamic match-
ing problem, we want to maintain an (approximately)
maximum-cardinality matching when the input graph

⇤Institute of Mathematical Sciences, Chennai, India. Email:
jucse.sayan@gmail.com.

†University of Vienna, Faculty of Computer Science. Email:

monika.henzinger@univie.ac.at. The research leading to these
results has received funding from the European Research Council

under the European Union’s Seventh Framework Programme

(FP/2007-2013) / ERC Grant Agreement no. 340506.
‡KTH Royal Institute of Technology, Sweden. Email:

danupon@gmail.com. Supported by Swedish Research Coun-

cil grant 2015-04659 “Algorithms and Complexity for Dynamic
Graph Problems”.

is undergoing edge insertions and deletions. The time
taken to handle an edge insertion or deletion in the in-
put graph is called the update time of the concerned dy-
namic algorithm. We want a dynamic algorithm whose
update time is as small as possible.

We denote the number of nodes and edges in the
input graph by n and m respectively. The value of
n remains fixed over time, since the set of nodes in
the graph remains the same. However, the value of m
changes as edges get inserted or deleted in the graph.
Similar to static problems where we want the running
time of an algorithm to be polynomial in the input size,
in the dynamic setting we desire the update time to be
polylog(n), for an input (edge insertion or deletion) to
a dynamic problem can be specified using O(log n) bits.

The dynamic matching problem has been exten-
sively studied in the past few years. We now know
that within polylog(n) update time we can maintain a
2-approximate matching using a randomized algorithm
[15, 1, 13] and a (2 + ✏)-approximate matching using
a deterministic algorithm [5, 4, 3]. The downside of
these algorithms, however, is that their update times
are amortised. Thus, the algorithms take polylog(n)
update time on average, but from time to time they
may take as large as O(n) time to respond to a single
update. It is much more desirable to be able to guaran-
tee a small update time after every update. This type
of update time is called worst-case update time.

Unfortunately, known worst-case update time
bounds for this problem are polynomial in n: the known
algorithms take O(n1.495) worst-case update time to
maintain the value of the maximum matching exactly
[14], O(

p
m/✏2) time to maintain a (1 + ✏)-approximate

maximum matching [8, 12], O(m1/3/✏2) time to main-
tain a (4 + ✏)-approximate maximum matching [4], and
O(m1/4/✏2) time to maintain a (3/2 + ✏)-approximate
maximum matching in bipartite graphs [2]. There is no
algorithm with polylog(n) worst-case update time even
with a polylog(n) approximation ratio.

We note that the lack of a data structure with good
worst-case update time is not at all specific to the prob-

lem of dynamic matching. Other fundamental dynamic
graph problems, such as spanning tree, minimum span-
ning tree and shortest paths also su↵er the same is-
sue [7, 9, 10, 6]. One exception is the celebrated ran-
domized algorithm with polylog(n) update time for dy-
namic connectivity [11].
Our result. We present a deterministic algorithm that
maintains a fractional matching1 and a vertex cover2

whose sizes are within a (2 + ✏) factor of each other,
for all su�ciently small constants ✏. Since the size of
a maximum fractional matching is at most 3/2 times
the size of a maximum matching, we can also maintain
a (3 + ✏)-approximation to the size of the maximum
matching in O(log3 n) worst-case update time.

2 A high level overview of our algorithm

In this section, we present the main ideas behind our
algorithm. The formal description of the algorithm and
the analysis appears in subsequent sections.
Hierarchical Partition. Our algorithm builds on the
ideas from a dynamic data structure of Bhattacharya,
Henzinger and Italiano [4] called (↵, �)-decomposition.
This data structure maintains a (2 + ✏)-approximate
maximum fractional matching in O(log n/✏2) amortised
update time. It defines the fractional edge weights
using levels of nodes and edges. In particular, fix two
constants ↵, � � 1, and recall that the input graph
G = (V, E) has |V | = n nodes. Partition the node
set V into L + 1 levels {0, . . . , L}, where L = log

�

n.
Let `(y) 2 {0, . . . , L} denote the level of a node y 2 V .
The level of an edge (x, y) is given by Eq. (2.1), and we
assign a fractional weight w(x, y) as per Eq. (2.2).

`(x, y) = max(`(x), `(y))(2.1)

w(x, y) = ��`(x,y)(2.2)

Thus, the weight of an edge decreases exponentially with
its level. The weight of a node y 2 V is defined as
W

y

=
P

(x,y)2E

w(x, y). This equals the sum of the
weights of the edges incident on it. The goal is to
maintain a partition satisfying the following property.

Property 2.1. Every node y with `(y) > 0 has weight
1/(↵�)  W

y

< 1. Furthermore, every node y with
`(y) = 0 has weight 0 W

y

< 1.

To provide some intuition, we show how to con-
struct a hierarchical partition satisfying Property 2.1

1In a fractional matching each edge is assigned a nonzero

weight, ensuring that for every node the sum of the weights of
the edges incident to it is at most 1. The size of a fractional

matching is the sum of the weights of all the edges in the graph.
2A vertex cover is a set of nodes such that every edge in the

graph has at least one endpoint in that set.

in the static setting, when there is no edge inser-
tions/deletions. For notational convenience, we de-
fine V ⇤

L

= V . Initially, we put all the nodes in level
L, and as per equations 2.1, 2.2 we assign a weight
w(x, y) = ��L = 1/n to every edge (x, y) 2 E. Since
every node has degree at most n�1, we get 0 W

y

< 1
for all y 2 V ⇤

L

. We now execute a For loop as follows.

For i = L to 1:

We partition the node-set V ⇤
i

into two subsets: V
i

=
{y 2 V : 1/�  W

y

< 1} and V ⇤
i�1

= {y 2 V : 0 
W

y

< 1/�}. Next, we move down the nodes in V ⇤
i�1

to
level i� 1. The level and weight of every edge incident
on a node in V \V ⇤

i�1

= V
i

[. . .[V
L

remain unchanged
during this step, as per equations 2.1 and 2.2. Hence,
just after the nodes in V ⇤

i�1

are moved down to level i�1,
we get 1/�  W

y

< 1 for all nodes y at level i. The
weights of the remaining edges (whose both endpoints
lie in V ⇤

i�1

) increase by a factor of �. Hence, the weights
of the nodes in V ⇤

i�1

also increase by at most a factor of
�. Before the nodes in V ⇤

i�1

were moved down to level
i� 1, we had 0 W

y

< 1/� for all y 2 V ⇤
i�1

. Thus, just
after the nodes in V ⇤

i�1

are moved down to level i � 1,
we get 0 W

y

< 1 for all y 2 V ⇤
i�1

.

When the above For loop terminates, we have 1/� 
W

y

< 1 for all nodes y 2 V at levels `(y) > 0, and
0  W

y

< 1 for all nodes y 2 V at level `(y) = 0.
Specifically, Property 2.1 is satisfied with ↵ = 1.

Theorem 2.1. ([4]) Under Property 2.1, the edge-
weights {w(e)} form a 2↵�-approximate maximum frac-
tional matching in G.

In [4], Bhattacharya et al. showed that we can
dynamically maintain such a partition with ↵ = � =
(1+ ✏) in O(log n/✏2) amortised update time. The main
idea is as follows. Assume that we have a partition that
satisfies Property 2.1. Now an edge (u, v) is inserted or
deleted. This causes W

u

and W
v

to increase or decrease.
Hence, it might happen that some node x 2 {u, v}
violates Property 2.1 after the insertion/deletion of the
edge (u, v), i.e. either (1) W

x

� 1 or (2) W
x

< 1/(↵�)
and `(x) > 0. We call such a node x dirty, and deal with
this event by changing the level of x in a straightforward
way as per Figure 1: If W

x

is too large (resp. too
small), then we increase (resp. decrease) `(x) by one.
This causes the weights of some edges incident on x to
decrease (resp. increase), which in turn decreases (resp.
increases) the value of W

x

. For each level i 2 [0, L], we
define the set of edges E

i

(x) as follows.

E
i

(x) = {(x, y) 2 E | `(x, y) = i}.(2.3)

An important observation is that as a node x moves up
(resp. down) from level i to level i + 1 (resp. i � 1),

the edges whose weights get changed all belong to the
set E

i

(x). Since the relevant data structures can be
maintained e�ciently, this implies that the runtime of
one iteration of the While loop in Figure 1 is dominated
by the cost of Line 7, which takes O(|E

i

(x)|) time. In [4],
the authors showed that this cost can be amortised over
previous edge insertions/deletions.

Note that one iteration of the While loop can make
some neighbours of x dirty, and x itself might remain
dirty at the end of the iteration. These dirty nodes
are dealt with in subsequent iterations in a similar way
(until there is no dirty node left).

01. While there is a dirty node x
02. Let i = `(x)
03. If W

x

� 1, Then // In this case i < L
04. Set `(x) `(x) + 1.
05. Else // In this case W

x

< 1/(↵�), i > 0
06. Set `(x) `(x)� 1.
07. Update `(x, y) for all (x, y) 2 E

i

(x).

Figure 1: Fixing the dirty nodes.

Example: Inserting edges to a star. The following
example shows the basic idea behind the amortisation
argument. Consider a star centred at node v consisting
of �i�1 edges, for some large i. To satisfy Property 2.1,
we can set `(v) = i, while all other nodes have level
0. Thus, we get W

v

= 1/� since every edge has
weight 1/�i. Now keep inserting edges to the star (the
graph remains a star throughout). Property 2.1 remains
satisfied until the (�i � �i�1)-th edge is inserted – at
this point the star consists of �i edges, W

v

= 1, and the
node v becomes dirty. We fix the node by increasing
`(v) to i + 1 as in Algorithm 1, thus reducing the edge-
weights to 1/�i+1 and the value of W

v

to 1/�. To do
this we have to pay the cost of O(|E

i

(v)|) = O(�i) in
terms of update time. We can amortise this cost over
the (�i � �i�1) newly inserted edges. This gives an
amortised update time of O(1) for constant �.

Note that in the above example the algorithm does
not perform well in the worst case: after the (�i��i�1)-
th insertion it has to “probe” all edges in E

i

(v). So the
worst case update time becomes O(�i), which can be
polynomial in n when i is large. But in this particular
instance the problem can be fixed easily: Whenever
v becomes dirty due to the insertion of an edge with
weight 1/�i, we reduce the weight of the newly inserted
edge and some other edge in the star from 1/�i to
1/�i+1. Thus, the net increase in the weight of v
becomes equal to 1/�i � 2(1/�i � 1/�i+1) = 2/�i+1 �
1/�i  0 (the last inequality holds as long as � � 2).
In other words, when the node v becomes dirty, by

reducing the weights of two edges to 1/�i+1 we can
ensure that W

v

again becomes smaller than one. Once
every edge has weight 1/�i+1, we set `(v) = i + 1.
Shadow-level (`

y

(x, y)). To make the above idea
concrete, we introduce the notion of a shadow-level. For
every node y 2 V and every incident edge (x, y) 2 E,
we define the shadow-level of y with respect to (x, y),
denoted by `

y

(x, y) 2 {0, . . . , L}, to be an integer in
{0, . . . , L} such that the following property holds.

Property 2.2. For every node y and edge (x, y),
`(y)� 1  `

y

(x, y)  `(y) + 1.

We modify the definition of the level of an edge
(x, y) 2 E (in Eq. (2.1)) to

`(x, y) = max(`
x

(x, y), `
y

(x, y)).(2.4)

This a↵ects the value of w(x, y) and the set E
i

(y)
as they depend on the levels of edges (see Eq. (2.2)
and (2.3)). The idea of the shadow-level is that if
`
y

(x, y) > `(y) (respectively `
y

(x, y) < `(y)), then
from the perspective of the edge (x, y) we have already
increased (resp. decreased) `(y); thus, the level and
weight of (x, y) has changed accordingly. In this case, we
say that y up-marks (respectively down-marks) the edge
(x, y). We will use this operation when W

y

is too large
(resp. too small). Intuitively, y should not up-mark
and down-mark edges at the same time. In particular,
let M

down

(y) = {(x, y) 2 E : `
y

(x, y) = `(y) � 1} and
M

up

(y) = {(x, y) 2 E : `
y

(x, y) = `(y) + 1} respectively
denote the set of all edges down-marked and up-marked
by y. Then, we will maintain the following property.

Property 2.3. Either M
up

(y) = ; or M
down

(y) = ;.

