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Abstract—Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees.
However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model.
This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring
a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations
of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs
between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also
conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with
a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe
its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting
critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that
TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.

Index Terms—Model selection, classification trees, visual parameter search, sensitivity analysis, Pareto optimality

1 INTRODUCTION
Decision trees are a common technique for statistical classification.
Hierarchical decision rules model classes of a categorical variable de-
pending on numerical or categorical independent variables, called fea-
tures. The decision rules are typically inferred from training data for
which the classes are known, which is referred to as supervised learn-
ing [14]. Frequent types of rules include thresholds on numerical fea-
tures and class membership vectors on categorical features. In con-
trast to other types of classification models such as neural networks, a
key advantage of decision trees is the ability of humans to understand
how the model works. Experts in many fields such as medical diagno-
sis, image processing, or fraud detection therefore appreciate decision
trees for their interpretability [14, 19]. In addition to classifying new
data instances, the understandable model structure also supports ex-
plaining class dependencies for hypothesis generation and reporting.
The process of building decision trees involves multiple trade-offs.
As for other model types, the most well-known trade-off is that be-
tween over- and underfitting the data for robust generalization (bias-
variance trade-off). Automated techniques exist which adjust the
model complexity accordingly, e.g., by using different data for grow-
ing and pruning the tree [14]. In addition to accuracy, however, as-
pects regarding model interpretability by humans are often equally im-
portant for decision trees. Model interpretability has received much at-
tention recently [12, 15, 19] and is a multi-faceted goal by itself. Sim-
ple trees with limited depth and comprising only few decision rules
based on a small number of features are typically easier to understand.
Moreover, decision trees intended for human decision makers benefit
from nice, round thresholds [15] (e.g., x < 100 instead of x < 99.475).
Balancing accuracy gains, interpretability and other objectives such
as feature acquisition costs [10, 22, 45] is a key challenge when build-
ing decision trees. However, this process is difficult to automate be-
cause it involves know-how about the domain as well as the purpose
of the model and often requires a qualitative assessment of the deci-
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sion tree by domain experts. Even with a deep understanding of the
learning algorithm, obtaining a decision tree that satisfies all objec-
tives takes substantial time for trial-and-error [32]. Aggravating the
challenge, many domain experts do not have a background in statisti-
cal learning [46], but still need to build decision trees which meet their
objectives while reflecting their domain knowledge.

This paper proposes TreePOD, a new Visual Analytics technique
for decision tree identification which addresses these challenges. In-
spired by work on visual parameter space exploration [40] and in line
with recent work in statistics [49] , our approach is based on exploring
a large set of tree candidates. A key goal is to support a global-to-local
strategy for model selection (G1) that initially provides the user with
a comprehensive overview of possible tree characteristics. A second
goal is to address users with and without deep statistical background
(G2). For this reason, TreePOD takes a result-oriented approach which
focuses on characteristics of generated trees such as prediction accu-
racy, complexity, and interpretability. Details of the machine learning
process (e.g., training parameters) are hidden by default and exposed
only at request. In order to foster a quick identification of suitable
trees (G3), TreePOD supports an effective quantitative and qualitative
comparison of model alternatives. In order to further increase the user
confidence in the selected model (G4), TreePOD visualizes the sensi-
tivity of tree candidates on variations of generation parameters.

Based on TreePOD as the main contribution of this paper, additional
contributions include:

e An outlined workflow for decision tree selection.
e A case study to address a real-world problem in the energy sector.
e Qualitative feedback of domain experts from the energy sector.

2 RELATED WORK

Research in statistical learning has devised many automated algo-
rithms for building decision trees, e.g., CART [6], C4.5 [37], and
CHAID [16]. Many of these algorithms use entropy minimization
to choose features and split positions when growing the tree. Af-
ter the growing phase, automated approaches can be used to ensure
the generalizability of the model, e.g., by pruning and cross valida-
tion [14]. Decision trees have also been extended to ensemble learn-
ing techniques such as random forests. Such approaches may further
increase the accuracy at the cost of incurring significantly higher com-
plexity compared to single trees. Gleicher [12] notes that accuracy
is not the only concern and mentions efficiency, generalizability, ro-
bustness, conciseness, verifiability, self-consistency, and comprehen-
sibility as some other qualities that model designers must consider.
Gleicher also stresses that these properties form trade-offs where the
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Figure 1. Selection of decision trees explaining marital status in the UCI Census Income 1994 dataset [21]. (a) Candidate trees are generated
by sampling the parameters of decision tree algorithms. Linked visualizations guide the selection from this set by providing (b) a summary of tree
candidates and parameter variations, (c) a sensitivity-aware overview of the trade-off between the conflicting objectives accuracy and number of
nodes, (d) a qualitative comparison of Pareto-optimal trees, and (e) details of a selected decision tree. (f) Applying controlled parameter variations
to every tree conveys the effect of parameter changes on tree characteristics, e.g., how rounding of decision boundaries affects accuracy (g). Users
can extend the set of candidate trees at any time, (h) and validate trees based on data using linked views.

proper balance depends on the context and needs.

An increasing number of automated approaches take comprehensi-
bility into account as an important goal. Jung et al. [15], for example,
perform rounding of model coefficients in logistic regression classi-
fiers in order to make them easier for humans to interpret. Lakkarju et
al. [19] include metrics for interpretability in the objective function for
model selection. In many cases, however, assessing comprehensibility
requires a qualitative inspection by domain experts.

In contrast to such automated approaches, visualization research
has focused on cooperative approaches for decision tree construction
which enable users to incorporate their domain knowledge in the gen-
eration process. Ankerst et al. [3] let the user evaluate intermediate
results of the construction algorithm to specify constraints. This en-
ables the computer to automatically create patterns satisfying these
constraints. Van den Elzen and van Wijk [46] support an iterative
refinement of a tree during the growing, optimization, and pruning
phases. This process is based on BaobabView, a technique for visu-
alizing decision trees which combines advantages of other methods
such as node-link diagrams [13, 48] and icicle plots [3, 23]. All these
cooperative approaches may improve comprehensibility and user con-
fidence in the model. A study by Liu and Salvendy [23] shows that
resulting trees have relatively high classification accuracies and small
sizes. However, focusing on the iterative refinement of single trees
may not lead to the global optimum. Moreover, such approaches do
not communicate the overall achieveability of modeling objectives and
may require statistical know-how and significant time by the user.

In order to provide a global coverage of possible tree character-
istics, some automated approaches obtain multiple decision trees as
result. Zhao [50] creates Pareto optimal decision trees to capture the
trade-off between different types of misclassification errors. Likewise,
Czajkowski and Kretowski [9] use an evolutionary algorithm to gen-
erate multiple decision trees which are Pareto optimal for contradic-
tory metrics such as accuracy and the number of nodes. These ap-
proaches focus on generating an appropriate set of decision trees, not
on exploring this set to facilitate the model selection by a human ex-
pert. Czajkowski and Kretowski stress that the comprehensibility of
the generated Pareto front is a main issue for future work.

