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Abstract—Traditionally, enterprise application integration
(EAI) processes structured data. Recent trends such as social
and multimedia computing led to an increase in unstructured
multimedia data like images and video streams that have to be
processed by EAI. This poses challenges to EAI with respect to
variety, velocity, and volume of the processed data. Furthermore,
multimedia data has more semantic qualities (e. g., emotions)
compared to structured data, making the data processing and
user interaction more difficult. In this work, we conduct a
literature review of industrial and mobile applications with
respect to their usage of EAI in multimedia computing. We
derive multimedia operations and map them to the enterprise
integration patterns (EIPs). We propose a realization that allows
to interact with EAI processes taking the multimedia semantics
into account, discuss EAI architecture extensions and study
message processing challenges.

I. INTRODUCTION

Through the interest of (business) applications in social me-
dia, multimedia, personal and affective computing [29], socio-
technical interactions and communications are introduced into
applications. Thus, enterprise application integration (EAI)
[23], [11] is now required to process unstructured multimedia
data, e. g., in agricultural [36], [41], [3], [25] and medical
applications [2], and from social sentiment analysis [31], [33],
[35]. Following the idea in [20], we argue that the sequence
of operations of many multimedia applications actually denote
integration processes, thus leading to new EAI characteristics
with respect to the representation and variety of the ex-
changed messages (i. e., multimodal: textual and multimedia),
the growing number of communication partners (i. e., message
endpoints), as well as the velocity (i. e., message processing
styles), and volume (i. e., message sizes) of the data [39].

However, the current EAI foundations in form of the enter-
prise integration patterns (EIPs) [11] and system architectures
[22], [12] do not address the multimedia characteristics. Ta-
ble I sets the current characteristics of the basic EAI concepts
from [23], [11] into context to those of emerging applications
[21], [29]. These characteristics lead to the following chal-
lenges, which are not met by current system implementations:

(CH1) User interaction and interoperability (interaction
with endpoints): (a) the representation of multimodal messages
(i. e., relational and multimedia), for instance, in form of
message format extensions like attachments (cf. Tab. I), and
growing variety of protocols with combined textual and media
messages (e. g., seamless integration relational and media

TABLE I
MULTIMEDIA INDUCED SHIFT OF CORE EAI CHARACTERISTICS

EAI Concept [23], [11] Foundations [23], [11] Emerging: Media [21], [29]
Message (definition) header, body header, body, attachments
Message Protocol (for-
mat)

structured / textual (e. g.,
XML, JSON)

multimodal: textual, binary
/ media (e. g., image, video)

Message size small to medium (B, kB) medium to large (kB, MB)
Message Endpoint
(sender, receiver)

few, static (e. g., on-
premise applications)

many, dynamic / volatile
(e. g., mobile / IoT devices,
cloud applications)

Message channel
(transport, style)

asynchronous synchronous / streaming,
asynchronous

Adapter, processor (in-
teraction, processing)

relational relational, semantic, confi-
dence / probability

processing). (b) The message processing and user interac-
tion changes from relational to multimodal (e. g., conditions,
expressions), which (c) requires to deal with semantics in
multimedia data, while over-coming the “semantic gap” [21],
[37] as in the current MPEG-7 standard. Although this was
addressed by several initiatives, they targeted low-level media
features that are inadequate for representing the actual seman-
tics for business applications like emotions [32].

(CH2) Architectural challenges: addressing the system de-
sign that faces the interaction with a growing number of
dynamic endpoints and the co-existence of processing styles:
asynchronous and synchronous streaming (cf. Tab. I; solved for
textual EIP processing [28]), including additionally required
components compared to the current EAI systems.

(CH3) Multimodal processing: combining processing styles
(streaming, multimodal), distributed processing units (device,
EAI system), process optimizations, and data compression to
deal with the increasing message sizes for multimodal content.

For instance, the current implementations of social media
sentiment analysis scenarios (e. g., [31]) are either focused on
textual information or process multimedia data in a yet ad-
hoc way (cf. CH1). As sketched in Fig. 1, they usually collect
and filter social feeds from sources like Twitter and Facebook
according to configurable keyword lists that are organized as
topics. The textual information within the resulting feeds is
analyzed with respect to sentiments toward the specified topic.
However, many sentiments are expressed by images in form of
facial expressions. Therefore, the received feeds would require
an multimedia Message Filter, e. g., removing all images not
showing a human, an Enricher for marking the feature, a
Splitter for splitting images with multiple faces to one-face
messages, and an Enricher, which determines the emotional
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Fig. 1. Multimedia sub-process for social media emotion harvesting (excerpt).