To see the usefulness of this new definition, consider
the following algorithm for dealing with the case where
the graph is always a star centred at v: If there are only
edge insertions, then v up-marks the newly inserted edge
and another edge in E

`(v)

(v) whenever it becomes dirty
(i.e. W

v

� 1). It is easy to see that this will be enough
to keep W

v

< 1 as long as � � 2. Once E
`(v)

(v) = ;, we
increase `(v) by one. Similarly, if there are only edge
deletions, then v can down-mark an edge in E

`(v)

(v)
whenever it becomes dirty (i.e. W

v

< 1/(↵�)).
The algorithm follows the same strategy when there

are both edge insertions and deletions, albeit with one
caveat: To ensure that Property 2.3 holds, it cannot up-
mark an edge if M

down

(v) 6= ;, and cannot down-mark
an edge if M

up

(v) 6= ;. Suppose that M
down

(v) 6= ; and
we want to reduce the weight of v. In this event, the
node v picks an edge (u, v) in M

down

(v) and sets `
v

(u, v)
back from `(v) � 1 to `(v), which reduces the value of
w(u, v). This causes the edge (u, v) to be removed from

······
······

·········

v

u
1

u
k

x
11

x
1j

x
k1

x
kj

k = �i�1/↵

j = �i � 2

Figure 2: Example. Suppose that i is very large, e.g.
i = (log n)/2, and � is a large constant.

M
down

(v) and be added to E
`(v)

(v). We say that the
node v un-marks the edge (u, v). Next, suppose that
M

up

(v) 6= ; and we want to increase the weight of v. In
this event, the node v un-marks an edge in M

up

(v).
Failures. So far we have described an idea that leads to
small worst-case update time when the input instance
is a star graph. To make this idea work on a general
input instance, we have to deal with several issues that
make the algorithm more complicated. The chief one
among them is the observation that the algorithm may
fail in adjusting edge weights. Consider, for example,
a tree rooted at a node v having k = �i�1/↵ children,
say u

1

, . . . u
k

. Further, each u
i

has j = �i � 2 children.
See Fig. 2. Suppose that we satisfy Property 2.1 by
setting `(x

p,q

) 0 for every leaf-node x
p,q

with p 2 [k]
and q 2 [j], `(u

p

) i for every internal node u
p

with
p 2 [k], and `(v) i for the root node v. No edge is
down-marked or up-marked by any node. This implies
that W

v

= 1/(↵�), W
up = 1 � 1/�i for all p 2 [k], and

W
xp,q = 1/�i for all p 2 [k] and q 2 [j].

Now, suppose that the edge (v, u
1

) gets deleted.
This makes v dirty, for W

v

becomes smaller than
1/(↵�). The algorithm responds by down-marking an
edge in E

i

(v), say (v, u
2

). Unfortunately, this down-
marking does not change the weight w(u, v

2

) since
`
v2(u, v

2

) = i. I We say that this down-marking fails.
When a down-marking fails, the node v remains dirty
and Property 2.1 remains unsatisfied. In fact, in this
example, the node v will remain dirty even if we down-
mark all the edges in E

i

(v). To satisfy Property 2.1, we
have no other option but to set `(v) 0. However, we
cannot do so unless we probe all the edges in E

i

(v), for
we have to ensure that all the down-markings on these
edges fail. This takes too much time.

To deal with this issue, we keep down-marking the
edges in E

i

(v) as long as we fail, until the point when
we experience polylog(n) failures. We might still end up
having W

v

< 1/(↵�). Nevertheless, we will guarantee
a constant approximation ratio by arguing that we
continue to have W

v

= ⌦(1/(↵�)). Intuitively, every

time W
v

decreases by 1/�i because of these failures,
we down-mark many edges in the set E

i

(v). Since
|E

i

(v)|  �i�1/↵, we are able to down-mark all the
edges in E

i

(v) before the value of W
v

becomes too small.
At that point, we are ready to decrease the level of v.

Specifically, suppose that the edges inci-
dent to v keep getting deleted. While handling
t = �i�1/(↵ log2 n) such deletions, we perform
t · polylog(n) � �i�1/↵ failed down-markings. This
is enough to down-mark every edge in E

i

(v). At this
point we move v down to level (i � 1), and we still
have W

v

� 1/(↵�) � t/�i = (1 � 1/ log2 n)/(↵�). By
repeating this argument, we conclude that even if there
are more deletions, we still have W

v

= ⌦(1/(↵�)) until
the point in time when v moves down to level 0 (where
v can not be dirty for its weight being small).
The algorithm in a nutshell. Our algorithm obeys
the following principles. When a node y becomes dirty,
it either (1) up-marks or down-marks an edge (x, y),
or (2) un-marks an edge (x, y) if up-marking or down-
marking would violate Property 2.3. Such an action
may fail, meaning that w(x, y) might not change, for
reasons exemplified in Fig. 2. In this event, y continues
probing its other incident edges, and stops when it
experiences either its first success or its polylog(n)th

failure. We show: (a) the failures do not cause the
weight W

y

to become too small or too large, (b) fixing
one dirty node leads to at most one new dirty node,
and (c) the level of the dirty node under consideration
drops after constantly many fixes. Item (a) guarantees a
constant approximation factor. Items (b), (c) guarantee
a polylog(n) update time, for there are O(log n) levels.

3 Preliminaries

Henceforth, we focus on formally describing our dy-
namic algorithm and analysing its worst-case update
time. For the rest of the paper, we fix two constants
�, K and define L and f(�) as in equation 3.5. Note
that K < L when n is su�ciently large.

(3.5) � � 5, K = 20, f(�) = 1� 3/�, L = dlog
�

ne.

We will maintain a hierarchical partition of the
node-set in G = (V, E), and a fractional matching where
the weights assigned to the edges depend on the levels of
their endpoints. For technical reasons, however, there
will be two key di↵erences between the hierarchical
partition actually used by our dynamic algorithm and
the one that was defined in Section 2.

1. We will collapse all the nodes in levels {0, . . . , K} into
a single level K. Accordingly, the level of a node will
lie in the range [K, L] in this new hierarchical partition.
The weights of the nodes y in levels `(y) > K will satisfy
the constraint: f(�) W

y

< 1. On the other hand, the

weights of the nodes y at the lowest level `(y) = K will
satisfy the constraint: 0  W

y

< 1. Comparing these
constraints with Property 2.1, it follows that the term
1/(↵�) is replaced by f(�) in the new partition.

2. We will allow the weight of an edge (u, v) to be o↵
by a factor of � from its ideal value �� max(`(u),`(v)).

The structure maintained by our algorithm will be
called a nice-partition. This is formally defined below.

Definition 3.1. In a nice-partition, the node-set V is
partitioned into (L � K + 1) subsets V

K

, . . . , V
L

. For
i 2 [K, L], if a node v belongs to V

i

, then we say that
the node v is at level `(v) = i. Each edge (u, v) 2 E
gets a weight w(u, v). Let W

v

=
P

(u,v)2E

w(u, v) be
the total weight received by a node v from its incident
edges. The following properties hold.

1. For every edge (u, v) 2 E, we have
�� max(`(u),`(v))�1  w(u, v)  �� max(`(u),`(v))+1.

2. If a node v has `(v) > K, then f(�) W
v

< 1.

3. If a node v has `(v) = K, then W
v

< 1.

Lemma 3.1. Suppose that we can maintain a nice-
partition in O(T (n)) worst-case update time. Then we
can also maintain a 2/f(�)-approximate maximum frac-
tional matching and a 2/f(�)-approximate minimum
vertex cover in O(T (n)) worst case update time.

Proof. Let Er = {(u, v) 2 E : `(u) = `(v) = K} be
the subset of edges with both endpoints at level K. We
will maintain a residual weight wr(e) � 0 for every edge
e 2 Er. For notational consistency, we define wr(e) = 0
for every edge e 2 E \Er. Let W r

v

=
P

(u,v)2E

r wr(u, v)
denote the residual weight received by a node v from all
its incident edges. Two conditions are satisfied:

(a) For each node v 2 V , we have 0 W
v

+ W r

v

 1.

(b) For every edge (u, v) 2 Er, we have either W
v

+
W r

v

� 1� 1/� or W
u

+ W r

u

� 1� 1/�.

Let degr(v) denote the degree of a node v 2 V among
the edges in Er. By condition (1) of Definition 3.1,
every edge (x, y) 2 Er has weight w(x, y) � ��K�1.
Hence, for every node v 2 V , we get: 1 > W

v

�P
(u,v)2E

r w(u, v) � degr(v) · ��K�1. This implies that

degr(v) < �K+1 for every node v 2 V . Since �, K are
constants, we get: degr(v) = O(1) for every node v 2 V .

Maintaining the residual weights {wr(e)}, e 2 Er.
For every node v 2 V , let b(v) = 1 � W

v

denote the
capacity of the node. Let br(v) be equal to the value of
b(v) rounded down to the nearest multiple of 1/�. We
say that br(v) is the residual capacity of node v. We
create an auxiliary graph G⇤ = (V ⇤, E⇤), where we have
� copies of each node v 2 V . For every edge (u, v) 2 Er,

there are �2 edges in G⇤: one for each pair of copies of
u and v. For each node v 2 V , if br(v) = t/� for some
integer t 2 [0, �], then t copies of v are turned on in G⇤,
and the remaining (��t) copies of v are turned o↵ in G⇤.
We maintain a maximal matching M⇤ in the subgraph
of G⇤ induced by the copies of nodes that are turned
on. Since degr(v) = O(1) for every node v 2 V , we can
maintain the matching M⇤ in O(1) update time using a
trivial algorithm. From the matching M⇤, we get back
the residual weights {wr(e)} as follows. For every edge
(u, v) 2 Er, if there are t edges in M⇤ between di↵erent
copies of u and v, then we set wr(u, v) t/�. It is easy
to check that this satisfies both conditions (a) and (b).

Approximation guarantee.
Condition (a) implies that the edge-weights {w(e) +
wr(e)} form a valid fractional matching in G. Define
the subset of nodes V ⇤ = {v 2 V : W

v

+ W r

v

� f(�)}.
Consider any edge (u, v) 2 E. If at least one endpoint
x 2 {u, v} lies at a level `(x) > K, then condition (2)
of Definition 3.1 implies that W

x

+ W r

x

� W
x

� f(�),
and hence x 2 V ⇤. On the other hand, if both the
endpoints {u, v} lie at level K, then by conditions (a)
and (b) we have: W

x

+ W r

x

� 1� 1/� � f(�) for some
x 2 {u, v}, and hence x 2 V ⇤. It follows that V ⇤ forms
a valid vertex cover in G. Applying complementary
slackness conditions, we infer that the edge-weights
{w(e) + wr(e)} form a 2/f(�)-approximate maximum
fractional matching in G, and that V ⇤ forms a 2/f(�)-
approximate minimum vertex cover in G.

Fix any constant 0 < ✏ < 1 and let � = 3(2 + ✏)/✏.
Then � � 5 and 2/f(�) = 2 + ✏ (see equation 3.5).
Setting � in this way, we can use Theorem 3.1 and
Lemma 3.1 to maintain a (2+✏)-approximate maximum
fractional matching and a (2+✏)-approximate minimum
vertex cover in O(log3 n) worst-case update time. We
devote the rest of the paper to proving Theorem 3.1.

Theorem 3.1. We can maintain a nice-partition in
G = (V, E) in O(log3 n) worst case update time.

3.1 Shadow-levels. As in Section 2, the shadow-
levels will uniquely determine the weight w(u, v) as-
signed to every edge (u, v) 2 E. They will ensure that
w(u, v) di↵ers from the ideal value �� max(`(u),`(v)) by
at most a factor of �. This implies condition (1) of Def-
inition 3.1. Specifically, we require that each edge has
two shadow-levels: one for each of its endpoints. Let
`
y

(x, y) 2 [K, L] be the shadow-level of a node y with
respect to the edge (x, y). We require that this shadow-
level can di↵er from the actual level of the node by at
most one. This is formally stated in the invariant below.

Invariant 1. For every node y 2 V and every edge
(x, y) 2 E, we have `(y)� 1  `

y

(x, y)  `(y) + 1.

Next, as in Section 2, we define the level of an edge
to be the maximum value among the shadow-levels of
its endpoints. Let `(x, y) 2 [K, L] be the level of an
edge (x, y). Then for every edge (x, y) 2 E we have:

(3.6) `(x, y) = max(`
x

(x, y), `
y

(x, y)).

As in Section 2, we now require that the weight
assigned to an edge (u, v) 2 E be given by ��`(u,v).

(3.7) w(x, y) = ��`(x,y) for every edge (u, v) 2 E.