In visualization, an increasing number of systems provide global
exploration strategies of parameter spaces [40], e.g., in simulation [1,
7,25, 35] and image analysis [43]. In many cases, the goal is to iden-
tify input parameter values which optimize the output in some sense.
Assessing the output often involves both quantitative metrics and qual-
itative judgments of complex results, for example segmented image
data [43]. Statistical model selection is a closely related problem. Un-
derstanding the relation between abstract generation parameters and

the resulting model is typically non-intuitive and model selection is
usually based on multiple quantitative and qualitative criteria. Related
work for exploring model spaces include subspace clustering [28],
neural networks [26], and association rules [8].

In the context of decision trees, we regard the work by Padua et
al. [32] as most similar. Their system supports the analysis of a large
set of candidate trees generated by sampling the parameter space of
decision tree algorithms. Linked views visualize this parameter space
as well as metrics of the resulting trees and thus enable to relate inputs
to outputs by interaction. The trees are shown as node-link diagrams
and small icicle plots that convey the structure but not the accuracy.
This system provides a global overview of tree characteristics (G1) and
guides statistical experts towards useful training parameters. However,
their work does not explicitly recognize trade-offs between objectives
(G3) and does not visualize their sensitivity on changes of generation
parameters or the evaluation data.The analysis focuses on an exist-
ing set of trees and does not address the integration in an interactive
workflow for decision tree building. Moreover, by exposing many de-
tails about generation parameters, the system is primarily designed for
users with statistical background which contradicts goal (G2).

3 OVERVIEW OF TREEPOD

TreePOD is a new Visual Analytics technique for sensitivity-aware
model selection. The key idea is to create a large set of candidate trees
that can be explored with respect to objectives such as prediction accu-
racy, or interpretability. To this end, the parameter space of tree con-
struction algorithms is sampled to create a diverse set of trees (Fig. 1a,
Sec. 4). Visualizing the candidate set at different levels of detail in
multiple coordinated views [39] enables a global-to-local strategy for
model selection [40] (Sec. 5): A summary panel displays a concise de-
scription of the candidate set, and provides various ways of focusing
on candidate subsets (Fig. 1b). A quantitative overview shows achiev-
able values for pairs of objectives, and guides selection along trade-
offs by identifying the Pareto front, i.e., the set of Pareto-optimal trees
(Fig. 1c). Tree maps at the bottom visualize accuracy and complexity
of the Pareto-optimal trees in a compact form (Fig. 1d). A detail panel
shows the currently selected tree and its characteristics (Fig. le).

To investigate local sensitivities of tree characteristics to parame-
ter changes, users can specify a controlled variation of parameters
(Fig. 1f, Sec. 6). Visualizing these variations shows how character-
istics of single trees, multiple trees, or entire Pareto-fronts are affected
by constraints such as rounded decision rules (Fig. 1g). Section 6.3
describes how this approach to sensitivity-aware trade-off exploration
supports a variety of model selection tasks.

While TreePOD focuses on analyzing and choosing from an exist-
ing set of candidates, we also outline its integration in a workflow for
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Figure 2. The Pareto front guides tree selection along trade-offs be-
tween two result metrics, in this example (a) accuracy vs. nr. of used
attributes, and (b) accuracy vs. nr. of nodes. Hard constraints on met-
rics filter the set of tree candidates in all views.

building decision trees (Sec. 7). Key steps in this workflow include the
incremental extension of the candidate set based on insights from ex-
ploration (Fig. 1h), and the validation of trees based on data (Fig. 1i).

As a guiding example illustrating TreePOD, consider the follow-
ing fictional scenario: Jane, an analyst working for the ministry of
social affairs, aims to predict the multi-class attribute Marital Status
in the UCI “Census Income Dataset 1994” [21]. Features comprise
12 demographic attributes like Age, Sex, Income, Occupation, Native
Country, and many others'. Her goal is to obtain an accurate and
concise set of rules suitable for reporting or policy-making.

4 GENERATION OF CANDIDATE TREES

A prerequisite for model selection is the availability of good candi-
date models. Automatic decision tree algorithms help to identify tree
candidates efficiently. Based on a specification of various parameters,
they produce a decision tree for pre-classified data by heuristic opti-
mization in two distinct phases:

1) Training: Given a subset of training data and training parame-
ters, the algorithm generates an initial tree description. Training pa-
rameters include a set of candidate features and a selection criterion
that defines a feature selection strategy (e.g., maximizing information
gain [37], Gini impurity [6] or gain ratio [38]). Other parameters in-
clude numerical termination criteria for the build process such as a
maximal tree depth or a minimal leaf size needed for further splits.

2) Post-processing: In the optional second phase, post-processing
such as pruning to avoid overfitting [14], or rounding of numerical
decision borders to increase interpretability [42, 15] may be applied.

Training and post-processing involve numerical, categorical and
set-typed parameters. For easier readability, we subsequently use pa-
rameter value as an umbrella term for all types of parameters. Choos-
ing parameter values that result in desirable trees is non-trivial and typ-
ically requires substantial effort [32]. Instead of forcing the parameter
space upon the user, TreePOD constructs a diverse set of candidates by
sampling various parameters in a stochastic or pseudo-random fash-
ion. This may include drawing feature subsets, drawing the maximal
tree depth from a range (e.g., [1...,10]), or randomly choosing a tree
pruning method. As a key benefit, stochastic assignment of parame-
ters helps creating diverse and unbiased candidates, which increases
the probability of reaching the global optimum during exploration. It
also reduces the need to specify parameter values prior to exploration.

Users can also manually assign parameters to incorporate knowl-
edge about algorithms [27] or previously obtained insights. This in-
cludes setting parameters to a fixed value for all trees (e.g., max depth
=0), as well as manual adjustment of sampling ranges (e.g., max depth
€ [1,..,6]). However, we provide reasonable defaults for all sets and
ranges to keep the mandatory user input to a minimum. Data subsets

For better demonstration, we intentionally exclude the highly correlated
feature Relationship Status, as this would yield trivial rules like Marital Status
is "Married’ if Relationship Status is: Wife

for growing, pruning, and evaluation can also be manually specified,
but are otherwise automatically determined by splitting the available
data into random parts of equal size.

TreePOD also supports various common pruning techniques [14].
As the simplest method, we support collapsing sub-trees if all leaves
within produce the same classification. Pruning can also be deacti-
vated to allow for a more detailed analysis of achievable accuracy.

In the guiding example, Jane wants to know how well small models
can perform. She generates 300 decision trees by sampling (1) the
maximal tree depth between I and 6, (2) the minimal leaf size required
for further splits, (3) as well as subsets of the 12 available features to
obtain different explanations. This generates 300 candidates that are
evaluated for an exploration of their results (see Figure 2).

5 GUIDED EXPLORATION OF PARETO-OPTIMAL TREES

This section describes interactive visualizations of the tree candidates
at different levels of detail. The goal is to support the selection of
suitable trees based on quantitative and qualitative characteristics.