Fig. 2. Challenges of user-centric interaction on semantic message contents.

state of the human and adds the information to the image or
textual message, while preserving the image. The interaction
with the multimodal messages by formulating user conditions
and the required multimedia processing (cf. CH3) are currently
done by a large variety of custom functions, thus denote ad-
hoc solutions. Therefore, existing EAI systems are extended by
– as it seems – arbitrary multimedia processing components
in custom projects (cf. CH2) that destabilize these systems
and make the validation of the multimodal EAI processes
difficult. These challenges are set into context of the current
EIP processing in Fig. 2, showing the new problem areas of
user interaction (incl. semantic message representation and
custom conditions, expressions), new architecture components
for learning and detecting the semantics in the multimodal
messages, and the multimodal message processing.

In this work, we target answers to the following questions,
derived from the introduced challenges.
• User interaction (cf. CH1): Q1 Which industrial and

mobile applications require multimedia application inte-
gration? Q2 Which integration patterns are relevant? and
Q3 How could these patterns be realized and uniformly
configured for these scenarios?

• EAI System Architecture Evolution (cf. CH2). Q4 Do the
current EAI architectures (e. g., [23], [12]) need exten-
sions to support these scenarios? Q5 Which architectural
components are missing?

• Multimodal processing (cf. CH3). Q6 How can the
process-oriented multimedia integration processing be
realized and improved?

This work does not focus on the areas of content-based media
retrieval [21], [4], nor strives to improve existing algorithmic
or hardware multimedia processing aspects (e. g., on GPU
[34]), but seeks a complementary mapping of the multimedia
domain to EAI concepts.

The main contributions of this work are a logical rep-
resentation and physical realization of integration semantics
based on an extended EAI system to answer the formulated
questions (Q1–6). Therefore, we conduct a scenario analysis
in form of a literature and a system review of industrial
and mobile applications in the context of the multimedia
integration processes in Sect. II (targeting Q1). The analysis
results into a mapping of the integration requirements to
integration patterns for existing and new patterns, i. e., not
in EIP [11] (for Q2). In Sect. III, these patterns are set into
context to the integration operations required by the scenarios,
resulting to a logical representation toward a uniform user
interaction (for Q3). Thereby, we discuss their realization for
multimedia integration scenarios (for Q6) and discuss required
EAI system extensions in Sect. IV (for Q4+5). The proposed
approach is evaluated in Sect. V for its comprehensiveness
and message processing throughput for the motivating social
media example in a case study (for Q6). We discuss related
work in Sect. VI and conclude naming further open research
challenges in Sect. VII.

II. LITERATURE AND APPLICATION ANALYSIS

In this section we conduct a literature and application (app)
review targeting Q1 and Q2. The first goal is to compile a list
of industries. Based on their scenarios, multimedia operations
are discussed that are related to the EIPs from 2004 [11].

A. Methodology

Literature Review. The primary selection of industrial mul-
timedia scenarios from the litereature was conducted using
google scholar (scholar.google.com) on 2017-04-03 without
patents and citations, for the keyword “image processing
industry” and allintitle. The search results to 54 articles,
of which we selected 29 articles with selection criteria “image
processing” (e. g., in abstract, theme) and added the 10 papers
as expert knowledge (i. e., examples from the introduction),
resulting in 39 articles. We grouped the articles chronolog-
ically by the decades they were published and by industry,



Fig. 3. Literature analysis: Image processing in industries over time

shown in Fig. 3. While the contributions per industry vary, the
amount of work found per decade increases. Due to brevity, we
subsequently discuss the top three industries from the current
decade: agriculture / food, medical / pharmaceutical and social
media management. The complete list of 39 selected papers
can be found here http://bit.ly/2qkg8RJ.

Multimedia Apps. Similar to [37], we analyze current mul-
timedia apps. The leading app store in terms of the number
of applications in 06/2016 is Google Play with 2.2 million
applications1. Hence, for the application review, we searched
in Android Apps with tags “photo”, “collage” (e. g., similar
to the Aggregator pattern [11]), and “video” with “media”
as context by applying the rating “4 stars+” and “for free”
filters (e. g., tags: collage, media). We considered the first 100
entries and selected those apps with more than one million
downloads. As in the literature analysis, the keywords are
taken from the problem domain. This resulted in two selections
for tags:+photo,+media, i. e., Retrica and Instagram,
one for tags:+collage,+media, i. e., Photo Grid, and
one for tags:+video,+media, i. e., InShot Video-Editor
(only 707k downloads) without duplicates. Conducting a com-
plementing search for a similar “photography” category search
adds four more apps, i. e., Google Photo, Snapchat (both image
processing), FotoRus (collage) and Textgram (Image+Text).

