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Abstract—Cloud computing is underpinned by huge dat-
acenters which are considered as significant consumers of
energy. Under the umbrella term GreenCloud the scientific
community developed different architectures, algorithms and
methods to improve energy efficiency of these datacenters.
However, approaches which try to modify existing or applying
new economical concepts to improve energy efficiency of data-
centers are rare. In this paper we propose the GreenCloudTax
model which is a flexible IaaS tax system for calculating
taxes of virtual machines by using the energy efficiency of the
underlying server infrastructure. Thereby, providers relying
on energy efficient servers can sell their virtual machines with
lower taxes than those with energy inefficient servers. This
results in a competitive advantage and consequently leads to
reduced energy consumption in total too. We analyzed the
effects of our GreenCloudTax model on Cloud markets by a
simulation environment which is based on CloudSim’s Bazaar-
Extension.

Keywords-Cloud Computing; SLA Negotiation; Bazaar Mar-
ket;

I. INTRODUCTION

In the last decade Cloud computing emerged as the
dominating computing paradigm in industry as well as
in science [1]. For running Clouds huge datacenters are
required which are significant energy consumers [2]. For
example, in the US the datacenters call for 2% of the total
energy consumption [3]. Recently, in the United States Data
Center Energy Usage Report [4] a forecast for the energy
consumption of Cloud datacenters in 2020 was presented.
With the energy efficiency of 2010 the energy consumption
of datacenters will approximately triple until 2020. This
accentuates the need for new approaches in order to boost
energy efficiency in the Cloud domain.

Under the umbrella term GreenCloud the scientific com-
munity developed different algorithms, architectures and
concepts fostering energy efficiency. According to [2] the
research trends towards GreenCloud can be classified along
the following categories: Networks, Servers, Cloud Manage-
ment System and Appliance. All these research trends have a
strong focus on technology - economical approaches foster-
ing energy efficiency are neglected in [2]. An example of an
economical approach for reducing the energy consumption

was recently introduced in [5]. Thereby the authors consider
processing power used in virtual machines as a significant
energy consumer. Hence, they advise Cloud providers to
develop pricing models reflecting the usage of processing
power. A similar approach was presented in [6] where the
energy costs for running servers were identified as a main
cost driver and therefore considered as significant influence
factor for adequate pricing.

In this paper we propose the GreenCloudTax model.
Contrary to technical approaches we use flexible taxes for
improving energy efficiency. The widely used value added
tax is a proportional tax calculated on basis of the price
which does not create incentives. The GreenCloudTax model
is the proposal of a governmental instrument with the aim to
create incentives for market participants to switch to Clouds
which run energy efficient servers. Hereby we define the
term server broadly: it encompasses the procesing units,
the RAM modules and the hard discs. To the best of our
knowledge no similar approach exists. We build our ap-
proach on [7] where we introduced a pure economic driven
descriptive analysis of classical tax systems for Clouds
neither introducing a flexible tax system nor considering any
ecological aspects.

Currently, there is a shift from static supermarket based
markets on which Cloud providers offer their products at
fixed prices to more dynamic markets such as Amazons EC2
spot market [8]. The scientific community proposed different
visions of how these dynamic Cloud markets can be realized
ranging from centralized auctions [9] over decentralized
auctions [10] to bilateral multi-round negotiations [11], [12].
We analysed the GreenCloudTax assuming a marked based
on bilateral multi-round negotiations which is also known
as Bazaar-based market. This Bazaar-based market is char-
acterized by an alternating exchange of offers between
consumers and providers resulting into negotiaton trees.
Thereby, negotiation stops if either all offers are rejected
or an agreement is formed.

We extended our CloudSim Bazaar-Component [13] for
the simulation of the effects of the GreenCloudTax model.
With this simulation environment researchers are able to
create a market, add market participants to the market,



assign negotiation strategies to them, define tax systems and
analyse the resulting resource allocation. In the paper at
hand we focus on Infrastructure as a Service (IaaS) markets
where virtual machines (VM) are traded as an example
of a Cloud market. The main contributions of the paper
are the following: (i) Development of the GreenCloudTax
model (ii) Implementation of the GreenCloudTax simulation
environment by extending the Bazaar-Extention based on
CloudSim (iii) Analysis of the effects of the proposed
approach on Cloud markets.