5.1 Candidate summary panel

At the coarsest level, TreePOD provides a concise summary of all tree
candidates (see Fig. 1b). This view describes how the set of candidates
is successively refined by the user during exploration. Users may de-
fine generation parameter filters, for example to focus on trees based
on particular feature subsets or rounding thresholds. Tree candidates
may also be filtered based on their result metrics such as accuracy (see
Section 5.2). The current set of filters is summarized in this view. Fur-
thermore, the panel states the number of Pareto-optimal trees regard-
ing two objective metrics, which is used as central guidance concept in
TreePOD. These concepts will be introduced in the following sections.

5.2 Quantitative trade-off overview
The model selection process typically involves quantitative metrics.
The metrics in our implementation refer to three types of objectives:

(1) Accuracy, as measured by the F1 score (aka F-measure) [51].
We provide per-class scores (e.g., F1 “Married”) as well as the overall
score by computing the weighted average of F1 across classes (denoted
Accuracy [F1 score]).

(2) Complexity, optionally expressed as either the total number of
nodes, the number of leaves, the maximum tree depth, the number of
used attributes, or the total feature cost.

(3) Interpretability in terms of human-friendly numbers, com-
puted as the average num. of significant digits in numerical rules [31].

We do not intend to make a case for any particular metric. The
concepts of TreePOD could be applied to other metrics as well.

For an effective quantitative overview of the tree candidates, Tree-
POD displays two user-specified metrics in a 2D scatter plot (e.g., Ac-
curacy vs. Nr. of used attributes in Fig. 2a). This provides an overview
of the candidates in terms of quantitative characteristics and may re-
veal patterns such as discontinuities or clusters caused by distinct pa-
rameter settings, e.g., the inclusion of important features.

Not all candidates are equally relevant for model selection. For
example, among all trees of the same size in Fig. 2b, some are sub-
stantially more accurate than others. An established concept in multi-
criteria decision making is Pareto optimality [18]. In general, a so-
lution is considered Pareto-optimal if no other solution exists that is
better for some criteria without being worse for others. The set of all
Pareto optimal solutions is called Pareto front. In our case, this front
comprises all candidate models which are Pareto optimal regarding the
two objectives mapped to the axes of the scatter plot.

Pareto-optimal candidates are highlighted using an increased point
size and connected with a line to visualize the Pareto front (see Fig. 2).
Drawing the front as an interpolated line rather than step-wise is a po-
tentially too optimistic approximation of the real Pareto front. How-
ever, we decided to tolerate this as the selection relies on the discrete
set of candidates rather than on the continuous shape of the Pareto
front. Visually, drawing interpolated lines enables to compare slopes
across neighbouring segments. Very steep and very shallow segments
indicate transitions that provide high gain of one objective for low ad-
ditional cost of the other, guiding users towards possible “sweet spots”.
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Figure 3. Pixel-based treemaps convey qualitative aspects of accuracy
and complexity along a Pareto front.

Any tree can be selected by a click, making it focal. In the scatter
plot, this focal tree is highlighted by a black circle around the point
(Fig. 2). Linked views focus on it as well, for example, to show the
tree description and parameters which led to that result (see Sec. 5.4).

The view also enables to define range filters for objective values
by dragging handles inwards from the plot borders. In Fig. 2, all
trees using more than 5 attributes are excluded as indicated by a semi-
transparent gray area. Filters persist when changing objectives, which
allows investigating a filtered set of candidates with respect to other
objectives. This supports a global-to-local workflow for model se-
lection, where the considered set of trees is iteratively refined (G1).
Filtered points are not considered when computing the Pareto fronts,
but are still displayed in a lower intensity as context. Additionally, a
textual representation is shown in the candidate summary (see Fig. 2).

5.3 AQualitative comparison along the Pareto front

The quantitative overview described in the previous section provides
effective guidance to trees with high objective values. However, sum-
mary metrics hide multiple sources of ambiguity that may be relevant
to the decision maker. For example, a high overall accuracy of models
can be the result of well-explaining features, or of highly skewed base
rates [51]. Likewise, a single accuracy metric does not inform about
the distribution of accuracy among the classes.

To visualize such qualitative aspects along a trade-off, we encode
the set of Pareto-optimal candidates using small tree maps [41] (see
Fig. 3). Their sequence represents a linear traversal of the 2D Pareto
front, i.e. one objective improves while the other deteriorates from
left to right. This arrangement facilitates switching to the next more
accurate or next simpler Pareto-optimal tree for an efficient browsing
of candidates. Clicking a plot makes the corresponding tree focal.

Each partition in a tree-map corresponds to a leaf node, with a rela-
tive size proportional to the percentage of data instances classified by
that leaf. This enables an effective perception of complexity for the
corresponding decision tree (see Fig. 3).

Inspired by perception-based approaches to classification [2, 3, 20],
we encode the class distribution within a leaf by a quasi-random place-
ment of pixels according to the class frequencies. The emerging
pattern enables an intuitive perception of purity and, for high-purity
leaves, easy identification of the predominant class. The selected plot
in Figure 3, for example, indicates a first split that isolates Married
persons very well (mostly blue leaf). The other leaves are much less
pure. Discriminability of hue depends on the size of coherent ar-
eas [29] and thus on the separability of a data set. We found that,
in practice, 5-7 classes can be effectively discriminated also for small
pure leaves. For noisy leaves, discrimination of single pixels is typ-
ically less important than the overall perception of entropy, which is
directly supported by the encoding. This encoding has the advantage
that both over- and underfitted trees result in high-frequency patterns.
Simple and accurate trees, however, contain large, homogeneous re-
gions. This provides effective qualitative guidance along the trade-off.

Our approach to pixel-based encoding of class distribution is in-
spired by work of Ankerst et al. [3], but differs with respect to two
major aspects: first, their approach shows all levels of the tree next to
each other, visualizing the purity gained by every split. Our approach
focuses on the leaves to enable an efficient comparison of accuracy
and complexity across multiple trees. Second, their pixel arrangement
is spatially linked to data items. Our pixel placement is random, which
avoids visual structure within the leaves that distracts from the percep-
tion of tree complexity. Details on the topology and splits of the tree
are shown in a linked visualization (see Sec. 5.4).

Inspecting the tree maps in Fig. 1d, Jane discovers that the more com-
plex Pareto-optimal candidates are refinements of a few simpler ones.
She also perceives “Widows” as least frequent Marital Status (green).
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Figure 4. Details for a selected tree evaluation. A node is hovered to
focus on the explanation of Widowed persons.

5.4 Details for a selected model
Additional views of TreePOD show further details of the focal tree:

1) Structural aspects of the tree: when decision trees are used for
explanatory purposes, inspecting the rules is essential. This includes
the names of the used features, as well as their depth in the tree as a
notion of their importance. Moreover, the exact split values are often
important for explanation or hypothesis generation. The rule definition
is also essential for qualitative judgments of interpretability based on
domain knowledge. Another structural aspect of trees refers to the
topology, e.g., distinguishing deep from wide trees.