B. Multimedia Processing Analysis – Results

We consider the media content – found in the literature
and apps (e. g., image, text, video) – to be transferred and
processed within an integration solution as message body (or
attachment; not in EIP [11]) and their metadata as message
header. The discussed EIPs denote message processors that
base their routing decisions or transformations on the image
content (not the metadata).

Following the methodology defined in the previous section,
the analysis of the selected literature identified 15 (i. e., nine
explicitly and six implicitly named) out of the 48 message pro-
cessing EIPs as relevant for multimedia processing. Thereby,

1Statista, visited 05/2017: https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/.

existing patterns were selected, to which multimedia opera-
tions could be semantically assigned. New patterns constitute
recurring solutions in form of operations for a specific multi-
media data problem (e. g., resize images). Table II shows those
of the explicitly named patterns, for which multiple industry
or app specific cases were found. The Idempotent Receiver
[11] was only named once, thus not shown. The implicitly
named patterns (i. e., Datatype Channel, Document Message,
Scatter-Gather, Claim Check, Canonical Data Model, Format
Indicator) denote basic integration capabilities from [11] that
are relevant for all of the multimedia integration scenarios.
During the analysis we identified nine new patterns that could
not be mapped to an existing EIP, of which two had multiple
citations (i. e., Feature Detector, Image Resizer), and thus
are in Tab. II. All patterns with only one citation were also
identified in [29] (i. e., Message Validator, Message Decay,
Message Privacy, Signer, Verifier, and the implicitly named
Format Converter) are not shown, however, the validator is
discussed further in subsequent sections due to its relevance
for multimedia processing.

Literature Review. The results of the literature analysis are
summarized in Tab. II. Note that references are added for
articles, for which integration patterns could be found. In all
of the domains (i. e., agriculture / food, medicine, and social
media) the captured images are optionally pre-processed (also
mentioned in [20] as “Capture, Share”). The pre-processing
usually includes format conversions (e. g., media formats; not
shown), resizing (e. g., [9]), message translation (e. g., noise
cancellation, consistent background [18], [9], [2]), and content
filters (e. g., hair removal for skin cancer [9]). An Image
Resizer is also used to compress the data for agricultural
monitoring (e. g., fruit monitoring [15], [3], [24]). Alterna-
tively, a Splitter pattern is used to reduce the size of the
individual features processed (e. g., [31]). The Feature Detector
for semantic objects usually summarizes the low level image
processing steps of segmentation, feature extraction and object
recognition and can be found in all of the domains. The
detected features are then either validated using a Validator
(e. g., cancer classification [18], [2]; not shown) [29] or filtered
using a Content-based Router or a Message Filter, if they do
not have the expected feature (i. e., found in all domains).
A Content Enricher is used to add contextual information to
images (e. g., weather conditions [36], [41], emotions [31]).
Alternatively the image itself is enriched (e. g., by marking
faces [31] or suspicious skin moles [2]). The clustering of
images using Sequence and Aggregator patterns was found
in social media [33]. In [13], the message deduplication is
mentioned as removal of “near-duplicates”, which is covered
by the Idempotent Receiver pattern in [11] (not shown).

Multimedia Apps. These results are backed by the review
of the eight mobile multimedia apps, shown in Tab. II. The
channel adapters – supported by all apps – denote an important
data access or collection facility to capture or load multimedia
documents in form of images or videos and share them with
the contacts on other social media platforms (e. g., Twitter,
Facebook). From the standard routing patterns, only the Ag-



TABLE II
INDUSTRY AND APP ANALYSIS RESULTS (REQUIRED

√
, NOT REQUIRED (-), PARTLY REQUIRED (

√
))

Applications Adapter Splitter Router, Filter Aggregator Translator Enricher Sequence Detector Resizer
Multimedia in Industries (from Literature Analysis)
Farming [3], [15], [36], [41], [26], [6]

√
(
√

)
√

- -
√

-
√ √

Medical [18], [9], [2], [24], [17]
√

(
√

)
√

-
√ √

-
√ √

Social [13], [31], [35]
√ √ √ √

-
√ √ √

-
Multimedia in Mobile Apps (from App Analysis)
photo+media: Instagram, Snapchat, Google Photo

