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Abstract—Process-aware Information Systems (PAIS) have
become ubiquitous in companies. Thus the amount of data that
can be used to analyze and monitor process executions is vast. The
event logs generated by PAIS might contain information about
decision making processes and can support the understanding
and improving of procedures in companies. Mining decisions and
constraints from logs has already been investigated, but so far
only for each instance in a separate manner. However, in many
practical settings instances are connected to each other if they
share, for example, the same resources. Therefore, we present an
approach for discovering Instance-Spanning Constraints (ISC)
from event logs. The main idea is to identify instance-spanning
attributes in the logs and to separate the logs accordingly. Based
on these projections, classification algorithms are applied in order
to obtain ISC candidates. The feasibility and applicability of
the approach is evaluated based on artificial as well as real-life
logs. The discovered ISC candidates are then assessed by domain
experts.

Index Terms—Instance-Spanning Constraints; Constraint Min-
ing; Decision Mining; Classification Techniques

I. INTRODUCTION

Process-Aware Information Systems pervade almost any
enterprise and produce a plethora of data on process execution
[1]. Typically, this data is collected in process execution logs
which contain crucial information on the executed process
instances, relevant constraints, and decisions made during
process execution. Process mining offers promising means to
analyze logs accordingly [2]. Constraints have been mined
using declarative mining [3]. Decision mining “aims at the
detection of data dependencies that affect the routing of a case”
[4].

So far, existing approaches have focused on decisions and
constraints that influence and restrict single instances [3]
(referred to as so-called intra-instance constraints [5]). Con-
straints that “refer to more than one instance of one or several
process types” [6] are called Instance-Spanning Constraints
(ISC). Examples of ISC are A user is not allowed to execute
more than 100 tasks (of any workflow) in a day. [7] or The
number of connections to UDS should not exceed 10 [8]. As
stated in [6] ISC have not been considered comprehensively

though they play a decisive role in business process compli-
ance. Report [9] has shown that there are plenty of real-world
ISC examples and they encounter a variety of domains, like
logistics, health care, security or manufacturing. Clearly, there
is a gap between the relevance of ISC and their coverage in
existing approaches. In particular, the (automatic) discovery of
ISC candidates from process execution logs has been neglected
so far. As ISC elicitation is a crucial topic – especially beyond
manual elicitation from documents – this paper investigates
ISC discovery based on the following research questions.

RQ1 Which information contained in the event log are indi-
cating ISC?

RQ2 How can spanning relations in the logs be detected?
RQ3 How to design an algorithm to discover ISC candidates

from execution logs?
RQ4 How to evaluate the ISC discovery algorithm? What are

application scenarios for ISC mining?

For answering RQ1 and RQ2, real-world ISC and the
underlying process instances [9] are investigated. Note that
this paper considers ISC that span multiple instances of the
same process type, but not across several process types. It
will be shown that ISC impose decision points, but not within
instances as considered by decision mining, but “between”
instances. This finding implies that a) the log information has
been pre-processed by a projection on the parts with spanning
information and b) classification techniques can be applied
on these projections that allow for discovering ISC candidates
(7→ RQ3). The proposed technique is tested in two application
scenarios (7→ RQ4), i.e., based on (a) the simulated log files
where the ISC are known beforehand and (b) the real-world
HEP data set [10] where the possible ISC are not known in
advance. For (b) the derived ISC candidates are assessed by
experts. Scenario (a) represents conformance checking aspects,
i.e., it is possible to investigate whether the recorded log sticks
to the imposed ISC while scenario (b) relates to the actual
discovery of ISC.

The paper is structured as follows. In Sect. II an overview
of terms and notions as well as a definition for ISC decision
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Fig. 1. Petri Net with XOR-Split marked dark grey

points is given. Based on this definition, requirements for log
preparations are set out in Sect. III-A. An Algorithm fulfilling
these requirements was developed and implemented in Sect.
III-B. This algorithm as well as the ISC discovery algorithm
presented in Sect. IV, are part of the actual evaluation which
is carried out in Sect. V. The evaluation reflects the two
application scenarios mentioned before. Sect. VI discusses
corner cases and limitations. Sect. VII presents related work.
The paper concludes in Sect. VIII.

II. ISC DECISION POINTS

In this section, the basic idea behind discovering ISC from
execution logs is explained, but first some terminology is
introduced. Based on a process P several cases, i.e., process
instances, can be started and executed. Each instance execution
can be represented by a trace ti of unique events. The traces
are stored in an event log L. Each event can be equipped
with (event) attributes which may contain information about
timestamps, organizational resources, and costs [2, p.9].