Thus, the weight of an edge decreases exponentially
with its level. It is easy to check that if Invariant 1 holds,
then assigning the weights to the edges in this manner
satisfies condition (1) of Definition 3.1.

Corollary 3.1. Suppose that Invariant 1 holds and
edges are assigned weights as in equations 3.6, 3.7.
Then for every edge (x, y) 2 E we have:

�� max(`(x),`(y))�1  w(x, y)  �� max(`(x),`(y))+1.

Proof. Since each shadow-level di↵ers from the actual
level by at most one (see Invariant 1), the maximum
value among the shadow-levels also di↵ers from the
maximum value among the actual levels by at most one.
Specifically, we get: max(`(x), `(y)) � 1  `(x, y) =
max(`

x

(x, y), `
y

(x, y))  max(`(x), `(y)) + 1. The
corollary now follows from the fact that the weight of
an edge (x, y) 2 E is given by w(x, y) = ��`(x,y).

As in Section 2, we now define the concept of an
edge marked by a node. Consider any edge (x, y) 2 E
incident to a node y 2 V . If `

y

(x, y) = `(y)+1, then we
say that the edge (x, y) has been up-marked by the node
y. Similarly, if `

y

(x, y) = `(y)� 1, then we say that the
edge (x, y) has been down-marked by the node y. And
if `

y

(x, y) = `(y), then we say that the edge (x, y) is un-
marked by the node y. We let M

up

(y) and M
down

(y)
respectively be the set of all edges (x, y) 2 E incident
to y that have been up-marked and down-marked by y.
For every i 2 [K, L], we let E

i

(y) be the set of all edges
(x, y) 2 E incident to y that are at level `(x, y) = i.

M
up

(y) = {(x, y) 2 E : `
y

(x, y) = `(y) + 1}(3.8)

M
down

(y) = {(x, y) 2 E : `
y

(x, y) = `(y)� 1}(3.9)

E
i

(y) = {(x, y) 2 E : `(x, y) = i}(3.10)

3.2 Di↵erent states of a node. Our goal is to
maintain a nice-partition in G. In Section 3.1, we
defined the concept of shadow-levels so as to ensure that
the edge-weights satisfy condition (1) of Definition 3.1.
In this section, we present a framework which will ensure
that the node-weights satisfy the remaining conditions

(2), (3) of Definition 3.1. Towards this end, we first
need to define the concept of an activation of a node.

Activations of a node. The deletion of an edge (x, y)
in G leads to a decrease in the values of W

x

and W
y

. In
contrast, when an edge (x, y) is inserted in G, we assign
values to its two shadow-levels `

x

(x, y) and `
y

(x, y) in
such a way that Invariant 1 holds, and then assign a
weight to the edge as per equation 3.7. This leads to an
increase in the values of W

x

and W
y

. These two events
are called natural activations of the endpoints x, y. In
other words, a node is naturally activated whenever an
edge incident to it is either inserted into or deleted from
G. The weight of a node changes whenever it encounters
a natural activation. Hence, such an event might lead
to a scenario where the node-weight becomes either too
large or too small, thereby violating either condition (2)
or condition (3) of Definition 3.1. For example, consider
a node y at a level `(y) > K whose current weight is just
slightly smaller than one. Thus, we have: 1� � W

y

<
1 for some small �. Now, suppose that y gets naturally
activated due to the insertion of an edge (x, y). Further,
suppose that this leads to the value of W

y

becoming
larger than one after the natural activation. So the
node y violates condition (2) of Definition 3.1. In our
algorithm, at this stage the node y will select some edge
(x0, y) 2 E

`(y)

(y) and up-mark that edge. Specifically,
the node will set `

y

(x0, y) `(y) + 1, insert the edge
(x0, y) into the sets M

up

(y) and E
`(y)+1

(y), and remove
the edge from the set E

`(y)

(y). The new level of the edge
will be given by `(x0, y) = `(y)+1. This will reduce the
node-weight W

y

by ��`(y)� ��(`(y)+1), and (hopefully)
the new value of W

y

will again be smaller than one. The
up-marking of the edge (x0, y), however, will change the
weight of the other endpoint x0. We call such an event
an induced activation of x0. Specifically, an induced
activation of a node x0 refers to the event when the
node-weight W

x

0 increases (resp. decreases) because
the other endpoint y of an incident edge (x0, y) has
decreased (resp. increased) its shadow-level `

y

(x0, y).
In general, consider an activation of a node y that

increases its weight. Suppose that the node wants to
revert this change (weight increase) so as to ensure that
conditions (2) and (3) of Definition 3.1 remain satisfied.
Then it either up-marks some edges from E

`(y)

(y) or un-
marks some edges from M

down

(y). This, in turn, might
activate some of the neighbours of y.

Similarly, consider an activation of a node y that
decreases its weight. Suppose that the node wants to
revert this change (weight decrease) so as to ensure that
conditions (2) and (3) of Definition 3.1 remain satisfied.
Then it either down-marks some edges from E

`(y)

(y) or
un-marks some edges from M

up

(y). Again, this might
in turn activate some of the neighbours of y.

We require that a node cannot simultaneously have
an up-marked and a down-marked edge incident on
it. This requirement is formally stated in Invariant 2.
Intuitively, a node has up-marked incident edges when
it is trying to ensure that its weight does not become
too large, and down-marked incident edges when it is
trying to ensure that its weight does not become too
small. Thus, it makes sense to assume that a node
cannot simultaneously be in both these states.

Invariant 2. For every node y 2 V , either M
up

(y) =
; or M

down

(y) = ;.

Invariant 3 states that if a node y has up-marked or
down-marked an incident edge (x, y), then the shadow-
level `

x

(x, y) of the other endpoint x is no more than
the level of y. Intuitively, the node y up-marks or down-
marks an incident edge only if it wants to change its
weight W

y

without changing its own level `(y). Suppose
that the invariant is false, i.e., the node y has up-marked
or down-marked an edge (x, y) with `

x

(x, y) > `(y).
Then we have `

y

(x, y)  `(y) + 1  `
x

(x, y), where
the first inequality follows from Invariant 1. But, this
implies that y can never change the weight w(x, y) by
up-marking or down-marking (x, y), for the value of
w(x, y) is determined by the shadow-level of the other
endpoint x. Thus, the node y does not gain anything
by up-marking or down-marking the edge (x, y). This
is why we guarantee the following invariant.

Invariant 3. For every edge (x, y) 2 E, if `
y

(x, y) 6=
`(y), then we must have `

x

(x, y)  `(y).

Six di↵erent states. For technical reasons, we will
require that a node is always in one of six possible
states. See Table 1. It is easy to check that this is
su�cient to ensure conditions (2), (3) of Definition 3.1.
See Lemma 3.2. One way to classify these states is as
follows. Definition 3.1 requires that the weight of a node
y lies in the range 0 W

y

< 1. We partition this range
into four intervals: I

1

, I
2

, I
3

and I
4

. These intervals are
non-empty as long as � is a su�ciently large constant.

I
1

= [0, f(�)) , I
2

= [f(�), 1� 2/�)

I
3

= [1� 2/�, 1� 1/�) and I
4

= [1� 1/�, 1) .

A node y is in Up state when W
y

2 I
4

, Down state
when W

y

2 I
2

, and Slack state when W
y

2 I
1

. As
per Table 1, the node y has to satisfy some additional
constraints when State[y] 2 {Up,Down,Slack}. Fi-
nally, if W

y

2 I
3

, then y is in one of three possible states
– Idle, Up-B, Down-B – depending on whether or not
it has up-marked or down-marked any incident edge.
By Invariant 2, a node cannot simultaneously up-mark

some incident edges and down-mark some other incident
edges. Hence, three cases can occur when W

y

2 I
3

. (a)
M

up

(y) = M
down

(y) = ;. In this case y is in Idle state.
(b) M

down

(y) = ; and M
up

(y) 6= ;. In this case y is in
Up-B state. (c) M

up

(y) = ; and M
down

(y) 6= ;. In this
case y is in Down-B state.

The six states are precisely defined in Table 1.

Lemma 3.2. If a node y 2 V is in one of the states
described in Table 1, then its weight W

y

satisfies condi-
tions (2) and (3) of Definition 3.1.

Proof. In every state, we have 0 W
y

< 1 (see Table 1).
We consider two mutually exclusive and exhaustive
cases. (a) f(�)  W

y

< 1. (b) 0  W < f(�). In
case (a), clearly the node-weight W

y

satisfies conditions
(2), (3) of Definition 3.1. In case (b), the node must
be in Slack state (see Table 1), and so we must have
`(y) = K. Thus, the node satisfies conditions (2), (3)
of Definition 3.1 even in case (b).

Note that each of the intervals I
1

, I
2

, I
3

and I
4

defined above is of length at least 1/� (see equation 3.5).
On the other hand, for every edge (u, v) 2 E we have
w(u, v)  1/�K , for K is the minimum possible level
in a nice-partition. Accordingly, a natural or induced
activation of a node can change its weight by at most
1/�K . Note that 1/�K is much smaller than 1/�.
This apparently simple observation has an important
implication, namely, that a node must be activated at
least �K�1 times for its weight to cross the feasible range
of any interval in {I

1

, I
2

, I
3

, I
4

}. As a corollary, if a
node y has, say, W

y

2 I
3

just before getting activated,
then the activation can only move W

y

to a neighbouring
interval – I

2

or I
4

. But it is not possible to have W
y

2 I
3

just before the activation, and W
y

2 I
1

just after the
activation. Throughout the rest of the paper, we will be
using this observation each time we consider the e↵ect of
an activation on a node. Next, we will briefly explain the
motivation behind considering all these di↵erent states.

1. State[y] = Up. See row (1) in Table 1.
A node y is in Up state when 1�1/� W

y

< 1. In this
state the node’s weight is close to one. Hence, whenever
its weight increases further due to an activation the node
tries to up-mark some incident edges from E

`(y)

(y), in
the hope that this would reduce the node’s weight and
ensure that W

y

never exceeds one. The node y can
up-mark an edge only if the set E

`(y)

(y) is nonempty.
Hence, we require that E

`(y)

(y) 6= ;. Further, to ensure
that a up-marking does not violate Invariant 2, we
require that M

down

(y) = ;.
2. State[y] = Down. See row (2) in Table 1.
A node y is in Down state when f(�) W

y

< 1� 2/�.
In this state the node’s weight is close to the threshold

State[y] Weight-range Up-marked Down-marked Other
edges edges constraints

1. Up 1� 1
�

 W
y

< 1 M
down

(y) = ; E
`(y)(y) 6= ;

2. Down f(�)  W
y

< 1� 2
�

M
up

(y) = ; If `(y) > K, then
E

`(y)(y)�M
down

(y) 6= ;

3. Slack 0  W
y

< f(�) M
up

(y) = ; M
down

(y) = ; `(y) = K

4. Idle 1� 2
�

 W
y

< 1� 1
�

M
up

(y) = ; M
down

(y) = ;

5. Up-B 1� 2
�

 W
y

< 1� 1
�

M
up

(y) 6= ; M
down

(y) = ;

6. Down-B 1� 2
�

 W
y

< 1� 1
�

M
up

(y) = ; M
down

(y) 6= ;

Table 1: Constraints satisfied by a node in di↵erent states.

f(�). There are two cases to consider here, depending
on the current level of the node.

2-a. `(y) > K. In this case, whenever the value of
W

y

decreases further due to an activation, the node
tries to down-mark some incident edges from E

`(y)

(y) \
M

down

(y), in the hope that this would increase the
node’s weight and ensure that W

y

does not drop below
the threshold f(�). The node y can down-mark an edge
only if the set E

`(y)

(y) \ M
down

(y) is nonempty. Hence,
we require that E

`(y)

(y) \ M
down

(y) 6= ;. Furthermore,
in order to ensure that a down-marking does not violate
Invariant 2, we require that M

up

(y) = ;.
2-b. `(y) = K. In this case, the node y cannot
down-mark any incident edge (x, y), for we must always
have `

y

(x, y) 2 [K, L]. Thus, we get M
down

(y) = ;
in addition to the constraints specified in row (2) of
Table 1. If an activation makes W

y

smaller than f(�),
then we simply set State[y] Slack.