√
- -

√ √ √ √ √
-

collage+media: Retrica, FotoRus, Photo Grid
√

- -
√ √ √

- -
√

video+media: InShot
√

- -
√ √ √

- -
√

text+image: Textgram (
√

) - - -
√ √

- - -
Abbreviations: Channel Adapter (Adapter), Message Filter (Filter), Content-based Router (Router), Message Translator (Translator) inlcuding Content Filter, Content Enricher (Enricher), Feature Detector (Detector), Image Resizer (Resizer).

gregator was found – especially in the image fusion “collage”
apps (e. g., Retrica, FotoRus). Special types of aggregators
are the “photo to movie” function in Google Photo and
“synchronize music and video” in InShot. Most of the apps
make use of special image or video filters, which map to the
Message Translator pattern. These filters allow to change all
aspects within an image, comparable to the well-known textual
Message Translator [11]. The enrichment of images or videos
with additional information like layouts, backgrounds, or texts
can be seen as content enricher pattern. Notably, Instagram
allows to group images as story that vanishes after some time
(i. e., Message Decay [29]; not shown). While this denotes
a Message Sequence [11] (i. e., single messages belonging
together), the aspect of a timed decay of a message or sequence
is not in [11]. Similarly, Instagram has self-deleting images,
which adds message decay or aging [29].

Further new functionality (i. e., not in EIPs) can be con-
sidered Message Privacy [29] (not shown) as “private send”
in Instagram, the detection of places or objects and the new
processing style of streaming (not shown) in Google Photos,
the signing and verification of images as “Retrica-Stamp”
in Retrica (i. e., message authenticity [29]; not shown), and
the cut, crop or resize capabilities in PhotoGrid, FotoRus
and InShot that transform the images beyond the message
translator pattern.

C. Summary: Multimodal Pattern Classification

The literature and app reviews identified several indus-
trial domains and mobile apps that require multimedia EAI.

Fig. 4. Multimodal operation classification

We collected the
required integration
aspects by mapping
them to the existing EIP
[11] that are affected by
multimedia processing
as well as identified
several new patterns
(i. e., Feature Detector,
Image Resizer, Validator,
Message Decay, Signer
and Verifier), which the

last four were already found in [29], thus not further discussed
here. In contrast, patterns like Wire Tap or Recipient List
[11] were not required by the applications, thus do not

show any significant relation to media processing. For the
subsequent definitions, we classify these patterns according
to the dimensions “complexity” and “modality”, separating
simpler from more complex operations as well as single
modal (i. e., textual, multimedia) from multimodal processing
(i. e., combined textual and multimedia). Figure 4 depicts
these categories that are currently not covered – apart from
“Capture, Share” (Adapter Channel) and “Text-to-Text”.
While many multimedia processing approaches focus on
the metadata (e. g., [10]), and thus are “Text-to-Text”,
“Media-to-Media” denotes an exclusive processing of the
multimedia data. Similarly, all complex, but single modal
cases are either exclusively textual or multimedia processing
(e. g., enrich image by adding geometrical shapes). For some
of the complex cases, additional resources are required like
a data store for the aggregator or a key store for the Signer
pattern [29]. The simple multimodal processing denotes
transformations between textual and multimedia (e. g., text
to image or image semantics to text). The more complex,
multimodal processing includes multimodal operations like
the “Media-to-Media,Text” case. We mainly focus on “Media-
to-Media”, and the routing and transformation patterns from
the analysis (e. g., filter, split, aggregate, enrich), required for
the identified multimedia integration scenarios.

III. MULTIMEDIA EAI CONCEPTS

In this section, we map the multimedia operations to the
relevant integration patterns from Tab. II (for Q3). Similar to
[4], we then define a conceptual, logical representation toward
a uniform user interaction (i. e., pattern configuration incl.
conditions and expressions) and a physical representation for
the evaluation during runtime execution, thus separating the
runtime from the user interaction.