Formal definitions of these terms can be found in e.g., [2,
Sect. 4].

As discussed in the introduction, decision mining [4] has
been proposed as technique for discovering one kind of
intra-instance constraints, i.e., decision rules. More precisely,
relying on event data, decision mining discovers the rules that
impose the decisions at alternative splits in process models
(holding for each of the related instances in a separate way).
The associated split points are referred to as decision points
and can be identified via XOR gateways in BPMN or several
outgoing arcs of a place in a Petri net (cf. Fig. 1).

For the abstract process in Fig. 1 the decision rule states to
perform task B if x < 1 holds and tasks C and D otherwise.
Roughly, decision mining classifies the log traces into the
execution paths determined by the decision point and applies
decision tree algorithms in order to derive the decision for
different traces [4].

In contrast to decision points depending on intra-instance
constraints an ISC decision point cannot directly be recog-
nized by looking at the process model. The reason is that the
ISC spans multiple process instances. The ISC decision point
hence lies “in between” the affected instances.

Nevertheless, a visualization for ISC decision points by
introducing virtual decision points as depicted in Fig. 2 in
order to explain the concept is used.

Definition 1. An ISC decision point is a decision point that is
not mirrored by the event log and is linked to a decision rule
referring to an instance-spanning attribute, i.e., time, resource
or data.

Fig. 2. ISC Decision Point marked dark grey

The example in Fig. 2 extends the model in Fig. 1 by the
ISC that D has to be fired in parallel for five instances, i.e.,
reflects a synchronization at D for a batch of five instances.
For the process model this ISC can be mirrored by introducing
a virtual decision point right before task D that represents the
ISC to proceed with D in case five instances have arrived or
to wait within a loop otherwise. It can be seen that an ISC
decision point mimics a deviation from the behavior described
by the model by executing tasks that are not explicitly reflected
in the execution logs, for example, the implicit task wait in
Fig. 2. Conversely, traces in the event log are not influenced by
that change of the process model. Overall, it can be concluded
that decision mining on execution logs as presented in [4]
cannot be directly applied to discover ISC.

So, an algorithm for pre-processing the event log in order
to be able to utilize classification and clustering techniques is
suggested. The next section provides requirements that need
to be fulfilled when pre-processing the event log.

III. PRE-PROCESSING THE LOG FILES: MULTIPLE
INSTANCE AND EVENT ATTRIBUTE VIEW

A. Requirements for pre-processing

The idea of (virtual) ISC decision points as described in the
previous section together with a technique similar to decision
mining seems promising for discovering ISC. One difference
is that ISC span multiple instances and this suggests that a
multiple instance view on the execution logs is required. This
means that in contrast to most process mining approaches one
has to consider all traces simultaneously not separately.
=⇒ Reqt. 1: Multiple instance view on execution logs
Modeling requirements time, data, resources (on top of

structural aspects) for process constraints in general are stated
by [3]. In [6], it was analyzed that ISC are subject to these
requirements as well. In addition, ISC might contain trigger
actions, i.e., actions that are triggered by the conditions set
out in the ISC. For the above synchronization example, the
triggered actions are wait for a batch size lower than 5 right
before activity D and proceed with D for a batch size of 5.

It can be concluded that the ISC-related information in the
execution logs is encoded in the event attributes task, orga-
nizational resources, timestamps, and data where tasks often
represent delays of event executions or concurrency. Looking
at the synchronization example, the ISC-related information
is encoded in the attribute timestamp of event D, which
would appear to be similar for packages of five instances.



In connection with that, attributes related to task D and the
implicit events for invisible task wait have to be considered.

In summary, an event attribute view on execution logs is re-
quired where the attributes are tasks, time, data, and resources.
These event attributes can then be utilized as classifier in the
proposed algorithm (cf. Sect. IV).

=⇒ Reqt. 2: Event attribute view on execution logs
The implementation of Reqt. 1 and 2 (cf. III-B) results in

a log consisting of one trace encountering all events. This
results in a complex log, Lvm (virtual log that contains all
merged traces), and a grouping of Lvm should be issued
in order to reduce the dimension of the problem. Since the
attributes timestamps, data and resources represent spanning-
relations, the grouping of the log depends on these attributes.
This consideration is added as third requirement:

=⇒ Reqt. 3: Dimension reduction by projection on partial
logs based on instance-spanning attributes

In Sect. III-B, an algorithm is proposed that illustrates how
the logs can be pre-processed in order to meet the set out
requirements. Sect. IV provides the ISC discovery algorithm,
i.e., classification based on the pre-processed event logs.