The remainder of the paper is structured as follows: In
section II we analyze existing approaches fostering energy
efficiency of the Cloud. In section III - after a short dis-
cussion of tax systems for the Cloud - we introduce the
GreenCloudTax model followed an analysis of the effects
of taxes on Cloud markets. In section IV the simulation
environment is introduced and the GreenCloudTax model is
evaluated. The paper closes with a conclusion in section V.

II. RELATED WORK

We structure the related work section into two parts: First,
we introduce approaches which increase energy efficiency in
the Cloud by applying new technology. Second, we describe
approaches which try to reduce energy consumption by
applying new or modifying existing economical concepts.

Technology approaches can be categorized along four re-
search areas [2]: (i) Networks: Network traffic is increasing
exponentially so that computer networks become a signifi-
cant energy consumer [14]. This research field encompasses
all efforts in reducing the cosumed energy of datacenters
networks, networks connecting datacenters as well as end
user networks. The scientific community tries to reduce
network energy consumption for example by redesigning
the hardware devices or by optimizing the network archi-
tecture. (ii) Servers: This research field tries to investigate
how to reduce energy consumption of enclosures (cooling
systems), racks and components which do not belong to the
network domain. The scientific community tries to reduce
energy consumption in this domain by reducing the heat
load of components like the CPU or by optimizing cache
strategies. (iii) Cloud Management System: According to [2]
this field is currently the most emerging research domain
coping with virtual machine reconfiguration, virtual machine
placement and virtual machine migration and consolidation.
It encompasses all virtual machine scheduling algorithms
as well as virtualization software and monitoring systems.
Researches try to reduce energy consumption by migrating
virtual machines to other hosts [15], shutting down idle
hosts [16] or by developing lightweight cloud management
systems [17]. (iv) Appliance: In a perfect cloud system only
running applications consume energy [2]. However, usually
also the runtime environments and operating systems are
significant energy consumers. So there are three different
types of applications: the application itself, the runtime

environment and the operating system. Efficient processing
paradigms like MapReduce [18] are an example for reducing
energy consumption on the application level.

The scientific community focused on developing tech-
nology approaches instead of economical approaches for
improving energy efficiency. Such an economical approach
was e.g. introduced in [6], [19] were the authors developed
a comprehensive cost model for cloud providers. Thereby
it was shown that expensive servers usually have a lower
energy consumption which may lead to an amortisation of
the higher acquisition costs. Hence, the usage of the cost
model reveals that investing in energy efficient servers is not
necessarily contradicting to the goal of profit optimization.
In [20] the authors describe that finding an optimal location
for datacenters is non-trivial as a huge number of parameters
has to be considered. To minimize carbon footprint as well
as energy consumption the authors developed an objective
function which is solved via (non-linear) programming ap-
proaches. Thereby the authors forsee a carbon tax for data
centers which is currently only transferred by plants in the
US [20]. The authors do not describe how a carbon tax can
be used for datacenters. In [21] an auction based approach
was introduced which considers energy consumption of
providers. Thereby, virtual machines are sold in the form of
time slots. Slots get cheaper for non-business hours where
providers have a lot of free capacities which gives consumers
an incentive to use virtual machine in non-business hours.
This leads to a more constant utilization of the datacenters
and so energy consumption can be reduced. In [22] it was
shown that datacenters which are able to mixture clean
and dirty energy sources can significantly improve their
profit. Economical principles were also applied in the de-
mand response domain. For example in [23] the authors
introduced a demand response approach to save energy via
workload shifting and local generation. Similarly, in [24]
a demand response approach was introduced leveraging an
auction mechanism.

III. THE GREENCLOUDTAX MODEL

In basic economic literature [25] taxes are characterized
by the taxable base and the tax rate. In the course of our
research we analyzed these two dimensions in the context
of IaaS where virtual machines are taxed.