A. Integration Patterns in the Context of Multimedia

Table III lists the relevant patterns from Tab. II (by Pat-
tern Name) and sets them into context to their multimedia
operations. We focus on the explicitly mentioned patterns in
Tab. II (without the Sequence) and include the Idempotent
Receiver, Message Validator from the list of the patterns that
were mentioned only once. All other non-listed as well as
the implicitly required patterns are either covered implicitly
(e. g., Scatter-Gather pattern is a combination of the splitter
and aggregator patterns) or left out due to brevity. In addition,
to the pattern and the corresponding multimedia operation,



TABLE III
INTEGRATION PATTERN MULTIMEDIA ASPECTS (RE-CALCULATED RECAL)

Pattern Name Multimedia
Operation

Arguments Physical Logical

explicit
Channel
Adapter

format con-
version

format indicator write create

Splitter fixed grid,
object-based

grid: horizontal, verti-
cal cuts; object

create recal/write

Router, Filter select object object - read
Aggregator fixed grid,

object-based
grid: rows, columns,
heights, width

create recal/write

Translator,
Content Filter

coloring color (scheme) write recal/write

Content
Enricher

add shape,
OCR text

object, shape+color,
text

write recal/write

Feature Detec-
tor

segmentation,
matching

object classifier read create

Image Resizer scale image size: height, width write write
extra
Idempotent
Receiver

detector,
similarity

object for comparison - read

Message Val-
idator

detector validation criteria - read

the (semantic) configuration arguments relevant for the user
interaction are added, while assuming that all operations are
executed on multimedia messages that are part of the physical
representation. For instance, all of the image collage mobile
apps in Tab. II require grid-based image fusion for rows
and columns or specify height and width parameters. The
splitter, required in the social, but also partially in medical and
farming industries, either requires simple (fixed) grid-based
horizontal or vertical cutting or a more complex object based
splitting. Subsequently, we introduce the physical and logical
representation, in which contexts the relevant multimedia EAI
concepts and patterns are defined.

B. Physical Representation

The basic EAI concepts located in the physical or runtime
representation, according to Fig. 2, are the (multimedia) Doc-
ument Message, Message Channel, Channel Adapter, Message
Endpoint (all from [11]), and Format Converter (from [29]).
In addition, all identified routing and transformation patterns
have a physical representation, with which they interact. These
patterns are grouped by their logical and physical data access
(cf. Tab. III) as read/write and read-only.

1) Basic Concepts: For multimedia processing, the physi-
cal message representation covers the multimedia format, on
which the multimedia operators are applied. Hence it is spe-
cific to the underlying multimedia runtime system or library.
The current message definition from [11] of textual content
(i. e., body) and their metadata (i. e., headers) is therefore
extended by binary body entries and attachments. That allows
to represent and query structured information in the message
body together with unstructured information as attachments at
the same time.

As denoted in Tab. III, there are patterns that create, read
and change / write to these messages. For instance, the Chan-
nel Adapter receives the multimodal messages from a Message
Endpoint (e. g., Twitter, Flickr) and transforms (write; simi-
lar to the Type Converter) the textual and multimedia formats
into a physical runtime representation (e. g., JPEG to TIFF

for OCR processing) as part of a Canonical Data Model and
creates (create) the logical representation that is based on
the semantic features of the multimedia message content, for
the user interaction. However, not all of the current integration
adapters are able to handle binary content in the message body
and/or attachments (e. g., SMTP separates both, while HTTP
only sends one multi-part body).

2) Read/write Patterns: The Splitter splits the multimedia
message either by a fixed grid (e. g., cut in half) or based on its
domain objects (e. g., human) into smaller ones. Thereby new
physical message are created, while the logical representation
has to be updated, if it cannot be recalculated (e. g., by
exploiting the information on how the image was cut). The
aggregator pattern denotes the fusion of several multimedia
messages into one. Therefore, several images are combined
using a correlation condition based on a multimedia object
(e. g., happy customers), and aggregated, when a time-based or
numerical completion condition is met (e. g., after one minute
or four correlated multimedia messages). The aggregation
function denotes a fixed grid operation that combines the
multimedia objects along the grid (e. g., 2x2 image frames
from a video stream). The logical and physical operations
are the same as for the splitter. Similarly, the Translator
and Content Filter change the properties of a multimedia
object (e. g., coloring). Since this operation is less relevant for
business application, it denotes a rather theoretical case, which
might only slightly change the logical, however, changes the
physical representation. In contrast, the Content Enricher adds
geometrical features like shapes to images, e. g., relevant for
marking or anonymization, or places OCR text, e. g., for
explanation, highlighting. Thereby, the physical and logical
representations are changed or recalculated. The Image Resizer
scales the physical image and their logical representation,
which cannot be recalculated in most cases. The resizer is
used to scale down images similar to message compression.

3) Read-only Patterns: The content-based router and mes-
sage filter patterns base their routing decision on a selected
feature or object (e. g., product, OCR text) through reading
the logical representation, while the physical multimedia data
remains unchanged. Therefore, the features or objects within
the multimedia data have to be detected. In the analysis,
a separate Feature Detector was required, which reads the
physical representation and returns a corresponding logical
feature representation. Based on this logical representation,
the Idempotent receiver and Message Validator patterns work
in a read-only mode.