B. Implementation of Requirements

This section yields an algorithm to pre-process execution
logs for ISC discovery based on the requirements set out in
Sect. III-A as well as an exemplary techniqual implementation
relying on the Attribute-Relation File Format (arff)1 which
serves as input for Weka2.

Before introducing this preparation algorithm, let us take
a closer look at the event attributes. According to [6] ISC
refer to event attributes such as tasks, resources, timestamps,
and data. Specifically, ISC always refer to tasks (structural
information). Moreover, in real-world scenarios, ISC often
impose a time threshold for different settings such as the
(non) parallel execution of instances or a threshold for process
executions per day [9]. In these cases, the ISC depends on the
time attribute and one has to choose a certain level of time
granularity meaning that it might be necessary to coarsen the
timestamps to minutes, hours, days, etc.. This is of course
depending on the particular situation and could either be done
by domain experts or an algorithm depending on stochastic
methods. The latter is subject to future work.

In order to meet Reqt. 1, the trace structure of a log
L is removed, i.e., the emerging log only contains events
which are not related to a specific trace resulting in a virtual
intermediate log Lvm. After merging all events separately into
this virtual log one needs to find a method for reducing the
dimensions again in order to impose a new structure that
allows for discovering ISC candidates other than synchroniza-
tion. Every present instance-spanning attribute could be used
for this dimension reduction. Mostly, instance-spanning parts
relate to organizational resources. This is also confirmed by
the evaluation in Sect. V. Nevertheless, one could try each

1https://weka.wikispaces.com/ARFF
2http://www.cs.waikato.ac.nz/ml/weka/

attribute. We want to mention that timestamps could be too
selective, i.e., too many single arff files could be produced in
the end because it is likely that a lot of different timestamps
are present in the log. So in this case it might be useful to
adjust the granularity first as described before.

For meeting Reqt. 2, we opt to transform Lvm into an
existing format that reflects an event attribute view and can
directly be used for applying classification techniques. A
good candidate here is the Attribute-Relation File Format
(arff) which is further combined with the Weka data mining
framework. XES3 is used as input format. 4 As a result, for
each of the partial logs a decision tree or rule set is discovered
(cf. Sect. IV) which can be aggregated to improve the results.

Data: Process execution log L with traces ti; selected
attribute As

Result: one or more arff file(s)
Lvm = [ ];
for i < number of traces in L do

Lvm.appendAll(events in traces[i]);
end
attributeSet := unique As in Lvm;
if attributeSet.size < 2 then

Lvm.to arff;
else

attributeEventMap := [Lvm[events] grouped by As];
for attribute, events in attributeEventMap do

attributeEventMap[attribute].to arff;
end

end
Algorithm 1: Projection and transformation algorithm

Alg. 1 describes the projection and transformation algo-
rithm. First Lvm is generated from the original log L by
merging all traces together. Under the assumption that the in-
dermediate log should be grouped by organizational resources
the algorithm tests first if there is more than one resource
present in the log. If so, the log is projected onto partial logs
having the same resource. These logs are then saved as arff
files. In particular, the transformed files do now only contain
individual events which are no longer embedded into traces.
Each event attribute appearing at least once in the log is taken
as (class) attribute and the response variable is chosen from
that set. One data instance in the arff file consists of the
attributes appearing in the corresponding event with missing
values being marked as ”?”.

Consider the following XES snippet (Listing 1) for the
centrifuge example introduced in Sect. V where we can
see the attributes and attribute values for two events, i.e.,
examine mixtures (Listing 1, lines 3-9) and put in
centrifuge (Listing 1, lines 11-16).

3www.xes-standard.org
4It should be emphasized that other frameworks providing implementations

of classification algorithms could be used as well. Nevertheless, we chose
ARFF since its structure illustrates Reqt. 2.