Today, value added tax is used for the taxation of vir-
tual machines and is calculated based on the price which
represents the taxable base. For using Amazon’s windows
m4.16xlarge virtual machine (64 vCPU, 256GB RAM, 3TB
Storage (HDD), region USA east) for one month approx-
imately 4751$ have to be paid whereby 792$ are taxes -
assuming a tax rate of 20%. Contrary to other goods, Cloud
services are metered services - a key characteristic of Cloud
computing [26] - so that the usage of alternative taxable
bases is feasible. For virtual machines it is possible to use
the VM characteristic processing power, RAM or storage



Table I: Cloud Taxable Bases and Tax Rates

Taxable Base Lump Progressive Regressive Proportional
Sum

Price Fee Price Tax Price Tax Price Tax
Storage Fee Incentive Tax Incentive Tax Incentive Tax
RAM Fee Incentive Tax Incentive Tax Incentive Tax
Processing Power Fee Incentive Tax Incentive Tax Incentive Tax
Server Energy Eff. Fee GreenCloudT. GreenCloudT. GreenCloudT.

as described in [7] as taxable base. The purpose of using
alternative taxable bases is to foster incentives - so we
call them incentive taxes. Processing power can be seen as
significant energy consumer [5] which can be used as taxable
base. Thereby, we tax each MIPS (abstract measurement of
processing power [27]) of a virtual machine with a certain
amount of money. Hence, virtual machines with a lot of
processing power would get more expensive while VMs
with less processing power would get cheaper as their tax
is reduced. Consequently, some consumers may switch to
VMs with less processing power leading to a total reduction
of the consumed processing power. Similarly, each GB of
RAM cloud be taxed as well as each GB of storage. In table I
we summarize the most important taxable bases of virtual
machines.

The following equation shows the tax rate calculated by
the tax and the price of the virtual machine.

tax rate =
tax

price of virtual machine
(1)

Typically it is distinguished between a proportional tax rate,
a progressive tax rate, a regressive tax rate as well as a lump
sum tax rate [25]. The widely used value added tax is an
example of a proportional tax rate. So the tax of a virtual
machine is directly proportional to the price of the virtual
machine. Progressive tax rates are usually used for taxing
payrolls. Thereby, persons with a high payroll face a higher
tax rate than persons with low payrolls. A progressive tax
rate for virtual machines using the price as taxable base is
exemplified by the following: A virtual machine with a price
of 100$ is taxed with 10$ resulting to a tax rate of 10%.
A virtual machine with a price of 200$ which is taxed with
30$ leads to a tax rate of 15%. Contrary, regressive tax rates
decrease with an increasing taxable base. A lump sum tax
rate can be considered as a fee which represents a special
form of a regressive tax. Thereby each virtual machine is
taxed with the same amount.

As shown in [6] all virtual machine resources (processing
power, storage and RAM) are significant energy consumers.
With the currently introduced taxable bases we are able to set
incentives to reduce the consumption of processing power,
RAM or storage. Therefore, energy consumption can be
reduced indirectly by taxing these characteristics. However,
providers running different servers usually vary in energy
efficiency. The proposed incentive taxes do not consider

the efficiency of servers. So virtual machines running on
an energy efficient server infrastructure are taxed with the
same amount as the identical virtual machine running on
an energy inefficient server. The incentive taxes do not
set stimuli for consumers to buy virtual machines from
providers which run energy efficiency servers. Hence, we
propose the GreenCloudTax model (last row in table I). It
uses the energy efficiency of servers as taxable base. Virtual
machines which run on energy efficient servers are lower
taxed than virtual machines running on energy inefficient
servers. This gives consumers an incentive to switch to
providers which host VMs on energy efficient servers as
their prices get more attractive. The usage of energy efficient
servers is an essential step towards GreenCloud [28].

This form of the GreenCloudTax model implies that
neither the price nor the consumption of resources of the
virtual machines are used for calculating the tax. So a
resource intensive virtual machine used for e.g. database
applications running on the same server as a small virtual
machine used as working station would be taxed with the
same amount. Alternatively, combined taxable bases can
be used instead of the strict GreenCloudTax. For example,
the taxable bases price and server energy efficiency can be
combined as shown in the following equation:

tax = price · tax rate · server energy efficiency factor (2)

Thereby, the tax is calculated based on the price as well
as on a server energy efficiency factor reflecting the energy
efficiency of the sever hosting the VM.

The main challenge using the GreenCloudTax model
is to profile the energy efficiency of the servers which
run the virtual machines. Further, live migration of VMs
from energy-efficient servers to non-energy efficient servers
and vice versa makes the calculation difficult. The limited
knowledge of the used servers is also a challenging problem
for governments which apply the GreenCloudTax. In our use
cases we follow a pragmatic approach by using the energy
efficiency metric ssj ops1 of the SPEC benchmark [29] as
taxable base for the GreenCloudTax.