We highlight one apparent discrepancy between the
states Up and Down. If a node y is in Down state with
`(y) > K, then it tries to down-mark some edges from
E

`(y)

(y) \ M
down

(y) after an activation that reduces its
weight. However, if the same node is in Up state, then
it tries to up-mark some edges from E

`(y)

(y) after an
activation that increases its weight. This discrepancy
is due to the fact that E

`(y)

(y) \M
up

(y) = ;, as every
edge (x, y) 2 M

up

(y) has `(x, y) � `
y

(x, y) = `(y) + 1.
In other words, an edge up-marked by y can never
belong to the set E

`(y)

(y), and hence E
`(y)

(y)\M
up

(y) =
E

`(y)

(y). In contrast, an edge (x, y) 2M
down

(y) belongs
to the set E

`(y)

(x, y) if `
x

(x, y) = `(y).

3. State[y] = Slack. See row (3) in Table 1.
A node y is in Slack state when 0  W

y

< f(�).
In order to ensure condition (2) of Definition 3.1, we
require that the node be at level K. Since K is the
minimum possible level, there is no need for the node
to prepare for moving down to a lower level in future.
Hence, we require that M

down

(y) = ;. Further, the
node’s weight is currently so small that it will take quite
some time before the node has to prepare for moving up
to a higher level. Hence, we require that M

up

(y) = ;.
4. State[y] = Idle. See row (4) in Table 1.
A node y is in Idle state when 1�2/� W

y

< 1�1/�
and M

up

(y) = M
down

(y) = ;. In this state the node’s
weight is neither too large nor too small, and the node
does not have any up-marked or down-marked incident
edges. Intuitively, the node need not worry even if its
weight changes due to an activation in this state. In
other words, when a node gets activated in Idle state,
it does not up-mark, down-mark or un-mark any of
its incident edges. After a su�ciently large number of
activations when the node’s weight drops below (resp.

rises above) the threshold 1 � 2/� (resp. 1 � 1/�), it
switches to the state Down (resp. Up).

5. State[y] = Up-B. See row (5) in Table 1. The term
“Up-B” stands for “Up-Backtrack”.
A node y is in Up-B state when 1�2/� W

y

< 1�1/�,
M

up

(y) 6= ; and M
down

(y) = ;. Intuitively, this state of
the node captures the following scenario. Some time
back the node y was in Up state with 1 � 1/� 
W

y

< 1, M
up

(y) 6= ; and M
down

(y) = ;. From that
point onward, the node encountered a large number of
activations that kept on reducing its weight. Eventually,
the value of W

y

became smaller than 1 � 1/� and the
node entered the state Up-B. If the node keeps getting
activated in this manner, then in near future W

y

will
become smaller than 1 � 2/� and the node y will have
to enter the state Down. At that time we must have
M

up

(y) = ;. In other words, the node y has to ensure
that M

up

(y) = ; before its weight drops below the
threshold 1 � 2/�. Thus, whenever State[y] = Up-B
and the node-weight W

y

decreases due to an activation,
the node y un-marks some edges from M

up

(y).

6. State[y] = Down-B. See row (6) in Table 1. The
term “Down-B” stands for “Down-Backtrack”.

A node y is in Down-B state when 1 � 2/�  W
y

<
1 � 1/�, M

down

(y) 6= ; and M
up

(y) = ;. Intuitively,
this state of the node captures the following scenario.
Some time back the node y was in Down state with
f(�)  W

y

< 1 � 2/�, M
down

(y) 6= ; and M
up

(y) = ;.
From that point onward, the node encountered a large
number of activations that kept on increasing its weight.
Eventually, the value of W

y

became greater than 1�2/�
and the node entered the state Down-B. If the node
keeps getting activated in this manner, then in near
future W

y

will become greater than 1� 1/� and it will
have to enter the state Up. At that time we must have
M

down

(y) = ;. In other words, the node y has to ensure
that M

down

(y) = ; before its weight increases beyond
the threshold 1 � 1/�. Thus, whenever State[y] =
Down-B and W

y

increases due to an activation, the
node y un-marks some edges from M

down

(y).

3.3 Dirty nodes. Our algorithm maintains a bit
D[y] 2 {0, 1} associated with each node y 2 V . We say
that the node y is dirty if D[y] = 1 and clean otherwise.
Intuitively, the node y is dirty when it is unsatisfied
about its current condition and it wants to up-mark,
down-mark or un-mark some of its incident edges. Once
a dirty node is done with up-marking, down-marking or
un-marking the relevant edges, it becomes clean again.

In our algorithm, a node becomes dirty only after
it encounters a natural or induced activation. The
converse of this statement, however, is not true. There
may be times when a node remains clean even after

getting activated, and this will be crucial in bounding
the worst-case update time of our algorithm. Whether
or not a node will become dirty due to an activation
depends on: (1) the state of the node, (2) the type of the
activation under consideration (whether it increases or
decreases the node-weight), and (3) the node’s current
level. We have three rules that determine when a node
becomes dirty.

Rule 3.1. A node y with State[y] 2 {Up,Down-B}
becomes dirty after an activation that increases its
weight. In contrast, such a node does not become dirty
after an activation that decreases its weight.

Justification for Rule 3.1.

Case 1. State[y] = Up. Here, we have 1 � 1/� 
W

y

< 1 and M
down

(y) = ;. If an activation increases
the value of W

y

, then y needs to up-mark some edges
from E

`(y)

(y), in the hope that W
y

remains smaller than
1 (see the discussion in Section 3.2). Hence, the node
becomes dirty. In contrast, if an activation reduces the
value of W

y

, then y need not up-mark, down-mark or
un-mark any of its incident edges. Due to this inaction,
if it so happens that 1� 2/� W

y

< 1� 1/� after the
activation, then the node simply switches to state Up-B
or Idle depending on whether or not M

up

(y) 6= ;.
Case 2. State[y] = Down-B. Here, we have 1 �
2/�  W

y

< 1 � 1/�, M
down

(y) 6= ; and M
up

(y) =
;. Such a node must un-mark all its incident edges
before its weight rises past the threshold 1 � 1/� (see
the discussion in Section 3.2). Hence, whenever its
weight increases due to an activation and State[y] =
Down-B, the node y becomes dirty and un-marks some
edges from M

down

(y). In contrast, if an activation
reduces its weight, then the node y need not up-mark,
down-mark or un-mark any of its incident edges. Due to
this inaction, if it so happens that f(�) W

y

< 1�2/�
after the activation, then we set State[y] Down.
At this point, if we have E

`(y)

(y) \ M
down

(y) = ; and
`(y) > K, then the node y moves to a lower level while
being in Down state (see Case 2-b in Section 4.1).

Rule 3.2. Consider a node y such that either (1)
State[y] = Down and `(y) > K, or (2) State[y] =
Up-B. This node becomes dirty after an activation that
decreases its weight. In contrast, the node does not be-
come dirty after an activation that increases its weight.

Justification for Rule 3.2.

Case 1. State[y] = Down and `(y) > K. Thus, we
have f(�)  W

y

< 1 � 2/� and M
up

(y) = ;. If an
activation decreases its weight, then y needs to down-
mark some edges from E

`(y)

(y) \ M
down

(y), in the hope
that W

y

does not become smaller than f(�) (see the

discussion in Section 3.2). Hence, the node y becomes
dirty. In contrast, if an activation increases its weight,
then y need not up-mark, down-mark or un-mark any of
its incident edges. Due to this inaction, if it so happens
that 1 � 2/�  W

y

< 1 � 1/� after the activation,
then the node simply switches to state Down-B or Idle
depending on whether or not M

down

(y) 6= ;.
Case 2. State[y] = Up-B. Thus, we have 1 � 2/� 
W

y

< 1 � 1/�, M
up

(y) 6= ; and M
down

(y) = ;.
Such a node must un-mark all its incident edges before
its weight drops below the threshold 1 � 2/� (see the
discussion in Section 3.2). Hence, whenever its weight
decreases due to an activation and State[y] = Up-B,
the node y becomes dirty and un-marks some edges
from M

up

(y). In contrast, if an activation increases its
weight, then y need not up-mark, down-mark or un-
mark any of its incident edges. Due to this inaction, if
it so happens that 1�1/� W

y

< 1 after the activation,
then we set State[y] Up. At this point, if we have
E

`(y)

(y) = ;, then the node y moves to a higher level
while being in Up state (see Case 2-a in Section 4.1).

Rule 3.3. A node y with either (1) State[y] 2
{Slack, Idle} or (2) {State[y] = Down and `(y) =
K} never becomes dirty after an activation.

Justification for Rule 3.3.

Case 1. State[y] = Slack. Here, we have 0  W
y

<
f(�), M

up

(y) = M
down

(y) = ; and `(y) = K. When
such a node gets activated, it need not up-mark or down-
mark any of its incident edges. Due to this inaction, if
it so happens that f(�)  W

y

< 1 � 2/� after the
activation, then we set State[y] Down.

Case 2. State[y] = Idle. Here, we have 1 � 2/� 
W

y

< 1 � 1/� and M
up

(y) = M
down

(y) = ;. When
such a node gets activated, it need not up-mark or down-
mark any of its incident edges. Due to this inaction, if it
so happens that 1� 1/� W

y

< 1 after the activation,
then we set State[y] Up. At this point, if we have
E

`(y)

(y) = ;, then the node y moves to a higher level
while being in Up state (see Case 2-a in Section 4.1).
In contrast, if it so happens that f(�)  W

y

< 1� 2/�
after the activation, then we set State[y] Down.
At this point, if we have E

`(y)

(y) \ M
down

(y) = ; and
`(y) > K, then the node y moves to a lower level while
being in Down state (see Case 2-b in Section 4.1).

Case 3. State[y] = Down and `(y) = K. Thus, we
have f(�)  W

y

< 1 � 2/� and M
up

(y) = ;. Since
`(y) = K and `

y

(x, y) 2 [K, L] for every edge (x, y) 2 E,
we also have M

down

(y) = ;. When such a node gets
activated, it need not up-mark or down-mark any of
its incident edges. Due to this inaction, if we have 0 
W

y

< f(�) after the activation, then we set State[y]

Slack. In contrast, if 1 � 2/�  W
y

< 1 � 1/� after
the activation, then we set State[y] Idle.

Corollary 3.2. If an activation of a node y makes it
dirty, then the state of the node remains the same just
before and just after the activation (see Section 6.1).

Proof. While justifying Rules 3.1 – 3.3, whenever we
changed the state of the node y due to an activation,
we ensured that the node did not become dirty.

3.4 Data structures. In our dynamic algorithm, ev-
ery node y 2 V maintains the following data structures.

1. Its weight W
y

, level `(y), and state State[y] 2
{Up, Down, Slack, Idle, Up-B, Down-B}.

2. The sets M
up

(y), M
down

(y) as balanced search trees.

3. A bit D[y] 2 {0, 1} to indicate if the node y is dirty.

4. For every level i 2 {0, . . . , L}, the set of edges E
i

(y)
as a balanced search tree.

Furthermore, every edge (x, y) 2 E maintains the values
of its weight w(x, y) and level `(x, y).

Remark about maintaining the shadow-levels.
Note that we do not explicitly maintain the shadow-
level `

x

(x, y) of a node y 2 V with respect to an edge
(x, y) 2 E. This is due to the following reason.

For the sake of contradiction, suppose that our
algorithm in fact maintains the values of the shadow-
levels `

y

(x, y). Consider a scenario where the node y
has State[y] = Up, `(y) = i, and the value of W

y

is very close to one. Next, suppose that an activation
increases the value of W

y

, and the node up-marks one or
more edges from the set E

i

(y) to ensure that the value
of W

y

remains smaller than one. Since `(x, y) = i + 1
for every edge (x, y) 2M

up

(y), all the newly up-marked
edges get deleted from the set E

i

(y) and added to the
set E

i+1

(y). At this point, we might end up in a
situation where E

i

(y) = ;, which violates a constraint
of row (1) in Table 1. Our algorithm deals with this
issue by moving the node y up to level (i + 1), i.e., by
setting `(y) (i + 1). Since E

i

(y) = ;, this does not
a↵ect the weight of any edge. However, for every edge
(x, y) 2 E with `(x, y) > i+1, the shadow-level `

y

(x, y)
changes from i to (i + 1). Since each edge (x, y) 2 E
with `(x, y) > i + 1 has weight at most ��(i+2), and
since W

y

< 1, there can be �i+2 � 1 many such edges.
Accordingly, the node y might be forced to change the
values of the shadow-levels `

y

(x, y) for O(�i+2) many
edges (x, y). The worst-case update time then becomes
O(�i+2), which is polynomial in n for large values of i.