To visualize these aspects, we use a node-link diagram inspired by
BaobabView [46]. Each node contains its rule definition as text. The
width of a link leading into a node is proportional to the number of data
items that it applies to. Within links, space is subdivided into stacked,
colored bands that convey the proportion of each class [46]. Since we
want to emphasize the significance of paths and leaves, we reduce the
visual footprint of other aspects. For example, we encode a leaf’s de-
cision as a colored triangle glyph instead of coloring the whole leaf,
as this would result in large salient areas that distract from the signif-
icance of the links. For the same reason, we show detail information
for nodes only on demand: when hovering a node, all nodes between
it and the root show horizontally stacked bars conveying the gain of
purity along the path (see Fig. 4). Hovering class labels in a coloring
legend visually emphasizes leaves yielding that class.

As an indicator for decision confidence, we add a bubble to each
leaf node, using the same pixel-based purity encoding as the plots in
Sec. 5.3. Their size is proportional to the number of classified data
items. Apart from making leaf nodes more salient, these bubbles facil-
itate visual correspondence of leaves with the tree map visualization.

2) Quantitative properties of the tree: The quantitative metrics
listed in the beginning of Section 5 can be inspected in a list. In partic-
ular, this includes metrics currently not shown in the trade-off visual-
izations. As a familiar encoding of accuracy per class, we also provide
a confusion matrix. A column-wise encoding of relative frequencies
using a linear gray-scale informs the user about systematic misclassifi-
cations. On demand, users can switch to a row-wise relative encoding
to focus on recall rather than precision. Absolute numbers are stated
per cell to support comparisons in any case.

As TreePOD generates its tree candidates by parameter sampling,
the particular parameter values that led to a tree can be interesting and
are shown on demand. We hide this list by default to focus on the
resulting trees, rather than the machine learning process (G2).

Inspecting the details of Pareto-optimal trees, Jane discovers “Age”
as an important feature that is often used for the first split, mostly fol-
lowed by “Sex”, and “Income”. “Age” seems to be important for the
classification of Widow(er)s. The confusion matrix for the focal tree,
however, reveals that less than half of all Widow(er)s are classified as
such (bottom row in Fig.4b). She also discovers that the rule defini-
tions are often not based on whole numbers, such as “Age > 27.5".

6 SENSITIVITY ANALYSIS OF TRADE-OFFS

Confidence in model selection is a multi-faceted topic. The visual-
izations described in the previous section provide no direct support
for investigating how changes of the parameters involved in training,



post-processing, and evaluation would affect the trees. This section de-
scribes extensions to the tree generation process and the visualization
which enable an effective sensitivity analysis of parameter variations.

6.1 Generating tree families for effective comparison
Stochastic parameter sampling as described in Sec. 4 efficiently gener-
ates a diverse set of alternatives to choose from. However, these sam-
ples are usually too diverse to support a focused sensitivity analysis.
As a solution, we extend the stochastic generation process by a con-
trolled variation of one or more user-specified parameters, which are
subsequently referred to as variation parameters. In contrast to other
parameters, variation parameters are varied in a full-factorial manner
and define a tree candidate for every possible combination of values.
For each stochastic sample of the other parameters (Sec. 4), the con-
trolled variation thus defines a family of trees. All members of one
family are referred to as sibling trees. They only differ by the val-
ues of one or more variation parameters. For illustration, consider the
variation of one parameter in the guiding example:
For her report, Jane prefers rules based on simple integer numbers,
e.g. “Age > 28" rather than “Age > 27.5”. She wonders if even
multiples of 10 are sufficiently accurate. Thus, she varies the post-
processing parameter “Round to significant digits” in three steps:
{“no rounding”, “max. 2 significant digits”, and “max. 1 signifi-
cant digit”}. As a result, 3 variations are created for each of the 300
stochastic samples, which differ by the performed rounding. The new
number of candidates is 900, comprising 300 families of 3 trees each.
This two-step generation process ensures the existence of unbiased
alternatives, and enables an effective assessment how a single tree, or
the candidate set as a whole changes under controlled variations.

6.2 Sensitivity visualization

By default, the visualizations do not treat siblings differently from
other possible candidates. As a result, one common Pareto-Front is
computed, and shown in the quantitative and qualitative views.

TreePOD supports filtering the candidate set by variation parame-
ters. In the candidate summary panel (Sec. 5.1), all values for each
variation parameter are listed using labeled dot markers (see Fig. 1b).
Clicking on a dot marker filters the set of visible tree candidates to
those of the respective value. An additional marker labeled “any” does
not filter on that parameter. Filters for multiple variation parameters
are combined by a logical “AND”. We refer to the vector of all current
variation parameter values as the variation focus. Changing the vari-
ation focus updates the set of tree candidates which also updates the
Pareto front. The corresponding sibling of the previous focal tree be-
comes the new focal tree, which also updates the detail visualizations.

For a sensitivity analysis regarding a specific variation parameter,
the user may click on its name in the summary panel (e.g., “Round to
significant digits” in Figure 1). The scatter plot then supports compar-
ing the impact of parameter changes at three levels of locality.

1) Point-wise sensitivity of the focal tree. As the most local level,
the scatter plot displays the siblings of the current focal tree as colored
points. Inspired by previous work on sensitivity analysis [4], ordinal
variations are connected by lines and encoded using different levels of
luminance in the order of variation. For example, the turquoise points
in Fig. 5f show how the focal tree changes for increasing maximal tree
depths. For variation parameters without inherent order such as the
pruning method, all siblings are connected to the focal tree. In this
case, hue is used to discriminate the values. Our implementation at-
tempts to use different hue sets for encoding data classes and variation
values. This avoids color scheme overlaps if the numbers of classes
and compared parameter values are low, which is a frequent case.

2) Point-wise sensitivity of Pareto-optimal trees. As a less lo-
cal level, point-wise sensitivities can be shown for all currently visible
Pareto-optimal trees. This enables to investigate how the sensitivity
changes along the Pareto front. For example, Fig. 5d shows that eval-
uating trees for validation data leads to a stronger accuracy loss for
complex trees than for simple ones.

3) Sensitivity analysis of the Pareto front. As the most global
level of sensitivity visualization, the Pareto front itself is shown for
each variation step. Each front is computed individually based on the

candidates for the corresponding value of the investigated variation
parameter. This enables a direct comparison of achievable trade-offs.
In Fig. 1g, for example, the turquoise fronts indicate how the trade-off
between accuracy and size changes for various rounding thresholds.
The color scheme is the same as for point-wise sensitivity encoding.

6.3 Application to sub-tasks of model selection
The process of model selection comprises a number of sub-tasks which
can be addressed by TreePOD. We identified four groups of tasks.