Listing 1. Centrifuge example snippet in XES format
1 <t r a c e>
2 <s t r i n g key=” c o n c e p t : n a m e ” v a l u e =” c a s e 1 ” />
3 <e v e n t>
4 <s t r i n g key=” c o n c e p t : n a m e ” v a l u e =” examine m i x t u r e s ” />
5 <s t r i n g key=” o r g : r e s o u r c e ” v a l u e =”UNDEFINED” />
6 <d a t e key=” t i m e : t i m e s t a m p ”
7 v a l u e =”2016−07−13 T08 :59 :24 .000+02 : 0 0 ” />
8 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” v a l u e =” c o m p l e t e ” />
9 </ e v e n t>

10 <e v e n t>
11 <s t r i n g key=” c o n c e p t : n a m e ” v a l u e =” p u t i n c e n t r i f u g e ” />
12 <s t r i n g key=” o r g : r e s o u r c e ” v a l u e =”UNDEFINED” />
13 <d a t e key=” t i m e : t i m e s t a m p ”
14 v a l u e =”2016−07−13 T08 :59 :52 .000+02 : 0 0 ” />
15 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” v a l u e =” c o m p l e t e ” />
16 </ e v e n t>
17 . . .
18 </ t r a c e>

Applying Alg. 1 (As = organizational resource) to this
log results in the arff file depicted by Listing 2 (no partial
logs). While the XES log contained the trace information
(value="case 1") the arff file contains the event attributes
for all traces (instance-spanning).

Listing 2. Centrifuge example snippet in arff format – no resource-based split
1 @RELATION Example 2
2 @ATTRIBUTE ” c o n c e p t : name” {” examine m i x t u r e s ” , ” p u t i n
3 c e n t r i f u g e ” , ” c e n t r i f u g a t i o n ” , ” p u t o u t o f c e n t r i f u g e ” ,
4 ” check r e s u l t ” , ” d o c u m e n t a t i o n ” , ” c l e a n b i n ”}
5 @ATTRIBUTE ” org : r e s o u r c e ” STRING
6 @ATTRIBUTE ” t imes t amp ” {”2016−07−13T08 : 5 9 : 2 4 . 0 0 0 + 0 2 : 0 0 ” , . . .}
7 @ATTRIBUTE ” l i f e c y c l e : t r a n s i t i o n ” STRING
8 @DATA
9 ” examine m i x t u r e s ” , ”UNDEFINED” ,

10 ”2016−07−13T08 : 5 9 : 2 4 . 0 0 0 + 0 2 : 0 0 ” , ” c o m p l e t e ”
11 ” p u t i n c e n t r i f u g e ” , ”UNDEFINED” ,
12 ”2016−07−13T08 : 5 9 : 5 2 . 0 0 0 + 0 2 : 0 0 ” , ” c o m p l e t e ”
13 . . .

Consider another ISC stating that A user is not allowed to do
event approve loan if the total loan amount per day and
clerk exceeds $1M. [7]. Assume a corresponding execution log
containing events for 10 clerks (=̂ resources). Alg. 1 (As =
organizational resource) would merge all traces in one
log and then project the merged log on 10 projections along
the 10 resources. Finally, for each of these projections the
corresponding arff file is generated.

IV. DISCOVERING ISC CANDIDATES

The prepared arff files (cf. Alg. 1) form the input for discov-
ering the ISC decision points that are controlled based on ISC
candidates (cf. Sect. II). The metaphor of ISC decision points
suggests the application of classification techniques as for
discovering decision rules for decision points (cf. [4]). More
precisely, decision trees as well as decision rules (cf. [11])
will be used as they can directly be interpreted by users. Both
are supervised classifying learning techniques and display the
most likely decision paths. Computing decision rules and trees
requires a set of attributes, also called predictor variables
and one response variable or classifier. The candidates for
both are the attributes within the arff files and one data
instance of this file corresponds to one event and its associated
attributes in the primary log.

Alg. 2 sets out a template on how to proceed with the
generated arff files and encounters interactive parts (a)-c))
depending on user choices. It is recommended to start with

JRip because it can handle outliers better than e.g. C4.5 [12]
and event name as classifier (as mentioned before event
names represent spanning relations). This is reasonable since
the arff file is likely “noisy” due to the load of events in the
log and only a few of them might be related to ISC. As it
will be shown in the evaluation (Example 1) an ISC imposing
a synchronization can be detected without further steps. The
number of runs r is chosen by the user and its maximum is
the sum of possible adaptions in combination with the number
of decision tree and rule algorithms currently implemented in
Weka. If an ISC candidate is found it is appended to a list. At
the end the list is returned to the user.