We avoid this problem by giving up on explicitly
maintaining the values of the shadow-levels `

y

(x, y).
Still we can determine the value of `

x

(x, y) in O(log n)

time from the data structures that are in fact main-
tained by us. Specifically, we know that if (x, y) 2
M

up

(y), then `
y

(x, y) = `(y) + 1. Else if (x, y) 2
M

down

(y), then `
y

(x, y) = `(y) � 1. Finally, else if
(u, y) /2M

up

(y) [M
down

(y), then `
y

(x, y) = `(y).
For ease of exposition, we nevertheless use the no-

tation `
y

(x, y) while describing our algorithm in subse-
quent sections. Whenever we do this, the reader should
keep it in mind that we are implicitly computing `

y

(x, y)
as per the above procedure.

4 Some basic subroutines

4.1 The subroutine UPDATE-STATUS(y).
This subroutine is called each time a node y experi-
ences a natural or an induced activation. This tries to
ensure, by changing the state and level of y if necessary,
that y satisfies the constraints specified in Table 1.
If the subroutine fails to ensure this condition, then
our algorithm HALTS. During the analysis of our
algorithm, we will prove that it never HALTS due to a
call to UPDATE-STATUS(y). This implies that every
node satisfies the constraints in Table 1, and hence
Lemma 3.2 guarantees that conditions (2) and (3) of
Definition 3.1 continue to remain satisfied all the time.

We say that a node is fit in a state X 2
{Up,Down,Slack, Idle,Up-B,Down-B} if it satis-
fies all the constraints for state X as specified in Ta-
ble 1, and unfit otherwise. If D[y] = 1, then our al-
gorithm HALTS if y is unfit in its current state. In
contrast, if D[y] = 0, then our algorithm HALTS if y
is unfit in every state, albeit with one caveat: If the
node is unfit in either state Up or state Down, then we
first try to make it fit in that state by changing its level
`(y). Hence, there is a sharp distinction between the
treatments received by the clean nodes on the one hand
and the dirty nodes on the other. Specifically, the state
of a node y can change during to a call to UPDATE-
STATUS(y) only if y is clean at the beginning of the
call. This distinction comes from Corollary 3.2, which
requires that a node does not change its state if it be-
comes dirty. We now describe the subroutine in details.

Case 1. D[y] = 1. The node y is dirty.
If y is fit in its current state, then we terminate the
subroutine. Otherwise our algorithm HALTS.

Case 2. D[y] = 0. The node y is clean.
If we can find some state X 2
{Up,Down,Slack, Idle,Up-B,Down-B} in which
y is fit, then we set State[y] X and terminate the
subroutine. Else if the node y is unfit in every state,
then we consider the sub-cases 2-a, 2-b and 2-c.

Case 2-a. The node is unfit in state Up only due to
the last constraint in row (1) of Table 1. Thus, we have

1�1/� W
y

< 1, M
down

(y) = ; and E
`(y)

(y) = ;. Let
i `(y) be the current level of y. We find the minimum
level j > i where E

j

(y) 6= ;. Such a level j must exist
since W

y

> 0. We move the node y up to level j by
setting `(y) j. This does not change the weight of
any edge. Furthermore, when the node was in level i,
we had `

y

(x, y)  `(y) + 1  i + 1  j for every edge
(x, y) 2 E incident on y (see Invariant 1). Hence, after
the node moves up to level j, we have `

y

(x, y) = j = `(y)
for every edge (x, y) 2 E. In other words, the node y
is not supposed to have any up-marked edges incident
on it just after moving to level j. Accordingly, we set
M

up

(y) ;. Then we terminate the subroutine.

Case 2-b. The node is unfit in state Down only due
to the last constraint in row (2) of Table 1. Thus, we
have f(�)  W

y

< 1 � 2/�, M
up

(y) = ;, E
`(y)

(y) \
M

down

(y) = ; and `(y) > K. Let i `(y) be the
current level of y. We first move the node down to level
i�1 by setting `(y) i�1. We claim that this does not
change the level (and weight) of any edge. To see why
the claim is true, consider any edge (x, y) 2 E incident
on y. Since M

up

(y) = ;, we must have `
y

(x, y)  i
just before the node moves down to level (i � 1). If
`
x

(x, y) � i, then the value of `(x, y) is determined
by the other endpoint x and the level of such an edge
does not change as y moves down to level (i � 1). In
contrast, if `

x

(x, y) < i, then we have (x, y) 2M
down

(y):
for otherwise the edge (x, y) will belong to the set
E

i

(y) \ M
down

(y) which we have assumed to be empty.
The level of such an edge remains equal to (i�1) as the
node y moves down from level i to level (i � 1). This
concludes the proof of the claim that the edge-weights
do not change as y moves down from level i to level
(i � 1). Next, consider any edge (x, y) that was down-
marked when the node y was at level i. At that time,
we had `

y

(x, y) = i � 1. Hence, after the node moves
down to level i�1, we get `

y

(x, y) = i�1 = `(y). Thus,
the node cannot have any down-marked edge incident
on it just after moving down to level i�1. Accordingly,
we set M

down

(y) ;. At this point, if we find that
E

i�1

(y) = ;, then we move the node further down to
the lowest level K, by setting `(y) K. This does not
change the level and weight of any edge in the graph.
Finally, we terminate the subroutine.

Case 2-c. In every scenario other than 2-a and 2-b
described above, our algorithm HALTS.

A note on the space complexity. In cases 2-a
and 2-b of the above procedure, there is a step where
we set M

up

(y) ; and M
down

(y) ; respectively.
It is essential to execute this step in O(poly log n)
time: otherwise we cannot claim that the update time
of our algorithm is O(poly log n) in the worst-case.
Unfortunately for us, there can be ⌦(�`(y)) many edges

in the set M
up

(y) or M
down

(y). Hence, it will take
⌦(�`(y)) time to empty that set if we have to delete
all those edges from the corresponding balanced search
tree. Note that �`(y) = ⌦(n) for large `(y).

To address this concern, we maintain two pointers
root[M

up

(y)] and root[M
down

(y)] for each node y 2 V .
They respectively point to the root of the balanced
search tree for M

up

(y) and M
down

(y). When we want
to set M

up

(y) ; or M
down

(y) ;, we respectively
set root[M

up

(y)] NULL or root[M
down

(y)] NULL.
This takes only constant time. The downside of this ap-
proach is that the algorithm now uses up a lot of junk
space in memory: This space is occupied by the bal-
anced search trees that were emptied in the past. As a
result, the space complexity of the algorithm becomes
O(t poly log n) for handling a sequence of t edge inser-
tions/deletions starting from an empty graph. This is
due to the fact that our algorithm will be shown to have
a worst-case update time of O(poly log n). Hence, we
can upper bound the total time taken to handle these
edge insertions/deletions by O(t poly log n), and this, in
turn, gives a trivial upper bound on the amount of junk
space used up in the memory.

A standard way to bring down the space complexity
is to run a clean-up algorithm in the background. Each
time an edge is inserted into or deleted from the graph,
we visit O(poly log n) memory cells that are currently
junk and free them up. Thus, the worst case update time
of the clean-up algorithm is also O(poly log n), and this
increases the overall update time of our scheme by only
a O(poly log n) factor. The size of all sets M

up

(.) and
M

down

(.) that exist at a given point in time is O(m).
Hence, this clean-up algorithm is at most O(m) space
“behind”, i.e., the additional space requirement for junk
space is O(m). For ease of exposition, from this point
onward we will simply assume that we can empty a
balanced search tree in O(1) time.

Lemma 4.1. The subroutine UPDATE-STATUS(y)
takes O(log n) time.

Proof. Case 1 can clearly be implemented in O(1)
time. In case 2-a, we have to find the minimum
level j > i where E

j

(y) 6= ;. This operation takes
time proportional to the number of levels, which is
L�K +1 = O(log n). Everything else takes O(1) time.
Finally, case 2-b and case 2-c also take O(1) time.

4.2 The subroutine PIVOT-UP(v, (u, v)). This is
described in Figure 3. This subroutine is called when
the node v is dirty and it wants to increase its shadow-
level `

v

(u, v) with respect to the edge (u, v). There
are two situations under which such an event can take
place: (1) State[v] = Up and v wants to up-mark the

edge (u, v), and (2) State[v] = Down-B and v wants
to un-mark the edge (u, v). The subroutine PIVOT-
UP(v, (u, v)) updates the relevant data structures, de-
cides whether the node u should become dirty because
of this event, and returns True if the event changes the
weight of the edge (u, v) and False otherwise. Thus, if
the subroutine returns True, then this amounts to an
induced activation of the node u.

The subroutine MOVE-UP(v, (u, v)). Step (01) in
Figure 3 calls another subroutine MOVE-UP(v, (u, v)).
This subroutine updates the relevant data structures
as the value of `

v

(u, v) increases by one, and returns
True if the weight w(u, v) gets changed and False oth-
erwise. To see an example where MOVE-UP(v, (u, v))
returns False, consider a situation where State[v] =
Down-B, `(v) = i, `

v

(u, v) = i � 1, and `
u

(u, v) =
`(u) = i. In this instance, even after the node v in-
creases the value of `

v

(u, v) by un-marking the edge
(u, v), the weight w(u, v) does not change.

The subroutine MOVE-UP(v, (u, v)) ensures that
Invariant 3 remains satisfied. Specifically, after the
value of `

v

(u, v) increases we might have `
v

(u, v) > `(u),
and then we must ensure that the edge (u, v) /2M

up

(u)[
M

down

(u): otherwise Invariant 3 will be violated (set
y = u and x = v in Invariant 3). If we end up in
this situation, then the subroutine MOVE-UP(v, (u, v))
removes the edge from M

up

(u) [M
down

(u).

01. Y MOVE-UP(v, (u, v))
02. If Y = True and

�
either State[u] = Up-B or

(State[u] = Down and `(u) > K)

03. D[u] 1
04. UPDATE-STATUS(u)
05. RETURN Y .

Figure 3: PIVOT-UP(v, (u, v)).

Deciding if the node u becomes dirty. We now
continue with the description of the subroutine PIVOT-
UP(v, (u, v)). After step (01) in Figure 3, it remains
to decide whether the node u should become dirty.
This decision is made following the three rules specified
in Section 3.3. Note that if we increase the value of
`
v

(u, v), then it can never lead to an increase in the
weight W

u

. Thus, if Y = True, then it means that the
weight W

u

dropped during the call to the subroutine
MOVE-UP(v, (u, v)). On the other hand, if Y = False,
then it means that the weight W

u

did not change during
the call to the subroutine MOVE-UP(v, (u, v)). In this
event, the node u never becomes dirty.

As per Rules 3.1 – 3.3, if the weight W
u

gets
reduced, then u becomes dirty i↵ either State[u] =
Up-B or (State[u] = Down, `(u) > K). Thus, the

subroutine sets D[u] 1 i↵ two conditions are satisfied:
(1) Y = True, and (2) either State[u] = Up-B or
(State[u] = Down, `(u) > K).

Finally, just before terminating the subroutine
PIVOT-UP(v, (u, v)) in Figure 3, we call the subrou-
tine UPDATE-STATUS(u). The reason for this call is
explained in the beginning of Section 4.1.

Lemma 4.2. The subroutine PIVOT-UP(v, (u, v))
takes O(log n) time. It returns True if the weight
w(u, v) gets changed, and False otherwise. The node
u becomes dirty only if the subroutine returns True.

Proof. A call to the subroutine UPDATE-STATUS(y)
takes O(log n) time, as per Lemma 4.1. The rest of the
proof follows from the description of the subroutine.

4.3 The subroutine PIVOT-DOWN(v, (u, v)).
This is described in Figure 4. This subroutine is called
when the node v is dirty and it wants to decrease its
shadow-level `

v

(u, v) with respect to the edge (u, v).
There are two situations under which such an event
can take place: (1) State[v] = Down and v wants to
down-mark the edge (u, v), and (2) State[v] = Up-B
and v wants to un-mark the edge (u, v). The subrou-
tine PIVOT-DOWN(v, (u, v)) updates the relevant data
structures, decides whether the node u should become
dirty, and returns True if the weight of the edge (u, v)
gets changed and False otherwise. Thus, if the subrou-
tine returns True, then this amounts to an induced ac-
tivation of the node u. This subroutine, however, is not
a mirror-image of the subroutine PIVOT-UP(v, (u, v)).
The di↵erence between them is explained below.