1) Sensitivity-aware selection of tree generation parameters
This group of tasks refers to studying the global effect of changing
tree generation parameters. The focus of interest is typically on the
achievable model characteristics and not on individual trees. There-
fore, visualizing the entire front is typically the most suitable level of
locality in this case. Typical goals include refining parameter ranges
for the stochastic variation or assessing their stability for increased
confidence. Specific examples for this group of tasks are:

Assessing the benefits of feature inclusion: Using features with
high explanatory power is essential for a good fit, but some features
may be expensive to obtain. Sometimes, these costs can be quantified,
e.g., expensive medical tests [22]. Other times, they are subjective,
such as side-effects of medical tests [45]. The latter are often only
vaguely known and harder to compare across features. To support both
types of costs, TreePOD enables a qualitative comparison of feature
inclusion by varying whether a user-specified subset of the features is
included. As an example, Fig. 5a shows the achievable Pareto fronts
when including Income-related features in explaining Marital Status,
or not. A reason to omit them could be a generally high number of
missing values, when collecting such data from surveys.

Assessing accuracy loss due to decision border rounding:
Rounding numerical decision thresholds in a post-processing step
increases a tree’s usefulness in human-oriented application con-
texts [15]. However, this typically decreases accuracy. Varying num-
ber rounding parameters, e.g., to n significant digits, supports the user
in deciding how much accuracy should be sacrificed (see Fig. 5b).

Further examples refer to the variation of generation strategies, such
as the feature selection criterion or the pruning method. For both pa-
rameters, several methods exist but no single one is considered gener-
ally superior [11, 30]. Visualizing the variation of Pareto fronts helps
to understand the effect of different methods for the given dataset.

2) Assessment of model stability From a statistical point of
view, a weakness of decision trees refers to their high variance com-
pared to other model types [14]. Slight changes in the training data
may lead to substantially different model definitions. TreePOD sup-
ports an assessment of model stability by controlled variation of train-
ing data subsets. In this case, siblings refer to trees trained for the
same parameters, but based on different data. When using meaningful
data categories as subsets, encoding the Pareto fronts allows to iden-
tify categories for which classification is easier than for others. For
example, the scatter plot in Fig. Sc shows that Marital Status is harder
to predict for some ethnicities than for others.

3) Sensitivity of accuracy to changed evaluation data Com-
paring model accuracy across different validation data subsets is a
common approach for assessing generalizability to new data [14]. To
enable such assessments, TreePOD supports a user-defined variation
of the evaluation data subset analogous to the variation of generation
parameters. In this case, siblings represent evaluations of the same tree
for different data subsets. Showing these siblings for individual trees
conveys how accuracy changes for different subsets, which supports
the selection of robust models. Particular examples include:

Comparing training and validation data: Comparing tree evalu-
ations for different training and validation data subsets provides guid-
ance along the bias-variance trade-off. Fig. 5d, for example, shows a
steadily increasing training accuracy, while the accuracy for validation
data decreases for deeper trees due to over-fitting [14]. This provides
effective guidance for selecting an adequate model complexity.

Comparing accuracy for data categories: Using meaningful data
categories as evaluation subsets allows to identify a potential bias of
the models, e.g. towards the most prevalent categories in the training
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data. Fig. Se, for example, illustrates a variation of the evaluation data
for different ethnic groups. The largest ethnic group of data records
in the training data refers to “White” persons and also obtains more
accurate classification than most others.

4) Building confidence in a selected tree TreePOD supports
studying variations of a single tree to obtain confidence in its superi-
ority. The point-wise sensitivity encoding is suitable for this purpose.

Assessing gain of refinement: By varying the termination criteria
of tree construction (e.g. max. depth, or min. leaf size), TreePOD
supports visualizing the benefits incurred by every split level. Reflect-
ing the step-wise nature of the greedy construction process, the result-
ing line graph visualizes the construction history, to provide guidance
for selecting an adequate depth. In Fig. 5f, for example, the varia-
tion of the maximal tree depth shows how the focal tree is not Pareto-
optimal at first, but becomes part of the front after five refinement lev-
els. Adding a split level increases the accuracy of the tree further,
while 3 more levels yield a significant decrease for the validation data.

7 WORKFLOW INTEGRATION

Building decision trees involves multiple steps [46]. The previous sec-
tions focused on the description of TreePOD for analyzing and choos-
ing among an existing set of candidate trees. This section outlines the
integration of TreePOD in a workflow for building decision trees. The
subsequent steps are roughly ordered by their sequence in a typical
workflow. However, our implementation does not enforce a particular
order and permits most of them at any time.

Selecting training and validation data: Selecting plausible input
data is typically a first step. In our implementation, users may interac-
tively brush multivariate views of the data such as scatter plots, paral-
lel coordinates, and time series plots to define data subsets for training
and validation (see Sec. 8). Interactive data selection is useful, e.g.,
to exclude artifacts such as outliers based on domain knowledge. Al-
ternatively, the system automatically defines disjunctive data sets for
training and validation by random sampling of the input data.

Definition of initial tree candidates: On demand, TreePOD allows
adjusting the variation strategy per generation parameter, i.e., fixed,
stochastically sampled, or subject to a controlled variation (see Fig. 6).
As the parameters have default values for sampling, users may also
simply press a “Train” button to start without specifying parameters.

Global stochastic refinement of tree candidates: Initially, 300
stochastic variations are generated by default. Users may adjust this
number depending on, e.g., the size of the training data and the number
of features. At any time, users may then press a button titled “Show
me more” to generate additional stochastic samples. For each of them,
the same controlled variations are applied as for the initial set of trees.
The set of Pareto-optimal trees will be re-evaluated for this new set,
updating all views. This type of global augmentation of tree candidates
is useful if the initial sampling turns out to be too sparse overall.

Local stochastic refinement of tree candidates: For a more fo-
cused, result-oriented refinement, users can create variants of the se-
lected focal tree. Pressing a button titled “Show me more like this”
will create new samples by stochastically varying the generation pa-
rameters such that they are similar to those of the focal tree, e.g.,
lying within narrow intervals for quantitative parameters. Repeating
this for different Pareto optimal candidates allows steering the refine-
ment of the front, and ensuring that interesting regions obtain enough

b, c, e), all Pareto optimal tree candidates (d), and a single tree (f).

samples. Alternatively, the user may inspect the particular parameter
values for generating the focal tree. Users can then vary specific pa-
rameters while keeping all others fixed. For example, this enables to
explicitly trigger the creation of additional hierarchy levels for a tree.

Extending the controlled variation: Users may specify or extend
controlled variations of parameters at any time, e.g., if they identify in-
teresting aspects for sensitivity analysis only after an initial inspection
of the candidate trees. Each update of variation parameters is applied
globally to all trees. This may generate new members of tree fam-
ilies or modify existing ones, e.g., if the controlled variation affects
parameters which have previously been sampled stochastically.