Data: One arff file
Result: List of ISC candidate(s)
apply JRip on arff file;
determine number of runs r;
i = 0;
candidates = [ ];
while i < r do

a) remove events that are not relevant/do not appear;
b) adapt granularity of timestamps;
c) apply classification technique;
if ISC candidate found is true then

candidates.append(candidate);
end
i++;

end
return candidates;

Algorithm 2: ISC candidate discovery algorithm per arff file

After the first application of JRip, it might become nec-
essary to adapt the log. This means that the timestamps
could be coarsened to a suitable time level, e.g., minutes,
hours, or days and certain events should be neglected due to
unimportance for ISC. When the ISC is known beforehand and
should just be checked like in the first part of the evaluation
these transformations are obvious. If the existence of ISC is
unknown domain knowledge can be useful but is not required
as shown in the second part of the evaluation. It is always
possible to try different adaptions and check whether the
results have improved, i.e., if an ISC candidate was found after
the adaptions or not. Overall, two options for improving the
results in finding ISC candidates are conceivable: a) coarsening
the timestamp granularity and b) erasing events from the
log. Mining the process model can support the choice. As
mentioned in Sec. III, the automatic suggestion of the time
granularity is future work and making recommendations on
the relevance of events for the ISC candidates can be added
to this.

V. APPLYING THE PROPOSED ALGORITHMS

Supplementary material of the evaluation such as code, logs,
and analysis results is provided at http://bit.ly/2lztLv6. The

http://bit.ly/2lztLv6


source code of the log preparation algorithm is written in Ruby
using the rarff5, xml-smart6 and xes7 gems.

The ISC discovery method (cf. Sect. III and IV) is evaluated
in two ways. In Sect. V-A, its feasibility is shown based on two
artificial logs created by respecting two different real-world
ISC, i.e., the ISC are known beforehand. Secondly, the method
is applied to a real-world log in Sect. V-B for which potential
ISC are not known beforehand. The validity of discovered ISC
is evaluated based on domain expert interviews afterwards.
Both scenarios reflect use cases for the proposed methods.

A. Artificial Logs

First, two artificial logs reflecting commonly used ISC
(simultaneous execution of events or delays) are investigated.
The log files, generated by Ruby scripts, respect the ISC,
but also include random aspects. In this case an event log
conformance check with respect to the ISC is performed.

Example 1: The ISC reads as follows Wait until centrifuge
is filled. [13]. In Fig. 3 the process models based on which
the first artificial log is generated is depicted using BPMN.

Only one organizational resource (undefined)
was included and consequently Alg. 1 with
As = organizational resource transferred the whole
log (consisting of 500 traces) into a single arff file for
classification. Applying Alg. 1 with As = timestamp results
in 2956 separate arff files. Since in this case the ISC should be
checked, i.e., it is known beforehand, it is reasonable to start
with the result of Alg. 1 for As = organizational resource
to keep the computational effort as low as possible. In addition
we know that the centrifuge (shared resource) is responsible
for the instance-spanning part.

Following Alg. 2, JRip with pruning was used as first
classification technique. The result of this analysis is shown
in Fig. 4. It can be seen that the timestamps and the desired
event centrifugation with no misclassified instances is
the activity showing up most often in the decision rules. The
last line containing check results means that all other
cases are captured by this rule.

It can also be recognised that centrifugation is always
issued for a batch of 25 instances simultaneously. The numbers
in brackets (25/0) indicate this (25 instances where captured
by this rule and zero of them were misclassified). Therefore,
an ISC candidate could be The event centrifugation has
to be issued in parallel for every 25 instances. Since the ISC
should be checked, r was set to 0, because a suitable ISC
candidate was found.

If the process becomes more complex the ISC candidate
could also be found without any difficulties. Having more than
one centrifuge in use results in several log files (Alg. 1 with
As = organizational resource). This would obviously not
affect the results except that one decision rule set for each
centrifuge would be produced. The number of slots in the
centrifuge can be determined by considering the number of

5https://rubygems.org/gems/rarff/versions/0.2.2
6https://rubygems.org/gems/xml-smart
7https://rubygems.org/gems/xes

correctly classified instances when centrifugation took
place. So, checking the original ISC wait until centrifuge is
filled can be issued if the user is familiar to the quantity of
slots. Furthermore it can be concluded whether the centrifuges’
capacity was fully exploited.

If the ISC is not known beforehand, i.e., it should be
discovered, then the ISC candidate could be assessed by
conducting an expert interview.