In the subroutine PIVOT-DOWN(v, (u, v)), sup-
pose that the node v has decreased the value of `

v

(u, v),
and this has increased the weight W

u

. Furthermore,
the node u is currently in a state where Rules 3.1 – 3.3
dictate that it should become dirty when its weight in-
creases. If this is the case, then the node u attempts
to undo its weight-change by increasing the value of
`
u

(u, v). To take a concrete example, suppose that
just before the subroutine PIVOT-DOWN(v, (u, v)) is
called, we have State[v] = Up-B, `(v) = i, `

v

(u, v) =
i + 1, State[u] = Up, `(u) = i and `

u

(u, v) = i. The
node v now decreases the value of `

v

(u, v) by one, and
un-marks the edge (u, v). Thus, the weight w(u, v)
changes from ��(i+1) to ��i. This also increases the
weight W

u

by an amount ��i � ��(i+1). The node u
will now undo this change by up-marking the edge (u, v),
which will increase `

u

(u, v) by one. This will bring the
weight W

u

back to its initial value. In contrast, the sub-
routine PIVOT-UP(v, (u, v)) does not allow the node u
to perform such “undo” operations. This “undo” opera-
tion performed by u in PIVOT-DOWN(v, (u, v)) will be

crucial in bounding the update time of our algorithm.

The subroutine MOVE-DOWN(v, (u, v)). Step
(01) in Figure 4 calls another subroutine MOVE-
DOWN(v, (u, v)). This subroutine updates the rele-
vant data structures as the value of `

v

(u, v) decreases
by one, and returns True if the weight w(u, v) gets
changed and False otherwise. To see an example where
MOVE-DOWN(v, (u, v)) returns False, consider a sit-
uation where State[v] = Down, `(v) = i, `

v

(u, v) = i,
and `

u

(u, v) = `(u) = i. In this instance, even after the
node v decreases the value of `

v

(u, v) by down-marking
the edge (u, v), the weight w(u, v) does not change.

01. Y MOVE-DOWN(v, (u, v))
02. If State[u] = Up
03. If Y = True
04. If (u, v) /2M

up

(u)
V

`(u) � `
v

(u, v)
05. MOVE-UP(u, (u, v))
06. UPDATE-STATUS(u)
07. RETURN False
08. Else
09. D[u] 1
10. UPDATE-STATUS(u)
11. RETURN Y .
12. Else
13. UPDATE-STATUS(u)
14. RETURN Y .
15. Else if State[u] = Down-B
16. If Y = True, Then
17. If (u, v) 2M

down

(u)
V

`
v

(u, v) < `(u)
18. MOVE-UP(u, (u, v))
19. UPDATE-STATUS(u)
20. RETURN False
21. Else
22. D[u] 1
23. UPDATE-STATUS(u)
24. RETURN Y .
25. Else
26. UPDATE-STATUS(u)
27. RETURN Y .
28. Else
29. UPDATE-STATUS(u)
30. RETURN Y .

Figure 4: PIVOT-DOWN(v, (u, v)). Steps (05) and (18)
correspond to “undo” operations by the node u.

Unlike the subroutine MOVE-UP(v, (u, v)), here we
need not worry about Invariant 3 getting violated, for
the following reason. Set v = x and u = y in Invariant 3
just as we did while considering the subroutine MOVE-
UP(v, (u, v)). If `

u

(u, v) = `(u), the Invariant 3 clearly
remains satisfied even as `

v

(u, v) decreases by one. If

`
u

(u, v) 6= `(u), then by Invariant 3 we have `
v

(u, v) 
`(u) just before the call to MOVE-DOWN(v, (u, v)).
In this case as well, Invariant 3 continues to remain
satisfied even as `

v

(u, v) decreases by one.

Deciding if the node u becomes dirty. We continue
with the description of PIVOT-DOWN(v, (u, v)). After
step (01) in Figure 4, it remains to decide whether (a)
the node u is about to become dirty, and if the answer is
yes, then whether (b) the node can escape this fate by
successfully executing an “undo” operation. Decision
(a) is taken following the Rules 3.1 – 3.3.

Since the subroutine PIVOT-DOWN(v, (u, v)) is
called when the node v wants to decrease the value
of `

v

(u, v), this can never lead to a decrease in the
value of W

u

. In other words, step (01) in Figure 4
can only increase the weight W

u

. Specifically, if Y =
True, then the weight W

y

increases. In contrast, if
Y = False, then the weight W

u

does not change at
all. In the latter event, the node u never becomes
dirty, and the question of u attempting to execute an
“undo” operation does not arise. In the former event,
Rules 3.1 – 3.3 dictate that the node u is about to
become dirty i↵ State[u] 2 {Up,Down-B}. This is the
only situation where we have to check if the node u can
execute a successful “undo” operation. This situation
can be split into two mutually exclusive and exhaustive
cases (1) and (2), as described below. In every other
situation, the node u does not become dirty, it does
not perform an undo operation, and the subroutine
PIVOT-DOWN(v, (u, v)) returns the same value as Y .
Finally, just before terminating the subroutine PIVOT-
DOWN(v, (u, v)) we always call UPDATE-STATUS(u).
The reason for this step is explained in the beginning of
Section 4.1.

Case 1: Y = True and State[u] = Up.
See steps (03) – (11) in Figure 4. In this case, either
(u, v) 2M

up

(u) or (u, v) /2M
up

(u). In the former event,
the edge (u, v) has already been up-marked by u, and
hence u cannot increase the value of `

u

(u, v) any further.
In the latter event, we have `

u

(u, v) = `(u). Before up-
marking the edge (u, v), the node u should ensure that
it satisfies Invariant 3 (set u = y and v = x). Hence, we
must have `

v

(u, v)  `(u) if the node u is to execute an
undo operation. To summarise, we have to sub-cases.

Case 1-a: (u, v) /2M
up

(u) and `
v

(u, v)  `(u). In this
event, increasing the value of `

u

(u, v) by one changes
the weight w(u, v) from ��`(u) to ��(`(u)+1). This
undo operation is performed by calling the subroutine
MOVE-UP(u, (u, v)).

Case 1-b: Either (u, v) 2 M
up

(u) and `
v

(u, v) > `(u).
In this event, the node u cannot perform an undo
operation and becomes dirty as per Rule 3.1.

Case 2: Y = True and State[u] = Down-B.
See steps (16) – (24) in Figure 4. In this case, either
(u, v) 2 M

down

(u) or (u, v) /2 M
down

(u). In the latter
event, the only way u can increase the value of `

u

(u, v)
is by up-marking the edge (u, v). But this would result
in the set M

up

(u) becoming non-empty, which in turn
would violate a constraint in row (6) of Table 1. Hence,
the node u can perform an undo operation only if
(u, v) 2 M

down

(u). Further, if `
v

(u, v) � `(u) and
(u, v) 2 M

down

(u), then the weight w(u, v) remains
equal to ��`v(u,v) even as the value of `

u

(u, v) changes
from `(u)�1 to `(u). This prevents u from executing an
undo operation. To summarise, there are two sub-cases.

Case 2-a: We have (u, v) 2 M
down

(u) and `
v

(u, v) <
`(u). In this event, increasing the value of `

u

(u, v)
by one changes the weight w(u, v) from ��(`(u)�1) to
��`(u). This undo operation is performed by calling the
subroutine MOVE-UP(u, (u, v)).

Case 2-b: Either (u, v) 2M
down

(u) or `
v

(u, v) � `(u).
In this event, the node u cannot perform an undo
operation and becomes dirty as per Rule 3.1.

Lemma 4.3. The subroutine PIVOT-DOWN(v, (u, v))
takes O(log n) time. It returns True if the weight
w(u, v) gets changed, and False otherwise. The node u
becomes dirty only if the subroutine returns True.

Proof. A call to the subroutine UPDATE-STATUS(y)
takes O(log n) time, as per Lemma 4.1. The rest of the
proof follows from the description of the subroutine.

5 The subroutine FIX-DIRTY-NODE(v)

Note that the node v undergoes a natural activation
when an edge (u, v) is inserted into or deleted from the
graph. In contrast, the node v undergoes an induced
activation when some neighbour x of v calls the subrou-
tine PIVOT-UP(x, (x, v)) or PIVOT-DOWN(x, (x, v)),
and that subroutine returns True.

The subroutine FIX-DIRTY-NODE(v) is called im-
mediately after the node v becomes dirty due to a natu-
ral or an induced activation. Depending on the current
state of v, the subroutine up-marks, down-marks or un-
marks some of its incident edges (u, v) 2 E. This in-
volves increasing or decreasing the shadow-level `

v

(u, v)
by one, for which the subroutine respectively calls
PIVOT-UP(v, (u, v)) or PIVOT-DOWN(v, (u, v)). We
say that a given call to PIVOT-UP(v, (u, v)) or PIVOT-
DOWN(v, (u, v)) is a success if the weight w(u, v) gets
changed due to the call (i.e., the call returns True),
and a failure otherwise (i.e., the call returns False).
We ensure that one call to the subroutine FIX-DIRTY-
NODE(v) leads to at most one success.

To summarise, the subroutine FIX-DIRTY-
NODE(v) makes a series of calls to PIVOT-UP(v, (u, v))

or PIVOT-DOWN(v, (u, v)). We terminate the sub-
routine immediately after the first such call returns
True. We also make the node v clean just before the
subroutine FIX-DIRTY-NODE(v) terminates. Hence,
Lemmas 4.2, 4.3 imply the following observation.

Observation 5.1. The node v becomes clean at the end
of the subroutine FIX-DIRTY-NODE(v). Furthermore,
during a call to the subroutine FIX-DIRTY-NODE(v),
at most one neighbour of the node v becomes dirty.

01. If State[v] = Up
02. FIX-UP(v)
03. Else if State[v] = Down-B
04. FIX-DOWN-B(v)
05. Else if State[v] = Down and `(y) > K
06. FIX-DOWN(v)
07. Else if State[v] = Down-B
08. FIX-UP-B(v)
09. UPDATE-STATUS(v)

Figure 5: FIX-DIRTY-NODE(v).

We now describe the subroutine FIX-DIRTY-
NODE(v) in a bit more detail. See Figure 5. Note
that the node v becomes dirty only if it experiences an
activation, and the subroutine FIX-DIRTY-NODE(v)
is called immediately after the node v becomes dirty.
Thus, Rule 3.3 and Corollary 3.2 imply that at the
beginning of the subroutine FIX-DIRTY-NODE(v) we
must have: either (1) State[v] = Up, or (2) State[v] =
Down-B, or (3) State[v] = Down and `(y) > K, or
(4) State[v] = Up-B. Accordingly, we call one of the
four subroutines: FIX-UP(v), FIX-DOWN-B(v), FIX-
DOWN(v) and FIX-UP-B(v). For the rest of Section 5,
we focus on describing these four subroutines. Note
that we call UPDATE-STATUS(v) just before termi-
nating the subroutine FIX-DIRTY-NODE(v), for a rea-
son that is explained in the beginning of Section 4.1.
We now give a bound on the runtime of the subroutine,
which follows from Lemmas 5.2, 5.3, 5.4, 5.5 and 4.1.

Lemma 5.1. The subroutine FIX-DIRTY-NODE(v)
takes O(log2 n) time.

01. D[v] 0, i `(v)
02. Pick an edge (u, v) 2 E

i

(v).
03. PIVOT-UP(v, (u, v))

Figure 6: FIX-UP(v).

5.1 FIX-UP(v). See Figure 6. This subroutine is
called when a node v with State[v] = Up becomes
dirty due to an activation. This activation must have
increased the weight W

v

. See Rule 3.1 and Case (1) of
its subsequent justification. Let i = `(v) be the current
level of the node. Since State[v] = Up, we must have
E

i

(v) 6= ; as per row (1) of Table 1. The node v picks
any edge (u, v) 2 E

i

(v) and up-marks that edge by
calling the subroutine PIVOT-UP(v, (u, v)). See the
justification for Rule 3.1. Since (u, v) 2 E

i

(v) just
before this step, we must have `

u

(u, v)  i. This means
that increasing the shadow-level `

v

(u, v) from i to (i+1)
changes the weight w(u, v) from ��i to ��(i+1). In
other words, the very first call to PIVOT-UP(v, (u, v))
becomes a success. Thus, we terminate the subroutine.
Lemma 5.2 now follows from Lemma 4.2.

Lemma 5.2. The runtime of FIX-UP(v) is O(log n).

01. D[v] 0, k 0
02. While k < �5

03. k k + 1
04. If M

down

(v) = ;
05. BREAK
06. Pick an edge (u, v) 2M

down

(v).
07. X PIVOT-UP(v, (u, v))
08. If X = True
09. BREAK

Figure 7: FIX-DOWN-B(v).