Usually either the consumers or the providers - called
tax entities - have to transfer the tax which is determined
by the tax authority. The so called flypaper theory [25]
implies that the entity which transfers the tax has to pay
the tax (receives the tax burden). However, as shown in [25]
this theory is not in line with reality as described in the
following paragraphs. The impact of taxes is visualized in
figure 1a. It shows a typical market with demand and supply
curve. Virtual machines can be seen as virtual goods which
are supplied by providers and demanded by consumers.
Therefore, fundamental market mechanisms can be applied
to VMs. The initial demand curve is the gray one. The

1The more ssj ops the system under test can produce with one watt
of power, the better is the efficiency of the system under study - see
https://www.spec.org/power/docs/SPECpower ssj2008-User Guide.pdf



(a) Shift of demand curve (b) Tax incidence

Figure 1: Impact of taxes on demand and supply

price p1 of the good traded on the market is determined by
the intersection of the demand curve and the supply curve.
At this price the consumers demand quantity q1. Assume
that the consumer has to transfer the tax - a fixed amount
of money in addition to price p1. Hence, the consumer
demands as much as p1 plus the tax. So the demand curve
shifts inwards (black curve) representing the demand curve
including taxes.

According to the tax incidence theory the entity which
transfers taxes does not necessarily pay the taxes - it does
not receive the total tax burden [25]. This is illustrated in
figure 1b. Again this figure shows two demand curves: the
gray demand curve shows the demand curve before the
introduction of the tax while the black demand curve is
the demand curve after the introduction of the tax. The
intersection of the demand and the supply curve forms the
so called equilibrium price. After introducing the tax the
demand curve shifts inwards leading to a new equilibrium
price (price excl. tax) as well as to a new quantity (q2). Even
if the consumer has to transfer the tax, both the consumer
and the provider have to pay a tax as described in the
following:
• Before the tax is introduced the consumer pays the

equilibrium price to the provider. After, the consumer
pays the lower price excluding tax and additionally the
tax. So finally, the consumer pays the price including
the tax for the good traded on the market. The differ-
ence between the initial equilibrium price and the price
including tax is represented by tax1.

• The provider gets the equilibrium price before the tax
is introduced. After, the equilibrium price drops and the
provider receives only the price, termed price excluding
tax in figure 1b. The difference between the initial price
and the price excluding tax is represented by tax2.

tax1 and tax2 form together the total tax prescribed by
the tax authority. Again, the example illustrates that the
entity which transfers the tax does not necessarily pay it.
Instead, the price elasticity of the demand and supply curve
determines the amount of the tax an entity has to pay as
defined by the following equation:

price elasticity =

∣∣∣dQ/Q
dP/P

∣∣∣ (3)

(a) Elastic demand (b) Inelastic demand

Figure 2: Tax burden examples

The higher the price elasticity of the demand or supply curve
the lower is the tax the consumer or provider has to pay.
A high price elasticity represents a high price sensibility.
Such a price sensible consumer leaves the market because
of price increments and chooses alternative goods. Contrary,
a consumer with a low price elasticity buys the good even if
its price is increased. This is because the consumer has no
alternatives and therefore it has to accept the higher price.
In both examples shown in figure 2 the tax is transferred
by the consumer and its amount is identical. In figure 2a
the demand is elastic so that the provider has to pay a
larger part of the tax than the consumer. In figure 2b the
demand is inelastic so that the consumer pays most of the
tax. In both examples the quantity sold is lower than in the
situation without taxes. The tax revenue is represented by the
dashed areas in the figures. It is calculated by multiplying
the quantity with the tax amount as shown in equation:

tax revenue = quantity · tax size (4)

Increasing taxes make goods more expensive leading to a
reduced quantity of traded goods. The resulting two effects
are described in the following: (i) Effect 1: By increasing
the size of the tax the tax revenue increases by each sold
item. (ii) Effect 2: Increasing the size of the tax leads
to reduced quantity because goods get more expensive.
Consumers having lower willingness to pay than the price
do not purchase the good any more. So some goods will not
be sold and consequently no tax revenue is earned.

The Laffer Curve [25] visualizes these two effects. If the
tax size is low then an increment of the tax size leads to an
increment of the tax revenue. Thereby, Effect 1 dominates
Effect 2. However, if the tax size is already very high, an
increment of the tax size leads to a reduction of the tax
revenue. Due to the high tax market participants leave the
market leading to a reduced number of transactions. So
Effect 2 dominates Effect 1.