Example 2: Another ISC, taken from the financial sector,
is A user is not allowed to do event approve loan if the
total loan amount per day and clerk exceeds $1M. [7]. The as-
sociated process is depicted in Fig. 5. It starts with a customer
request. First, a solvency check is performed. If this check is
negative the customer is informed about the rejection and his
request is deleted. Otherwise a payment schedule is developed
and sent to the customer. If the customer does not agree on
the schedule his request is deleted, else the events arrange
loan, approve loan and inform customer again,
inform head office are performed in parallel where
event approve loan may only be issued if the ISC is not
violated. Each trace finishes when the request is completed.

In consequence one instance (trace) in the event
log represents a customer loan request which is exe-
cuted by one clerk and the event attributes are event
name, organizational resource (clerk) and a
timestamp. The attributes requested amount and al-
ready approved amount per clerk and day only show up
in the log when the events arrange loan and approve
loan are triggered.

The event log is generated as follows: At the beginning
of each instance one out of 10 clerks is randomly chosen as
well as a requested amount between $5.000 and $500.000.
With a probability of 10% the solvency check is negative and
with a probability of 5% the customer rejects the payment
schedule. If the ISC is triggered, i.e., the requested amount
together with the already approved amount would exceed $1M,
the timestamp of event approve loan is generated for the
following work day. The resulting event log contains 500
traces.

Based on this log, Alg. 1 with As =
organizational resource produces 10 arff files, one for
each clerk. These files only contain single events representing
the data instances and are not related to a specific trace
anymore. Using As = timestamp in Alg. 1 results in 3689
arff files. Checking the ISC is the purpose of this case. This
helps in directly choosing the appropriate time granularity
(day level). Reapplying Alg. 1 with timestamps coarsened to
day level generated 21 arff files. This is still more than twice
as much as using As = organizational resource. For
the additional data attributes (requested amount and already
approved amount per clerk) one receives 11 arff files. So the
analysis was conducted on the 10 arff files related to the
resource.

It should be mentioned that the ISC of Example 2 is more
complex than the one for Example 1 as it consists of two
parts, i.e., the threshold of $1M per day and clerk as well as



Fig. 3. Process model for Example 1, using Signavio

Fig. 4. Result for the first example applying JRip

the delay of the approval to the following work day.
Following Alg. 2, JRip with default values, no pruning and

event name as classifier was utilized as initial step. The
results for clerk 1 are shown in Fig. 6.

It can be seen that approve loan was e.g., issued for an
amount between $501227 and $862607 and a requested
amount between $164442 and $173196. Consequently, there
has to be a threshold for approving a loan request and even a
range for the upper limit can be deduced.

The events approve loan and arrange loan seem
to be more important than others but their dependency cannot
be resolved at this stage of the analysis. So further steps are
needed.

According to Alg. 2 every event except arrange loan
and approve loan is removed from the log, so only the
data instances containing these events are left. Here it does
not make any difference if the ISC is known beforehand or
not because this step is based on the previous results and quite
intuitive.

Knowing the ISC beforehand, i.e., using this approach for
conformance checking, reduces the effort to find the right time
granularity, e.g., day level for the timestamps is immediately
chosen if the user is familiar with the ISC. Consequently, r is
chosen as the number of implemented decision tree and rule
algorithms in Weka.

If the ISC is unknown, the granularity of the timestamps has
to be coarsened incrementally, e.g., first the timestamps are
coarsened to minutes, then hours and at least days. For each
level classification techniques, in this case the RandomTree

algorithm, have to be applied using event name as response
variable since the relation between arrange loan and
approve loan has to be resolved. The final result is not
influenced because the dependency between arrange loan
and approve loan cannot be resolved unless the right gran-
ularity is chosen. In this application scenario the ISC should
only be checked, so the timestamps are coarsened to day level
and the corresponding decision tree is illustrated in Fig. 7.
The events arrange loan and approve loan marked
green (dark grey) are the ones representing the ISC. For
requested amount smaller than $190862 only arrange
loan was issued that day. It can be concluded that if the event
approve loan can be found the next day for an amount
that is smaller than $190862 the ISC was triggered on that
day causing a delay of the loan approval to the next day.
Similar results are received for the remaining nine clerks. The
discovered ISC candidate is: Each clerk is allowed to issue
approve loan as long as a threshold (around $1M) is not
reached. Otherwise he has to delay this event to the following
day.

Using As = timestamp with timestamps coarsened to day
level results in the rules depicted in Fig. 8. JRip without prun-
ing was applied on one timestamp. The third rule indicates a
threshold for clerk 5 (requested amount between $54902
and $286465, amount of clerk 5 bigger or equal to
$649282 then approve loan) but the rules are not as
significant as for the splitting by resources. The delay cannot
be seen. This is not surprising since the timestamps are
considered separately in this case.