Subjective validation of classification results: Clicking on any
node of the focal tree as well as on rows and columns of the confusion
matrix highlights the corresponding subset of training and validation
data in the linked multivariate views. This supports a subjective val-
idation of the classification results in the context of the actual data.
In particular, this step may reveal if misclassifications are evenly dis-
tributed over the data or accumulate for, e.g., specific periods in case
of time-dependent data or particular regions in case of spatial data.
Sometimes, such findings may indicate structural breaks or insuffi-
cient quality for subsets of the data. Users can decide to exclude such
subsets and re-run the generation for all models.

Extending the feature set: Detecting data subsets with many mis-
classifications may also inform domain experts about potentially miss-
ing features or may suggest the derivation of new features based on
existing ones (e.g., decision boundaries defined by the interaction of
multiple features). Derived features may, for example, be created in
external computing environments and imported afterwards, e.g., from
CSV files. Users may then either re-run the training for all tree candi-
dates, or add the extended features as additional controlled variation.

Generation of sub-trees: It is sometimes helpful to focus the gen-
eration process on a particular sub-tree while considering other parts
of the tree as given, e.g., if certain subsets of the data are more com-
plex to model than others (Sec. 9 illustrates an example). In this case,
users can specify a particular node of the focal tree as temporary root.
This generates a set of candidates for this sub-tree using the same ap-
proaches for stochastic sampling and controlled variation as for the
entire trees. Only these candidates are considered in this type of sub-
tree mode. By default, only the data corresponding to the temporary
root is considered for computation and visualization, and the result
metrics refer to the sub-trees only. However, the structural tree still
shows the position of the focal sub-tree within the entire tree as con-
text (see Fig. 6). Upon leaving the sub-tree mode, the user may either
add the focal sub-tree or all Pareto-optimal sub-trees as variants of the
initiating focal tree to the overall set of tree candidates.

Local pruning of the focal tree: As the counterpart to growing
sub-trees, users may also manually prune all nodes below a selected
node of the focal tree. In contrast to automated pruning which is per-
formed for all tree candidates, this type of local pruning is only appli-
cable to the focal tree. The pruned tree is added to the set of candidates
as a variation of the initiating focal tree.

8 IMPLEMENTATION

TreePOD has been implemented as a part of Visplore, a system for vi-
sual exploration of multivariate datasets. Visplore provides multiple
linked views such as scatter plots, time series plots, and views for data



categorization. Data subsets defined by brushing these views can be
used in TreePOD as described in Sec. 7. The system is implemented
in C++ and uses OpenGL for rendering. A multi-threading architec-
ture [34] is used to maintain interactivity during computations.

For the identification of decision trees, we integrated the CART im-
plementation of the open source library OpenCV [36]. Post-processing
operations such as rounding are implemented on top of the tree defini-
tions produced by OpenCV. In most cases, OpenCV was fast enough
to generate large numbers of trees in a few seconds. Specifically, gen-
erating 300 trees for a data set of 32541 data records and 12 features
took on average 5 seconds on a Desktop PC with Intel 17-2600k CPU
at 3.4 Ghz and 16GB RAM. From a technical point of view, the ability
to generate large numbers of trees rapidly is a key prerequisite for our
approach and specifically the interactive workflow.

9 EVALUATION

For evaluating TreePOD and the described workflow, we collaborated
with four domain experts working for a transmission system opera-
tor and two experts from an IT service provider in the energy market.
All of them have been active in this domain for multiple years. They
are confronted with classification problems on a regular basis, e.g., for
predicting market situations or for building treed prediction models of
time series data. Nevertheless, all of them characterize themselves as
having little background in statistical learning and very limited exper-
tise with decision tree algorithms in particular. They used to address
classification problems based on insights from static diagrams, intu-
ition, and trial-and-error using common statistics software.

The evaluation took place in three workshops. In a first workshop,
we introduced them for one hour to TreePOD by illustrating it based
on three energy-related classification problems which were familiar to
them from previous projects. They were allowed to ask questions at
any time. Based on what they saw, the experts decided on a real-world
classification problem as case study for a next workshop.

In this second workshop about one month later, we addressed that
particular model selection problem (Sec. 9.1) after a brief recap of
TreePOD. We strictly followed their instructions, but operated the soft-
ware prototype ourselves. Two main reasons were limited time of the
experts for familiarizing with all features, and the goal to keep them
focused on aspects of the process rather than the implementation. Con-
ducting the described case study took approximately one hour.

In a third workshop four months later, two of the experts used a
deployed version of TreePOD to address a different model selection
problem (Sec. 9.2.). This time, the experts controlled the system them-
selves, while we observed their actions and their workflow.

After each workshop, we asked the experts for their feedback using
the rose-bud-thorn method [24] for another hour (Sec. 9.3).

9.1 Case study: prediction of imminent power shortages
The key task of power grid operators is to balance demand and supply
of electricity. Volatile power sources such as wind farms, or fluctu-
ations of energy prices may lead to spontaneous shortages or abun-
dances in networks. Once such critical situations are in progress, they
are expensive to fix. Recognizing their imminence in advance for early
intervention can thus reduce financial costs significantly.

In ajoint analysis session using TreePOD, domain experts identified
decision trees predicting imminent critical situations. The target vari-
able is a categorical time series with two classes “critical in 15min”,
and “ok in 15min”, observed over 1 month (= 260,000 records). Fea-
tures comprise: (1) the DELTA between power supply and demand,
(2) the used proportion of a limited RESERVE of balance energy, (3)
various transformations of DELTA and RESERVE such as sliding av-
erages over the past 10min (e.g. DELTA_10), first derivatives that ex-
press the TENDENCY of change, (4) 39 POWERPLANT production
time series, and (6) categories such as MINUTE and HOUR.

For illustration, Fig. 6a shows examples of imminent critical situa-
tions, where RESERVE_10 is at its limit. The purpose of the model is
to alert human decision makers rather than to replace them. In addi-
tion to high accuracy, having a small set of interpretable rules is thus
considered highly important by the experts.

The experts initially select the first and second half of the observed
time period as training and validation data. For generating an initial set
of tree candidates, the experts stochastically vary the used termination
criterion and the subset of input features to obtain 100 samples (see
Fig. 6b). As variation parameter, the degree of rounding is varied in 4
steps. This results in 100 x 4 = 400 candidates.

The experts set accuracy and the number of nodes as objectives in
the scatter plot. All tree maps of Pareto-optimal candidates show large,
pure blue regions (Fig. 6¢). Inspecting detail views reveals that criti-
cal situations are hardly ever imminent when |[RESERVE_10)| is below
76% of its limit (Fig. 6d). This is the first split of all Pareto opti-
mal candidates. While this matches the expectation of the experts, the
particular threshold value is relevant information for them. Classify-
ing the remaining data, however, is more complex as shown by the
noise at the margins of the increasingly complex tree maps. In order
to focus the further analysis on explaining this remaining variance, the
experts enter the sub-tree generation mode for the [RESERVE_10| >
76% node. This creates a separate batch of 400 sub-tree candidates.