IV. EVALUATION BY SIMULATION

A. Simulation Environment

CloudSim and the Bazaar-Extension [13] allow to sim-
ulate Bazaar-based Cloud markets. Now, we extended the
Bazaar-Extension with the GreenCloudTax component. This
simulation environment allows to create market participants,



Figure 3: Simulation environment for simulating taxes in-
cluding the GreenCloudTax

add a negotiation strategy to them, add an GreenCloudTax
system to the market and analyze the resulting market
outcomes. A screenshot of our simulation environment is
shown in figure 3. The left side shows the market partici-
pants attending the market. There are consumers (brokers)
and providers. By selecting a market participant you see
all its negotiations in the second column. By selecting
a negotiation all offers exchanged during negotiation can
be seen on the right side which are exchanged. They are
shown as tree list and utility-utility plot. Utility functions
are used by market participants for ranking offers - for more
information about utility function see [30]. The plot shows
on the ordinate the utility of the provider (datacenter) and on
the abscissa the utility of the consumer. The government’s
tax revenue of the executed scenario is shown in the violate
box.

B. GreenCloudTax Use Case

To show how the GreenCloudTax model affects the Cloud
market we present as use case a market scenario with
50 brokers and 10 providers (datacenters). For fostering
comparability of the different tax systems which we will
analyse within this use case we create providers which
have the identical capacity - each server is able to host
10 brokers (consumers). Further, we assume some typical
configurations such as a homogeneous server infrastructure
of providers. The first provider runs only ASUSTek servers
as described in the first row in table III, the second provider
runs only the Acer Incorported server as described in the sec-
ond row and so on. In table III the servers and consequently
the providers show different energy efficiency (ssj ops met-
ric). We simulated Bazaar-based markets. Thereby we used
the well know consumer and provider strategy introduced
in [12].

C. Consumer Strategy

According to [12] consumers have a maximum as well as
a minimum value for each characteristic of the traded good.
Thus, in case of virtual machines consumers have maximum
and minimum values for processing power, storage, RAM

and price. Bilateral negotiation strategies have to describe
(i) which offers are accepted, and (ii) if the offers are not
accepted, how are counteroffers created.

Creation of counteroffers: Counteroffers are denoted with
Ot

a→b whereby a is the sender and b is the receiver of the
offer. In [12] the following strategy is suggested for creating
counteroffers:

Ota→b[i] =


minai + αai (t) · (maxai −minai )

if V ai decreasing
minai + (1− αai (t)) · (maxai −minai )

if V ai increasing

(5)

i is a characteristic of the virtual machine, V a
i is

the value of characteristic i for sender a, maxi and
mini are the minimum and the maximum values for
characteristic i and αa

i (t) is a time dependent variable
which has values between 0 and 1. The basic idea
behind this strategy is that the consumers starts with
offers which maximize their utility. In cases of virtual
machines the initial offer will contain the following values:
maxaRAM ,max

a
Storage,max

a
ProcessingPower,min

a
price.

Over time the characteristics are modified until the
deadline is reached. So the last offer of the consumer
(if a binding agreement is not formed before) is:
minaRAM ,min

a
Storage,min

a
ProcessingPower and maxaprice.

αa
i (t) determines how fast the initial max/min values

are decreased/increased to final min/max values.
Therefore [12] suggested to use polynomial or exponential
functions. We used the polynomial function as shown in
the following equation:

αai (t) = kai + (1− kai ) ·
(
min(t, tmax)

tmax1/β

)
(6)

tmax represents the deadline. We used the following setup:
β = 2 and k = 0.

Offer acceptance conditions: Inspired by the offer accep-
tance conditions described in [12] consumers accept offers
if the following condition is fulfilled: UVOtb→a

> UVOt+εa→b
.

So a received offer UVOtb→a
is accepted by consumer a

if the utility of the received offer exceeds the utility of
the counteroffer, which would be created in response to
the received offer according to equation 5. Precondition for
applying this decision rule is the definition of a consumer
utility function for calculating the utility. As [31] do not
introduce a consumer utility function we used the following
one inspired by [30] which considers basic economical
principles:

UVcon. =log(storage · wstorage) + log(processingp.·
wprocessing p.) + log(RAM · wRAM )+

log(maxprice − price) · wprice
(7)

D. Provider Strategy

The provider strategy for the creation of counteroffers
is similar to the consumers strategy. In [12] the provider