So far our approach has been applied to artificial logs for
which the ISC was known beforehand. ISC candidates could
be derived that reflect the original ISC. In addition, the ap-
proach could also be used for deriving additional information
or reveal ISC changes, e.g., in the first example it could be
investigated if the maximum number of slots was used or in
the second example a change of the threshold for the loan
amount could be noticed. However the goal is also to find
ISC candidates when no precedent information about the log is
available. This is evaluated for a real-life log in the subsequent
section.

B. Real-life Logs

The real-life log [10] contains information on several
semester courses in higher education. For the following analy-
sis one course was selected resulting in 74 instances reflecting



Fig. 5. Process model for Example 2, using Signavio

Fig. 6. Result applying JRip for example two with event name as classifier

Fig. 7. Decision tree for second example, computed with RandomTree for
day level, only including events arrange loan and approve loan

the students participating in this course. One trace therefore
represents the progress and events related to that student during
the course. It is not known beforehand whether the log contains
data on ISC or not.

Examples of events are deadlines of milestones and exer-
cises which are issued by the organizational resource system.
Two other groups of organizational resources are the different
tutors and lecturers who trigger events like Milestone

feedback or Evaluation of presentation. The
students are also organizational resources because they can
upload milestones or can ask questions in different fo-
rums. All types of events are equipped with five attributes:
organizational resource, data, concept name,
lifecycle transition and timestamp. The data
attribute contains different information depending on the or-
ganizational resource, e.g., for a lecturer, data is a list
consisting of the course id, points, group id, lecturer id, etc..
To keep things simple and as we were not convinced of its
relevance for ISC this attribute was not included.

Alg. 1 with As = organizational resource produced
one file for each student, tutor, lecturer and the system,
altogether 80 files. Grouping them by organizational roles four
arff files studentsJoined, tutorsJoined, lecturersJoined and
system result. This is reasonable because students, as well
as tutors and lecturers are likely to have the same tasks and
trigger the same events. For As = timestamp the outcome
was 2077 arff files, so the ISC candidate search was again
issued for As = organizational resource.

The ISC candidate search started by executing Alg. 2 on
the system data set. JRip without pruning and event name
as classifier delivered the results shown in Fig. 9. It can be
recognized that these rules seem to be incomplete since there
are some deadlines missing as far as one assumes the log
to be consistent. To figure this out RandomTree with default
values was applied delivering the following results (cf. Fig.
10). The number of total instances (148) to incorrectly clas-
sified instances (74) at e.g., Exercise 2 submission



Fig. 8. Result for the second example applying JRip on one timestamp coarsened to day level

Fig. 9. Result applying JRip without pruning for the system data set

Fig. 10. Result of RandomTree for the system data set

deadline and the lack of milestone deadlines suggest that
some deadlines might have taken place on the same day. This
could be verified by inspecting the log.

The results for the tutor data set are shown in Fig. 11. It
seems as if there was a deadline for the evaluation of mile-
stones because all events Milestone feedback take place
simultaneously for all students (no misclassified instances).
The timestamps raise the question whether there could be
an internal system that is uploading all the feedbacks at the
same time. Consequently, one could think of an ISC candidate
like The tutors should give feedback for every student and
milestone within a certain time range/until a certain date (e.g.,
within 24 hours after deadline or before the deadline of the
following milestone). The feedbacks for every milestone are
uploaded simultaneously. (C I)

Similar deadlines can be seen for the lecturer data set.
Here the events are also milestone and exercise feedbacks as
well as evaluations of student presentations. An analogous ISC
could be stated All exercise and milestone feedbacks as well
as evaluations of presentations are uploaded simultaneously.

Fig. 11. Result of RandomTree for the tutor data set

(C II)
The student data set was the largest one. Starting again

with JRip with pruning 76 rules were received. As for the
second example it can be recognized that exact timestamps
are not important here and so they were coarsened to day
level resulting in the rules displayed in Fig. 12.