The visualizations of the Pareto-front now show 11 Pareto-optimal
sub-tree candidates (Fig. 6e,f). In the scatter plot, the colored Pareto
fronts for the varied degrees of rounding show that enforcing 3 or 2
significant digits does not incur a significant accuracy loss for smaller
trees, while rounding to 1 digit does (Fig. 6e). After inspecting the
trees in detail, the experts decide for 2 significant digits.

Browsing the Pareto-optimal candidates reveals that the feature
TENDENCY _RESERVE is used for the first split by most sub-trees.
This makes sense for the experts, as this feature indicates an increase
(positive values) or decline (negative) of available balance energy.

By inspecting the Pareto front in the scatter plot, the experts soon
decide for a sub-tree with two splits and an accuracy of approximately
0.73 (Fig. 6e). While the next simple candidate with a single split is
much less accurate, significant gains of accuracy conversely require
a much larger number of splits which contradicts the requirement for
simplicity. The experts inspect further details for this selected focal
tree (Fig. 6f,g). They are surprised that the second split by MINUTE
has a threshold of 52, which they wish to investigate further. For
this purpose, we configured an additional view of our system beyond
TreePOD for the experts. Specifically, stacked bars show the propor-
tion of critical situations per minute within the hour cycle. A click
on the MINUTE-based split node in TreePOD updates the stacked
bars to show only the corresponding data (Fig. 6h). This visualiza-
tion confirms the adequacy of the split and also indicates a similarly
blue region at the beginning of each hour. Based on this cyclic pat-
tern, the experts hypothesize that the temporal proximity to the full
hour might be an even more suitable feature than MINUTE. A com-
posite brush for (MINUTE >52 OR MINUTE < 5) enables to express
HOUR CHANGE as a new binary input feature for TreePOD.

The experts specify an additional controlled variation regarding the
inclusion of this feature. The point-wise sensitivity of the focal tree
confirms an accuracy gain of approximately 2% for the corresponding
sibling. This sibling also belongs to the updated set of Pareto optimal
candidates and thus becomes the new focal tree (Fig.6i).

The experts are already very satisfied with this tree. As a final
check, they want to validate its generalizability. A controlled varia-
tion of the evaluation data confirms the tree’s accuracy for both train-
ing and validation data due to its relative simplicity (Fig.6j). More
complex tree candidates are much less accurate for the validation data.

At the end of our joint session, the experts were very confident of
having selected the most appropriate tree for their purpose. As a next
step, they plan to test the performance in operation for a few weeks
and eventually update the tree using TreePOD based on recent data.

9.2 Evaluation workshop with users of TreePOD

The third workshop took place four months later. After a brief recap,
two of the experts controlled the system themselves for approximately
one hour each, in individual sessions. The goal was to identify rea-
sons for short-term changes of power production schedules, denoted
as a categorical time series REDISPATCH (yes/no) over three months
(2521 records). Features include 23 numerical time series represent-
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ing conditions of the network and the market, as well as temporal cat-
egories. This section describes how TreePOD was used by the experts.
Screenshots of their insights can be found in the supplemental mate-
rial. Feedback of the users is part of Sec. 9.3.

For an initial definition of tree candidates, the first user studied the
dialog’s options in depth first. She then started with sampling only
the termination criteria, but provided all features to every tree as fixed
assignment. The only difference between the resulting trees was their
degree of refinement, allowing her to assess the benefits of splits. Sur-
prised by the use of feature EXCHANGE._1 for the first split, she in-
vestigated alternative first splits by varying the features, while allow-
ing just one split (max depth = 2). Browsing these trees revealed that
no single split allowed splitting off a significant number of redispatch
cases, and that the selection of EXCHANGE_1 as the first-split feature
was justified. She then resorted to the default settings, and created a
new batch of 100 trees based on sampling the features and termination
criteria. Surprised by the high variation among the candidates, she
repeatedly used the “Show me more like this” button to create more
samples near the Pareto-front. She then spent some time browsing
the fronts. A linked time series view highlighting periods classified as
“REDISPATCH: yes” by the focal tree allowed her to compare the rec-
ognized redispatches across trees. Watching this view while browsing,
she identified trees explaining the previously unexplained redispatch
cases. This was a new way of exploration we had not tried before.
She finally concluded that the redispatch periods during the first two
months can be classified well using trees of moderate depth (< 4),
which she considered useful for reporting. Trees that also explain the
periods of the last month, however, require significantly more nodes.

The second user defined an initial batch of 500 candidates by sam-
pling the features and termination criteria. Browsing the Pareto-
optimal trees enabled him a quick identification of important features,
as well as a preferable tree depth (max 4-5) for reporting. Like the
first user, he was curious about alternative explanations without the
dominant feature EXCHANGE_1. Thus, he extended the candidates
by controlled variation of omitting vs. providing this feature to the
trees. He discovered that a related feature NET_1 is often selected
as a substitute, resulting in trees with comparable accuracy. He then
used the same linked time series view as the first user while browsing
the trees. He hypothesized that the cause for redispatch periods might
have changed after the second month. Thus, he decided to split the
data sets based on this possible structural break, and trained trees for

each part individually. He discovered that trees for the third month did
not use EXCHANGE_1, but rather four other features, confirming his
hypothesis. Finally, controlled variation of border rounding showed
him that rounding to 3 or even 2 significant digits incurs little accu-
racy loss for most trees, which he appreciated for his report.

In conclusion, both experts were satisfied with the explanations they
found, and considered them useful for their reports.

9.3 Qualitative Feedback

The six domain experts stressed the importance of building classifi-
cation models as part of their jobs. Some models need to be updated
frequently due to rapid changes in the energy sector. Consequently, the
time they can spend on tuning single models is limited (G3). More-
over, they believe that many domain experts in their field lack a deep
statistical knowledge (G2). For all six experts, model accuracy and
complexity are typically the most important aspects. Other require-
ments such as feature acquisition costs and model plausibility need to
be considered as well, but are often hard to quantify. Thus, they appre-
ciated that the controlled variation allowed them to compare discrete
sets of model variants without the need for quantification.

The reaction of the experts to TreePOD was very positive overall.
All of them praised the possibility of getting a fast overview of pos-
sible model characteristics as a huge step forward in comparison to
their current practice (G1). In particular, all experts considered the
knowledge about the variability of model characteristics and achiev-
ability of model objectives as significant gain of confidence (G4). The
result-driven approach was embraced as very understandable. The de-
tail visualizations of the model were considered crucial both for under-
standing the approach as such and for supporting a qualitative model
assessment. In general, all experts claimed to have understood Tree-
POD within the first workshop to a degree which enabled them to think
about applications to own classification problems. We specifically
asked them if they consider the controlled variation as beneficial with-
out deep algorithmic knowledge. Four experts answered that important
variation options do not require such knowledge in their opinion, e.g.,
the set of input features or rounding levels. Two of the domain experts
also considered the variation of other generation parameters as helpful
for non-experts in statistics to develop an intuition of their impact.