Table II: Simulation parameters

Consumer
Parameter Value Parameter Value
wRAM 0.01 wprocessing p. 0.01
wstorage 0.01 wprice 0.97
minRAM 3072 MB maxRAM 7168 MB
minprocessing p. 5000 MIPS maxprocessing p. 30000 MIPS
minStorage 102400 MB maxStorage 1024000 MB
minprice 10$-20$ maxprice 35$-100$
tmax (simulation clock) 7200
Provider
Parameter Value Parameter Value
ARAM 0.8 Aprocessing p. 0.8
Astorage 0.8 wRAM 0.5
wstorage 0.25 wprocessing p. 0.25

MinRPstorage
0.000002$- MaxRPstorage

0.00001$-
0.0000022$ 0.000011$

MinRPRAM 0.002$-0.0022$ MaxRPRAM 0.03$-0,033$
MinRPprocessing p. 0.0002$-0.00022$ MaxRPprocessing p. 0.001$-0.0011$
tmax (simulation clock) 7200

strategy is responsible for suggesting a price for received
offers. Therefore the provider calculates so called resource
prices RPjt for each resource characteristic j of the virtual
machine (RAM, storage, processing power) at time t. The re-
source prices are time dependent as shown in the following.
The provider has for each resource characteristic a maximum
resource price (MaxRP ) as well as a minimum resource
price (MinRP ). The structure of this equation is similar to
the one in equation 5.

RPjt =MinRPj + αRPj(t)(MaxRPj −MinRPj) (8)

αRPj(t) is a time dependent factor taking values between
0 and 1. The authors of [12] suggest to use a polynomial
function for calculating this factor as defined in the follow-
ing:

αRPjt = IRPj + (1− IRPj)
(
min(t, tmax)

tmax

)1/βj

(9)

IRP is an acronym for initial resource price. We used the
MaxRP as IRP . β can be calculated in two ways: The
first one is called resource aware β while the second one
is called priority oriented β. For the resource aware β we
first calculate the share of the available resource Aj for
the resource characteristic j so that we can calculate the
average share of available resources: Ā =

∑m
j=1 Aj

m . The
resource aware β is then calculated as βj = eAj−Ā. For our
simulation we assumed an equal utilization of all resources.
The preference based β is calculated as βj = e1/n−wj . n is
the number of resources and wj is the importance factor so
that

∑m
j=1 wj = 1.

The resource prices are calculated twice: one time using
the resource aware β and one time using the preference
based β. The two prices are combined for each resource
using a weighted average:

RPjt = RP resource aware β
jt · 0.5 +RP

preference β
jt · 0.5 (10)

At end, the resource prices are summarized to a final price
Pt =

∑m
j=1RPjt · j. Consumers can accept the price

suggested by the provider and form a binding agreement, or
respond with counteroffers. A decision rule for the provider
which determines if an offer is accepted is not foreseen.
Hence, only the consumer can create an agreement.

The rest of the used parameters are summarized in table II.

E. Simulation Setup

We simulated an idealized market as shown in figure 2
where the demand curve represents consumers with a dif-
ferent willingness to pay and the supply curve represents
providers with different costs. This is reflected by the
resource prices (provider) and the minimum and maximum
prices (consumer) shown in table II. For the providers we
created the resource prices proportional to their efficiency.
So the provider running the most inefficient servers (i.e.
ASUSTeK servers) - the first provider called P1 - has the
lowest resource price while the provider which runs the most
efficiency servers (i.e. Quanta servers) - the 10th provider
called P10 - has the highest resource price. Thereby, we
assumed that acquisition costs of efficient servers are higher
than the acquisition costs of inefficient servers leading to
higher prices - the reduced energy costs of efficient servers
can not compensate the higher acquisition costs.

For the evaluation we used three different tax systems:
(i) Value added tax. The value added tax uses a 10% tax

rate which is calculated on the basis of the price.
(ii) GreenCloudTax 1. By using this tax system we com-

bined the GreenCloudTax with the value added tax using
equation 2. Thereby we calculated the energy efficient factor
as following:

server energy efficient factor =
(1− interpolation factor) · ecoMarkup

(11)

The interpolation factor is a number between 0 and
1 and reflects the energy efficiency of the underlying
server infrastructure. We calculated it by normalizing the
ssj ops of server i as shown in the following. Thereby
ssj opsminimum represents the ssj ops most inefficient
server. In our case this is the first server shown in table III.
ssj opsmaximum represents the ssj ops of the most effi-
cient server. This is the last server shown in table III.

interpolation factori =
ssj opsi − ssj opsminimum

ssj opsmaximum − ssj opsminimum
(12)

So the interpolation factor is 1 for the most efficient server
and 0 for the most energy inefficient server. It can be used
as a weight for the ecoMarkup, which controls how much
the taxes are increased/decreased for the servers. We used a
ecoMarkup of 1.3 of the GreenCloudTax 1.