It can be seen that most students seem to upload their
exercises and milestones very closely to the deadlines and
after the deadlines expired no uploads seem to be possible
anymore. Consequently, another ISC candidate is All exercises
and milestones have to be uploaded before the deadline. (C
III)

Expert Interviews: The feasibility of the discovered ISC
candidates is checked based on interviews with domain ex-
perts, i.e., at first with two senior lecturers. The goal was
to learn whether there is some demand for imposing ISC in
the teaching domain in general. The definition of ISC was
explained to the senior lecturers and they were asked if they
can think of ISC in one of their courses. Both mentioned that
group work might lead to ISC since group members would
have to upload their exercises in sync before the deadline.
If there is no groupwork required the deadlines would rather
affect each instance separately. It can be concluded that C
III can be considered as ISC in case of group work. When
being asked about C I and C II the senior lecturers stated
that there are in general no official deadlines for lecturers or
tutors during the semester, but it is common that most teachers
upload their feedbacks at the same time. On top of these
rather general statements another interview with a lecturer who
was responsible for the evaluated course was conducted. He
mentioned that in this course no group work was required,
therefore C III is not instance-spanning. C I and C II do



Fig. 12. Result of JRip with pruning for the student data set at day level

not impose official deadlines, but could be best practices as
tutors prefer to upload feedback simultaneously for a set of
students. In this sense, C I and C II can be interpreted as “soft”
constraints. In fact, there exists a regulation to grade within
one month after the course, imposing a “hard” ISC then.

VI. DISCUSSION

The evaluation has shown that the presented approach is
reasonable and can be used to discover ISC candidates from a
process execution log. Nevertheless, selected corner cases and
limitations of the approach are discussed in the following.

Time granularity: The ISC examples discussed before refer
to points in time. However, there are other examples that refer
to time periods, for example, When starting the read-out of
00:00 values 99% of all meters should be read out within 6
hours. [9] Being able to detect ISC with time periods depends
on the presence of log data with respect to lifecycle transitions
of events, i.e., events distinguishing between start and end of
a task.

ISC Complexity: What if the ISC consists of several parts
like in the second example? This requires several runs of Alg.
2. If the ISC is known beforehand the number of runs r can
be adapted to this (cmp. Example 2, Sect. V-A).

Multitude of Files: What should be done if for each
instance-spanning attribute Alg. 1 generates a multitude of
files? Resources could be grouped together to reduce the
number of files that need to be investigated or timestamps
could be coarsened. If this is not possible there is currently
no other way than investigating each of the files.

Small Event Logs: As stated in [14] the problem with small
event logs is “that not enough data is available to make reliable
conclusions”. What holds true in general for process mining
can be also posing a threat to ISC mining. As suggested by
[14] one option is to try out whether or not the available data
is still sufficient to derive meaningful results. Other options
could be to collect more data (if possible) or to derive the
ISC manually together with domain experts.

VII. RELATED WORK

The topic studied in this paper is situated at the intersection
between process compliance (cf., for example, [3]) and process
mining [2], i.e., it tackles the general question on how to
discover constraints from a process execution log. Stating
formalizations and characterizations for different constraint
types is not the aim of the paper.

Constraints can be discovered by, e.g., mining a declarative
process model or by aligning procedural models based on
decision mining. Discovering declarative process models has
been proposed by, e.g., [15] and [1]. Furthermore, ProM8

plugins like the Declare Component, consisting of several
tools for determining declarative process models [16] and the
MINERful Plugin [17] were implemented for supporting users
in mining declarative models.

Decision mining deals with discovering the decision rules
connected with alternative branches. The approach was in-
troduced in [4] and further developed in [18]. Both, mining
declarative models and decision mining focus on intra-instance
constraints and do currently not address instance-spanning
constraints as it is the goal of this paper.

In general, little attention has been paid to constraints
that span multiple instances so far. First approaches address
instance batching [19], collecting ISC examples [9], as well
as modeling [6] and verifying ISC [20]. All these approaches
assume the existence of ISC or collect them from documents,
but do not aim at discovering ISC from log information.

VIII. CONCLUSION AND FUTURE WORK

This paper has provided an approach for checking and
discovering ISC candidates from event logs. One assumption
was that the ISC refer to the same process type. A definition
for ISC decision points as well as an algorithm that can
restructure the log such that a discovery of ISC candidates is
possible was presented. The evaluation based on two artificial
and one real-life log, together with expert interviews has
shown the feasibility and applicability of the approach. Two
use cases for the approach were described, i.e., conformance
checking and discovery of ISC candidates from event logs. Fu-
ture work will center on discovering ISC candidates spanning
multiple processes. Moreover, the proposed algorithms will be
optimized by developing stochastic methods for choosing the
right time granularity and making recommendations on the
relevance of events.

8http://www.promtools.org/doku.php?id=start
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