5.2 FIX-DOWN-B(v). See Figure 7. This subrou-
tine is called when a node v with State[v] = Down-B
becomes dirty due to an activation. This activation
must have increased the weight W

v

. See Rule 3.1
and Case (2) of its subsequent justification. Since
State[v] = Down-B, we must have M

down

(v) 6= ; as
per row (6) of Table 1.

The node v picks an edge (u, v) 2 M
down

(v), and un-
marks it by calling PIVOT-UP(v, (u, v)).

We keep repeating the above step until one of three
events occurs: (1) The set M

down

(v) becomes empty.
(2) We make the �5-th call to PIVOT-UP(v, (u, v)).
(3) We encounter the first call to PIVOT-UP(v, (u, v))
which leads to a change in the weight w(u, v). We then
terminate the subroutine. By Lemma 4.2, each iteration
of the While loop in Figure 7 takes O(log n) time. This
gives us the following lemma.

Lemma 5.3. The subroutine FIX-DOWN-B(v) takes
O(�5 log n) = O(log n) time, for constant �.

01. D[v] 0, i `(v), k 0
02. While k < �5L
03. k k + 1
04. If E

i

(v) \ M
down

(v) = ;
05. BREAK
06. Pick an edge (u, v) 2 E

i

(v) \ M
down

(v).
07. X PIVOT-DOWN(v, (u, v))
08. If X = True
09. BREAK

Figure 8: FIX-DOWN(v).

5.3 FIX-DOWN(v). See Figure 8. This subroutine
is called when a node v with State[v] = Down and
`(v) > K becomes dirty due to an activation. This
activation must have decreased the weight W

v

. See
Rule 3.2 and Case (1) of its subsequent justification.
Let i = `(v) be the current level of the node v. Since
State[v] = Down and `(y) > K, we must have
E

i

(v) \ M
down

(v) 6= ; as per row (2) of Table 1.

The node v picks an edge (u, v) 2 E
i

(v)\M
down

(v), and
down-marks it by calling PIVOT-DOWN(v, (u, v)).

We keep repeating the above step until one of three
events occurs: (1) The set E

i

(v) \ M
down

(v) becomes
empty. (2) We make the �5L-th call to PIVOT-
DOWN(v, (u, v)). (3) We encounter the first call to
PIVOT-DOWN(v, (u, v)) which leads to a change in the
weight w(u, v). We then terminate the subroutine.

We now explain how to select an edge from E
i

(v) \
M

down

(v) in step (06) of Figure 8. Recall that we
maintain the sets E

i

(v) and M
down

(v) as balanced
search trees as per Section 3.4. Specifically, we maintain
the elements of E

i

(v) in a particular order. This ordered
list is partitioned into two disjoint blocks: The first
block consists of the edges in E

i

(v) \M
down

(v), and the
second block consists of the edges in E

i

(v)\M
down

(v).
During a given iteration of the While loop in Figure 8,
we pick an edge (u, v) that comes first in this ordering
of E

i

(v) and check if (u, v) 2 M
down

(v). If yes, then
we know for sure that E

i

(v) \ M
down

(v) = ;, and
hence we terminate the subroutine. Else if (u, v) /2
M

down

(v), then v down-marks the edge by calling
PIVOT-DOWN(v, (u, v)). Now, consider two cases.

(1) The call to PIVOT-DOWN(v, (u, v)) is a failure. It
means that the weight and the level of the edge (u, v) do
not change during the call. Hence, at the end of the call
we get: (u, v) 2 E

i

(v) and (u, v) 2 M
down

(v). At this
point we delete the edge (u, v) from E

i

(v). Immediately
afterward we again insert the edge (u, v) back to E

i

(v),
but this time (u, v) occupies the last position in the
ordering of E

i

(v). Hence, the ordering of E
i

(v) remains
correctly partitioned into two blocks as described above.

(2) The call to PIVOT-DOWN(v, (u, v)) is a success. It
means that the weight and the level of the edge (u, v)
changes during the call. At the end of the call we
get: (u, v) /2 E

i

(v) and (u, v) 2 M
down

(v). At this
point we terminate the subroutine FIX-DOWN(v). By
Lemma 4.3, an iteration of the While loop in Figure 8
takes O(log n) time. This implies the lemma below.

Lemma 5.4. The subroutine FIX-DOWN(v) takes
O(�5L · log n) = O(log2 n) time, for constant �.

01. D[v] 0, i `(v), k 0
02. While k < �5

03. k k + 1
04. If M

up

(v) = ;
05. BREAK
06. Pick an edge (u, v) 2M

up

(v).
07. X PIVOT-DOWN(v, (u, v))
08. If X = True
09. BREAK

Figure 9: FIX-UP-B(v).

5.4 FIX-UP-B(v). See Figure 9. This subroutine is
called when a node v with State[v] = Up-B becomes
dirty due to an activation. This activation must have
decreased the weight W

v

. See Rule 3.2 and Case (2)
of its subsequent justification. Since State[v] = Up-B,
we must have M

up

(v) 6= ; as per row (5) of Table 1.

The node v picks an edge (u, v) 2M
up

(v), and un-marks
it by calling PIVOT-DOWN(v, (u, v)).

We keep repeating the above step until one of three
events occurs: (1) The set M

up

(v) becomes empty. (2)
We make the �5-th call to PIVOT-DOWN(v, (u, v)). (3)
We encounter the first call to PIVOT-DOWN(v, (u, v))
which leads to a change in the weight w(u, v). We then
terminate the subroutine. By Lemma 4.3, each iteration
of the While loop in Figure 9 takes O(log n) time. This
gives us the following lemma.

Lemma 5.5. The subroutine FIX-UP-B(v) takes O(�5 ·
log n) = O(log n) time, for constant �.

6 Handling the insertion or deletion of an edge

In this section, we explain how our algorithm handles
the insertion/deletion of an edge in the input graph.

Insertion of an edge (u, v). We set `
u

(u, v) `(u),
`
v

(u, v) `(v) and `(u, v) max(`
u

(u, v), `
v

(u, v)).
The newly inserted edge gets a weight w(u, v)
��`(u,v). Hence, each of the node-weights W

u

and W
v

also increases by ��`(u,v). This amounts to a natural

activation for each of the endpoints {u, v}. For every
endpoint x 2 {u, v}, we now decide if x should become
dirty due to this activation. This decision is taken as per
Rules 3.1 – 3.3. We now call the subroutine UPDATE-
STATUS(x) for x 2 {u, v}, for reasons explained in the
beginning of Section 4.1. Finally, we call the subroutine
FIX-DIRTY(.) as described in Figure 10.

Deletion of an edge (u, v). Just before the edge-
deletion, its weight was w(u, v). We first decrease each
of the node-weights W

u

, W
v

by w(u, v). Then we delete
all the data structures associated with the edge (u, v).
This amounts to a natural activation for each of its end-
points. For every node x 2 {u, v}, we decide if x should
become dirty due to this activation, as per Rules 3.1 –
3.3. At this point, we call the subroutine UPDATE-
STATUS(x) for x 2 {u, v}, for reasons explained in the
beginning of Section 4.1. Finally, we call the subroutine
FIX-DIRTY(.) as per Figure 10.

While there exists a dirty node x 2 V :
FIX-DIRTY-NODE(x) // See Section 5.

Figure 10: FIX-DIRTY(.).

Two assumptions. For ease of analysis, we will make
two simplifying assumptions. At first glance, these
assumptions might seem highly restrictive. But we
will explain how the analysis can be extended to the
general setting, where these assumptions need not hold,
by slightly modifying our algorithm.

Assumption 1. The insertion or deletion of an edge
(u, v) makes at most one of its endpoints dirty.

Justification. Consider a scenario where the insertion
or deletion of an edge (u, v) is about to make both
its endpoints dirty. Without any loss of generality,
suppose that the weight of v increases by �

v

due to
this edge insertion or deletion. Note that �

v

can also
be negative. We reset the weight W

v

to the value it had
just before the edge insertion or deletion took place, by
setting W

v

 W
v

� �
v

. In other words, the node v
becomes blind to the fact that its weight has changed.
Clearly, after this simple modification, only the node u
becomes dirty. We now go ahead and call the subroutine
FIX-DIRTY(.). Starting from the node u, this creates
a chain of calls to FIX-DIRTY-NODE(x) for di↵erent
x 2 V (see Observation 5.1). When this chain stops, we
go back and update the weight of the other endpoint
v, by setting W

v

 W
v

+ �
v

. So the node v now
wakes up and experiences an activation. If the node v
becomes dirty due to this activation, as per Rules 3.1 –
3.3, then we again go ahead and call the subroutine

FIX-DIRTY(.). Starting from the node v, this creates
a second chain of calls to the subroutine FIX-DIRTY-
NODE(x) for di↵erent x 2 V . When this second chain
stops, we conclude that we have successively handled
the insertion or deletion of the edge (u, v).

Assumption 2. The weight W
u

of a node u changes by
at most ��(`(u)+1) due to a natural activation.

Justification. For any edge (u, v), we have: `(u, v) �
`
u

(u, v) � `(u) � 1, and w(u, v) = ��`(u,v). So the
weight of any edge incident on u is at most �

u

=
��(`(u)�1). Now, suppose that Assumption 2 gets
violated. Specifically, the weight W

u

changes by �0
u

due to a natural activation, where �0
u

> ��(`(u)+1). To
handle this situation, we fix the node u in r

u

rounds,
where r

u

= �0
u

/��(`(u)+1)  �
u

/��(`(u)+1)  �2. In
each round, we change the weight W

u

by ��(`(u)+1) and
call the subroutine FIX-DIRTY(.). This way the node
becomes oblivious to the fact that Assumption 2 gets
violated. The update time increases by a factor of r

u

,
which is O(1) for constant �.

Analysis of our algorithm. Just before the insertion
or deletion of the edge (u, v), every node in the graph
is clean, and every node satisfies the constraints corre-
sponding to its current state as specified by Table 1. By
Assumption 1, at most one endpoint x 2 {u, v} becomes
dirty due to this edge insertion/deletion. Hence, at most
one node is dirty in the beginning of the call to the sub-
routine FIX-DIRTY(.). By Observation 5.1, we get a
chain of calls to the subroutine FIX-DIRTY-NODE(y)
for y 2 V . Each call to FIX-DIRTY-NODE(y) makes
at most one neighbour of y dirty, which is fixed at the
next iteration of the While loop in Figure 10. Thus,
at every point in time there is at most one dirty node
in the entire graph. We now prove two theorems.

Theorem 6.1. While handling a sequence of edges in-
sertions and deletions, our algorithm never HALTS due
to a call to the subroutine UPDATE-STATUS(y).

The proof of Theorems 6.1 appears in Section 7. Re-
call the discussion in the first paragraph of Section 4.1.
To summarise that discussion, Theorem 6.1 ensures that
throughout the duration of our algorithm, every node
satisfies the constraints corresponding to its current
state as per Table 1. Hence, by Lemma 3.2, conditions
(2) and (3) of Definition 3.1 continue to remain satisfied
all the time. This observation, along with Corollary 3.1,
implies that our algorithm successfully maintains a nice-
partition as per Definition 3.1.

We bound the worst-case update time as follows.
In the full version of the paper, we show that after
four consecutive calls to FIX-DIRTY-NODE(x) in the

While loop of Figure 10, the value of `(x) decreases
by at least one. Since `(x) 2 [K, L] for every node
x 2 V , there can be at most 4(L � K + 1) =
O(log n) iterations of the While loop of Figure 10.
By Lemma 5.1, each iteration of this While loop
takes O(log2 n) time. Accordingly, the subroutine FIX-
DIRTY(.) as described in Figure 10 takes O(log3 n)
time, and this gives an upper bound on the worst-case
update time of our algorithm. The main result of this
paper (Theorem 3.1) follows from Theorems 6.1 and 6.2.

Theorem 6.2. Our algorithm handles an edge inser-
tion or deletion in O(log3 n) worst-case time.

6.1 Recap of our algorithm. During the course of
our algorithm, the weight of a node x can change only
under three scenarios: (1) An edge incident to x gets in-
serted or deleted. (2) A neighbour y of x makes a call to
PIVOT-UP(y, (x, y)) or PIVOT-DOWN(y, (x, y)), and
the call returns True. (3) The node x makes a call
to FIX-DIRTY-NODE(x). Scenarios (2) and (3) are
symmetric: a call is made to PIVOT-UP(y, (x, y)) or
PIVOT-DOWN(y, (x, y)) only when y itself is execut-
ing FIX-DIRTY-NODE(y). Scenarios (1) and (2) re-
spectively correspond to a natural and an induced ac-
tivation of x. A node x can become dirty only due to
a natural or an induced activation, as per Rules 3.1–
3.3. Scenario (3) is the response of x after it becomes
dirty. At the end of the call to FIX-DIRTY-NODE(x)
in scenario (3), the node x becomes clean again.