(iii) GreenCloudTax 2. This tax system is identical to
the previous tax system. However, we used an increased
ecoMarkup of 2.1.



Figure 4: Simulation results - number of consumers hosted
by the providers using different tax systems (10 is the
capacity limit)

F. Simulation Results

We simulated the Cloud market with the three different
tax systems. The simulation results are depicted in figure 4.
Using the value added tax the providers which run the
the most inefficient servers host all virtual machines. This
is because they have lower prices (see simulation setup).
The value added tax system does not give an incentive to
consumers to switch to providers running energy efficient
servers. Contrary, the GreenCloudTax 1 gives consumers
an incentive to switch to more energy efficient providers:
As figure 4 shows, consumer move from providers running
inefficient servers to providers running efficient servers.
This is because providers which have servers with a high
energy efficiency are lower taxed than providers which
have servers which are inefficient. GreenCloudTax 2 has a
greater ecoMarkup than the GreenCloudTax 1. Hence, in
the scenario the most energy efficient providers host all
consumers while the energy inefficient servers are idle. This
is because providers with inefficient servers are highly taxed
resulting into high brutto prices.

According to [25] the government uses taxes not only
to set incentives but also to get tax revenue. Hence the
tax revenue gained by applying a certain tax system has
to be considered too. The tax revenues of our simulation are
illustrated in figure 5. It can be seen that the tax revenue of
the value added tax and the GreenCloudTax 2 are approxi-
mately identical. The tax revenue of the GreenCloudTax 1
is lower. Using the GreenCloudTax 1 the increased tax on
energy inefficient servers can not compensate the loss of
taxes granted to providers running energy inefficient server.
So by introducing this tax the government will loose money.

The discussed Laffer Curve in section III shows that the
tax revenue which the tax authority can gain is limited.
This has to be considered during the design of tax systems.
For example we executed a simulation scenario using an
ecoMarkup of 20 which destroys the market: only the
provider running the most efficient servers is able to sell
virtual machines as it is not taxed according to the used

Figure 5: Tax revenues of different tax systems (zoom)

Table III: Server characteristics from SPEC benchmark [29]

Provider System ssj ops/watt
P1 ASUS RS100-E5 (Xeon X3360, 2.83 GHz) 905
P2 Gateway GW1000-GW170 F1 1588
P3 1253Ra Datacenter Server 2106
P4 PRIMERGY TX150 S7 (Intel Xeon X3480) 2513
P5 Gateway GT150 F1(Intel Xeon X5670, 2.93 GHz) 2716
P6 B8228Y190X2-045V4H 3293
P7 Acer AC100 3741
P8 I IBM System x iDataPlex 5043
P9 PowerEdge C5220 (Intel Xeon E3-1265LV2) 6000
P10 QuantaGrid D51B-2U 11568

GreenCloudTax system. All the other providers are unable
to sell a virtual machine due to the high taxes leading to
high prices. The analysis of the tax revenue is a promising
topic for further research.

V. CONCLUSION AND FURTHER RESEARCH

Datacenters used for running Clouds are significant con-
sumers of energy. While most of the research focuses on the
technical engineering of existing protocols, architectures or
algorithms the research in applying or modify economical
concepts - especially taxes - to increase energy efficiency is
limited. In this paper we designed the GreenCloudTax for
virtual machines. This tax system proposes a new tax model
for virtual machines based on the energy efficiency of the
underlying hosting servers. For analyzing our GreenCloud-
Tax model we developed a novel simulation environment
based on CloudSim’s Bazaar-Extension. It allows to simulate
Bazaar-based markets where different tax systems such as
the GreenCloudTax model can be tested. This paper is a first
step towards the GreenCloudTax. In our further research we
will analyze the tax revenue as well as it effects on ecolog-
ical variables such as carbon footprint. Moreover, we will
investigate more complex tax sytems which take into acount
the used type of computing resource. The management of
the simulation with models [32] seems to be promising too.
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