When asked about specific visualizations, five experts considered
the tree maps as important intermediate level of complexity between
the abstract scatter plot and the detailed structural visualization. They



considered their linear order as an intuitive guidance through the can-
didates. However, all experts agreed that the scatter plot is crucial as
an overview and for conveying the shape of the Pareto front, e.g., for
an efficient perception of jumps and sparsely sampled regions.

As a shortcoming, two experts questioned the restriction to binary
trees, i.e., each intermediate node having two children. Despite advan-
tages of binary trees from a statistical point of view [14], they consid-
ered more general trees as easier to understand and to communicate,
e.g., when subsequent splits refer to the same feature.

The experts who used TreePOD themselves found the default sam-
pling parameters combined with the “Show me more like this” button
highly enabling for users without statistical background. However,
they considered the number of 20 added samples with every press of
this button inadequately small. One expert considered a time-based
specification a better alternative, e.g., sampling for 1-2 seconds. One
expert suggested adding dedicated buttons to trigger important varia-
tions more easily, e.g., “create rounded variations”, or “omit feature”.
When defining filters on result metrics, one expert suggested drawing
the achievable Pareto front for the filtered trees as context. Concern-
ing the bubble encoding of leaf nodes (see Fig. 4a), the users found
purity better conveyed by the stacked bars and bands between nodes.
However, one user said their correspondence to the tree maps helped
to understand the latter visualization, which was unfamiliar at first.

The other experts also contributed numerous ideas for further exten-
sions. One expert stressed that upper hierarchy levels should be defin-
able from the outside in order to represent given (political) rules and
classification schemes. Another expert requested a sensitivity anal-
ysis for decision thresholds of particular nodes. As a very interesting
idea, one expert suggested using TreePOD to explain user-defined data
subsets. For example, after brushing an anomalous period of energy
production in a time series view, TreePOD could explain this period
by other time series such as meteorological conditions.

10 DiscussiON AND FUTURE WORK

TreePOD fosters a shift in the strategy for tuning the generation param-
eters of decision trees. Fully automated tree generation often results
in a cumbersome trial-and-error parameter search [32]. Most previ-
ous work for cooperative decision tree construction [3, 23, 46] follow
a local-to-global strategy for investigating the parameters [40]. These
approaches can be classified as white-box integration of visualization
and mining [5]. In contrast, TreePOD can be considered a black-box
type of integration. A key advantage is to hide details of the generation
process from users unless on explicit request (G2). Moreover, Tree-
POD encourages a global-to-local search strategy which starts with
an overview of possible characteristics for reducing the risk of miss-
ing the global optimum (G1). TreePOD still supports a cooperative
creation, but on a global scale rather than by focusing on a single tree.
Specifically, controlled variations are applied to the entire set of candi-
dates which enables a comparison of the effect across trees for higher
user confidence (G4). However, this concept does not exclude local re-
finements of selected trees if explicitly requested by users (see Sec. 7).

TreePOD closely follows the Visual Analytics Mantra [17]: To an-
alyze first, TreePOD generates a comprehensive set of decision can-
didates and computes quality metrics for them. TreePOD shows the
important by focusing the selection on Pareto-optimal tree candidates.
Users may zoom and filter by quality metrics. Adding tree candidates
enables to analyze further for inspecting sensitivities regarding con-
trolled variations of the tree generation parameters as well as for refin-
ing the sampling towards desirable tree properties. Additional views
provide details on demand for a selected tree.

An important design decision of TreePOD is to restrict the num-
ber of Pareto objectives to two. This limitation has several signif-
icant advantages for keeping the approach understandable by users.
For visualization, the simple representation as poly-line permits an in-
tuitive comparison of variations of the entire front. For interaction,
the linear order of tree candidates along the trade-off enables an intu-
itive switch from one tree to the next more accurate or more simple
Pareto-optimal tree. For guidance in general, the set of Pareto optimal
tree candidates is typically much smaller for two objectives than for

three or more objectives, which avoids overwhelming the user with
too many alternatives (G3). Moreover, feedback by domain experts
suggests that the trade-off between accuracy and complexity is typi-
cally the most important consideration, even if additional objectives
such as feature acquisition cost exist. Additional objectives can be
considered by filtering trees with undesirable values as a common ap-
proach to address multi-criteria decision problems [44]. Nevertheless,
experimenting with visualization approaches for higher-dimensional
multi-criteria decision making [33] is relevant as future work.

Regarding other scalability aspects, the use of hue restricts the num-
ber of target classes to approximately ten for perceptual reasons [47].
Even more so, as color is also used for encoding the variation. We
also experimented with showing variations of multiple parameters si-
multaneously, but rejected this feature due to generating too complex
visualizations in many cases. On the other hand, the visual complex-
ity of TreePOD does not depend on the size and dimensionality of the
training or validation data. As a practical limit of the data size, how-
ever, the approach strongly benefits from short training times of trees
in order to generate a sufficiently dense sampling overall and of the
Pareto front in particular. The quantitative overview scales well for
large numbers of trees, considering that the most relevant information
is the location and shape of the Pareto front. Conversely, a sparse sam-
pling will in general obtain a very inaccurate approximation of the real
Pareto front. While local refinements of the sampling help to mitigate
this problem (Sec. 7), integrating advanced approaches for construct-
ing the Pareto front [9, 50] are an important aspect of future work.

As a next step, we plan to conduct a long-term study based on de-
ploying TreePOD to target users from multiple application domains.
Moreover, we intend to extend the approach in order to further uti-
lize information contained in the generated set of candidate trees. For
example, analyzing the frequency and the context in which particular
features are selected could provide useful information about their im-
portance. Finally, we believe that core concepts of TreePOD are trans-
ferable to other types of models. Model selection is typically a multi-
criteria problem. In addition to accuracy, objectives regarding, e.g.,
comprehensibility and feature acquisition cost apply to many types of
models [12], e.g., regression polynomials. We thus plan to evaluate in
how far the concepts of TreePOD regarding sampling, guidance, and
variation also support the selection process for other types of models
by replacing decision tree-specific result metrics and visualizations.

11 CONCLUSION
This paper described TreePOD, a new approach for sensitivity-aware
selection of decision trees in the presence of multiple objectives. Be-
sides accuracy, especially the need for comprehensible models is in-
creasing [19]. To address this need, TreePOD fosters a global-to-local
strategy for model selection in order to guide also non-experts in sta-
tistical modeling towards a confident selection of suitable trees.
Based on TreePOD, we described a holistic workflow for decision
tree selection which combines aspects from white-box and black-box
integration of visualization and data mining [5]. A case study con-
ducted in pair-analysis with domain experts illustrated the ability of
TreePOD to solve a relevant problem in the energy sector, and con-
firmed that non-experts in statistics were able to efficiently identify
a suitable decision tree with high confidence. TreePOD is applica-
ble to classification problems independent of the application domain.
As one possible direction of future work, we believe that TreePOD is
conceptually transferable to other types of models for increasing the
efficiency and confidence in the selection process.
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