During the course of our algorithm, the shadow-
level `

y

(x, y) of an edge (x, y) increases i↵ a call is made
to MOVE-UP(y, (x, y)), and decreases i↵ a call is made
to MOVE-DOWN(y, (x, y)). These two subroutines are
defines in Sections 4.2 and 4.3. A call to MOVE-
DOWN(y, (x, y)) is made only if we are executing the
subroutine PIVOT-DOWN(y, (x, y)). In contrast, a
call to MOVE-UP(y, (x, y)) is made only if we are
executing either the subroutine PIVOT-UP(y, (x, y)) or
the subroutine PIVOT-DOWN(x, (x, y)).

7 Proof of Theorem 6.1

Let U = {Up,Down,Slack, Idle,Up-B,Down-B} be
the set of all possible states of a node (see Table 1). For
the rest of this section, we assume that our algorithm
HALTS at a time-instant (say) t

1

due to a call made to
UPDATE-STATUS(x) for some node x 2 V . Suppose
that State[x] = S at time t

1

. To prove Theorem 6.1,
it su�ces to derive a contradiction for all S 2 U . Due
to space constraints, we derive a contradiction only for
S = Up-B. The proofs for remaining cases are deferred
to the full version of the paper.

Let t
0

< t
1

be the unique time-instant such that:

(1) State[x] = S throughout the time-interval [t
0

, t
1

]
and (2) State[x] 6= S just before time-instant t

0

.
During the time-interval [t

0

, t
1

], the node-weight W
x

can
change due to three types of events: We classify these
types as A, B and C, and specify each of them below.

Type A: An activation of x increases the weight W
x

.

Type B: An activation of x decreases the weight W
x

.

Type C: We call the subroutine FIX-DIRTY-NODE(x).

Rules 3.1 – 3.3 dictate whether or not the node x
becomes dirty after an event of Type A or B. A Type C
event occurs when x becomes dirty due to a Type A or
Type B event. The node x becomes clean again before
the call to FIX-DIRTY-NODE(x) ends.

Deriving a contradiction for S = Up-B. The only
way the node x can change its level is if we execute
the steps in Case 2-a or 2-b during a call to UPDATE-
STATUS(x). This situation can never occur during
the time-interval [t

0

, t
1

], throughout which we have
State[x] = S = Up-B. Thus, the node x stays at
the same level throughout the time-interval [t

0

, t
1

].
In Claims 7.1 and 7.2, we respectively bound the

weight W
x

at time-instants t
0

and t
1

. In Corollary 7.1,
we use these two claims to bound the change in the
weight W

x

during the time-interval [t
0

, t
1

].

Claim 7.1. W
x

� 1� 1/� � 1/�K at time t
0

.

Proof. The node x undergoes an activation at time t
0

which changes its state to Up-B. As per the discussion
in Section 3.3, the only way this can happen is if
State[x] = Up just before time t

0

and the activation
at time t

0

decreases W
x

(see Case 1 in the justification
for Rule 3.1). Thus, row (1) in Table 1 gives us: W

x

�
1� 1/� just before time t

0

. Since the weight of an edge
is at most ��K , the activation of x at time t

0

changes
W

x

by at most ��K . So we get: W
x

� 1� 1/� � 1/�K

after the activation of x at time t
0

.

Claim 7.2. W
x

< 1� 2/� and M
up

(x) 6= ; at time t
1

.

Proof. State[x] = Up-B throughout the time-interval
[t

0

, t
1

]. Just before time t
1

, the node x undergoes
an activation, say, a*. Subsequent to the activation
a*, our algorithm HALTS during a call to UPDATE-
STATUS(x) at time t

1

. From row (5) of Table 1, we get:
M

down

(x) = ;, M
up

(x) 6= ; and 1�2/� W
x

< 1�1/�
just before the activation a*. No edge gets inserted into
the sets M

up

(x) and M
down

(x) during the activation a*.
Since the algorithm HALTS at time t

1

, the activation a*
must have changed the weight W

x

in such a way that the
node x violates the constraints for every state as defined
in Table 1. This can happen only if W

x

< 1� 2/� and
M

up

(x) 6= ; at time t
1

.

Corollary 7.1. During the interval [t
0

, t
1

], the node-
weight W

x

decreases by at least 1/� � 1/�K .

Proof. Follows from Claims 7.1 and 7.2.

Claim 7.3. An event of Type A does not make the node
x dirty. An event of Type B makes the node x dirty.

Proof. Throughout the time-interval [t
0

, t
1

], we have
State[x] = Up-B. So the claim follows from Rule 3.2.

In the next three claims, we bound the change in
W

x

that can result from an event of Type B or C.

Claim 7.4. The node-weight W
x

decreases by at most
� = ��`(x) � ��`(x)�1 due to a Type B event.

Proof. If the Type B event occurs due a natural ac-
tivation of x, then the claim follows from Assump-
tion 2 since ��`(x)�1  ��`(x) � ��`(x)�1 as long as
� � 2. For the rest of the proof, suppose that the
Type B event occurs due to an induced activation. This
means that the Type B event results from some neigh-
bour y of x increasing the value of `

y

(x, y) from, say,
i to (i + 1). For this to change the weight w(u, v), we
must have `

x

(x, y)  i. Since State[x] = Up-B, row
(5) of Table 1 implies that M

down

(x) = ; and hence
`(x)  `

x

(x, y)  i. It follows that the weight W
x

de-
creases by ��i � ��(i+1)  ��`(x) � ��(`(x)+1).

Consider an event of Type C. This event occurs
when we call the subroutine FIX-DIRTY-NODE(x).
Since State[x] = Up-B, this in turn leads to a call
to the subroutine FIX-UP-B(x). See Figures 5 and 9.
Hence, during a Type C event, the node x un-marks one
or more incident edges (x, y) 2 M

up

(x) by calling the
subroutine PIVOT-DOWN(x, (x, y)). If the un-marking
of an edge (x, y) changes its weight w(x, y), then we
say that the un-marking is a success; otherwise the un-
marking is a failure. Figure 5 ensures that an event of
Type C leads to at most one success.

Claim 7.5. If a Type C event leads to a success, then it
increases the node-weight W

x

by � = ��`(x)���`(x)�1.

Proof. Let the success correspond to the un-marking of
the edge (x, y). Just before this un-marking, we have
(x, y) 2M

up

(x) and hence `
x

(x, y) = `(x) + 1. The un-
marking reduces the value of `

x

(x, y) from `(x) + 1 to
`(x). For this to change the weight w(x, y), the value of
`(x, y) must also have decreased from `(x) + 1 to `(x)
due to the un-marking. This means that the weight
w(x, y) increases by an amount � = ��`(x) � ��`(x)�1

due to the un-marking. Since any Type C event leads
to at most one success, the weight W

x

also changes by
exactly � during the Type C event under consideration.

Claim 7.6. If a Type C event does not lead to a success,
then it does not change the weight W

x

, and �5 edges get
deleted from the set M

up

(x) due to such a Type C event.

Proof. Consider a Type C event that does not lead to
a success. During this event, each time the node x un-
marks an edge (x, y), it leads to a failure and does not
change the weight w(x, y). Thus, the weight W

x

also
does not change due to such an event of Type C.

Suppose that the Type C event under consideration
leads to zero success and less than �5 failures. This
implies that the subroutine FIX-UP-B(x) terminates
due to step (05) in Figure 9, and thus M

up

(x) = ; at
this point in time. Next, the subroutine FIX-DIRTY-
NODE(x) calls UPDATE-STATUS(x) as per step (09)
in Figure 5, which in turn changes the state of the node x
since we cannot simultaneously have State[x] = Up-B
and M

up

(x) = ;. See row (5) of Table 1. However, this
leads us to a contradiction, for we have assumed that
State[x] = Up-B throughout the time-interval [t

0

, t
1

].

Let n
B

and n
C

respectively denote the number of
Type B and Type C events during the time-interval
[t

0

, t
1

]. Let ns

C

(resp. nf

C

) denote the number of Type
C events during the time-interval [t

0

, t
1

] that lead (resp.
do not lead) to a success. Clearly, we have: n

C

=
ns

C

+ nf

C

. By Claim 7.3, every Type B event is followed

by a Type C event. Hence, we get: n
B

 n
C

= ns

C

+nf

C

,
which implies that:

(7.11) nf

C

� n
B

� ns

C

Any change in the weight W
x

during the time-interval
[t

0

, t
1

] results from an event of Type A, B or C. Now,
an event of Type A increases the weight W

x

, an event
of Type B decreases the weight W

x

by at most � (see
Claim 7.4), an event of Type C that leads to a success
increases the weight W

x

by � (see Claim 7.5), and an
event of Type C that does not lead to a success leaves
the value of W

x

unchanged (see Claim 7.6). Since the
weight W

x

decreases by at least 1/�� 1/�K during the
time-interval [t

0

, t
1

] (see Corollary 7.1), we get:

(7.12) (n
B

� ns

C

) · � � 1/� � 1/�K

Claim 7.4 gives: 1/� � �`(x). By eq (3.5), we have
1/� � 1/�K � 1/�2. Thus, eq (7.11) and (7.12) give:

(7.13) nf

C

� (1/�) · (1/� � 1/�K) � �`(x)�2

By Claim 7.6, for each Type C event that contributs to
nf

C

, the node x deletes �5 edges from M
up

(x). Hence,
eq. (7.13) implies that during the time-interval [t

0

, t
1

],
the node x deletes nf

C

·�5 � �`(x)+3 edges from M
up

(x).
Furthermore, the node x never inserts an edge into

the set M
up

(x) during the time-interval [t
0

, t
1

], for
State[x] = Up-B throughout this time-interval (see
Figure 9 and Section 6.1). Thus, we have:

(7.14) |M
up

(x)| � �`(x)+3 at time-instant t
0

.

Note that every edge (x, v) 2 M
up

(x) has `
x

(x, v) =
`(x) + 1 and `

v

(x, v)  `(x) by Invariant 3. Thus,
the weight of every edge (x, v) 2 M

up

(x) is given
by w(x, y) = ��`(x)�1. By equation 7.14, we now
derive that W

x

�
P

(x,v)2Mup(x)

w(x, v) � |M
up

(x)| ·
��`(x)�1 > 1 at time-instant t

0

. This leads to a
contradiction, since State[x] = Up-B at time t

0

and
hence row(5) of Table 1 requires that W

x

< 1� 1/�.

References

[1] S. Baswana, M. Gupta, and S. Sen. Fully dynamic
maximal matching in O(log n) update time. In FOCS
2011.

[2] A. Bernstein and C. Stein. Fully dynamic matching in
bipartite graphs. In ICALP 2015.

[3] S. Bhattacharya, M. Henzinger, and G. F. Italiano.
Design of dynamic algorithms via primal-dual method.
In ICALP 2015.

[4] S. Bhattacharya, M. Henzinger, and G. F. Italiano.
Deterministic fully dynamic data structures for vertex
cover and matching. In SODA 2015.

[5] S. Bhattacharya, M. Henzinger, and D. Nanongkai.
New deterministic approximation algorithms for fully
dynamic matching. In STOC 2016.

[6] C. Demetrescu and G. F. Italiano. A new approach to
dynamic all pairs shortest paths. In STOC 2003.

[7] G. N. Frederickson. Data structures for on-line updat-
ing of minimum spanning trees, with applications. In
STOC 1983.

[8] M. Gupta and R. Peng. Fully dynamic (1 + ✏)-
approximate matchings. In FOCS 2013.

[9] M. Henzinger and V. King. Randomized fully dynamic
graph algorithms with polylogarithmic time per oper-
ation. J. ACM, 46(4):502–516, 1999.

[10] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and
biconnectivity. J. ACM, 48(4), 2001.

[11] B. M. Kapron, V. King, and B. Mountjoy. Dynamic
graph connectivity in polylogarithmic worst case time.
In SODA 2013.

[12] O. Neiman and S. Solomon. Simple deterministic
algorithms for fully dynamic maximal matching. In
STOC 2013.

[13] K. Onak and R. Rubinfeld. Maintaining a large
matching and a small vertex cover. In STOC 2010.

[14] P. Sankowski. Faster dynamic matchings and vertex
connectivity. In SODA 2007.

[15] S. Solomon. Fully dynamic maximal matching in
constant update time. In FOCS 2016.