C. Logical Representation

The logical representation targets the user interaction, and
thus defines a Canonical Data Model based on the domain
model / message schema of the messages and the access
patterns. Due to brevity, we comprehensively list the logical
representations for the relevant patterns in a non-mandatory
supplementary material http://bit.ly/2qr3hgi, where we also
discuss pattern modeling aspects.



Fig. 5. Conceptual Object Model.

1) Canonical Data Model for User Interaction: While
there are standards for the representation of structured domain
models (e. g., XSD, WSDL), in which business domain objects
are encoded (e. g., business partner, customer, employee),
multimedia models require a semantic representation with
a confidence measure that denotes the probability of a de-
tected feature. In contrast to [4], who defines a relational
multimedia model, we assume a graph structured schema of
the domain object (e. g., human expressing emotion) with
properties on nodes and edges. Figure 5 depicts the conceptual
representation of a property graph starting from the message
root node (and its properties, e. g., the message identifier).
For the domain object sub-graph (i. e., type Type with sub-
types SType), we add another property to the (semantic)
Document Message from Sect. III-B1, which is a transient and
removed from the message, before sent to a receiving Message
Endpoint. To express the confidence on the detected domain
object, all type and sub-type nodes get a Conf. field (e. g.,
type=human with conf.=0.85, stype=emotion, value=happy
with conf.=0.95). With this compact definition, lists of arbi-
trary domain objects can be represented. Through the schema
information, these graphs can be formally evaluated. An
instance of this model is created during message processing
by the Feature Detector pattern (cf Tab. III).

2) From Multimedia Features to Domain Objects / Message
Schema.: In our case, the term “Semantic Gap” [21], [32] de-
notes the difference between low-level image features (usually
represented by n-dimensional, numerical vector representing
an object, called feature vector) and the actual domain object
that has a meaning to the user. According to the scenario
analysis, we consider the following image features relevant:
color, position, time (interval) in a video stream, during which
the domain object was visible or the page number in an
OCR document. We assume the creation of the domain object
from the underlying features as given by the existing content-
based media retrieval mechanisms (e. g., cf. Sect. VI), which
is during the message processing in the physical runtime
representation. However, for a mapping between the runtime
and logical representation, we add the identified image features
to our multimedia message index (cf. Fig. 5).

3) Access Patterns: The defined canonical data model is at
the center of the user interaction. However, the user should
mainly require knowledge about the actual domain model,
and thus formulate all integration conditions and expressions
accordingly. Subsequently, we identify and discuss common
access patterns based on pattern arguments and the logical
data access in Tab. III.

Feature Selector. The Content-based Router, Message Filter,
Idempotent Receiver and Message Validator patterns as well
as the correlation and completion conditions of the aggregator
(not shown), the object split condition of the splitter, and the
content enricher “mark object” operation are similar in the
way they access the data and which multimedia artefacts they
require. They require a Feature Detector to detect the domain
object (by schema) and create the logical representation. Based
on this information the object is selected and the corresponding
operation is executed. For instance, the runtime system detects
a human and his / her facial expression within an image, using
the detector and creates the corresponding message model.
Now, the user can configure the splitter to select humans and
add conditions for facial expressions, to select them using the
selector. Once selected, the splitter cuts the image according to
the image coordinates of the selected feature and returns a list
of sub-types in the number of humans and the corresponding
cut images. The underlying integration runtime system takes
the list of sub-types and images and creates new messages for
each sub-type / image pair.

Detector Region. The creation of the defined message model
through feature detection is computationally expensive, since
it involves image processing. Each pattern in an integration
process requires such a detect operation, if there is no detector
prior to the pattern. Consequently, the detector can be built-
in into each pattern or added as separate operation, before a
sequence of several read-only patterns or patterns, for which
the message graph can be re-calculated (e. g., aggregator,
splitter; cf. Tab. III). For instance, for fixed grid (with pre-
defined cuts) and object splitters, the cut regions are known,
and thus the properties of the model type can be computed
(e. g., coordinates, color) and does not need to be detected.
And the Content Enricher mark operation appends the shape,
color, coordinates und a new mark node in the graph, thus
no detection is required. This way, all subsequent patterns
after a detector share the same message property index and do
not require further image operations. We call such a pattern
sequence Detector Region.

Parameterized Access. Additional information is required
for some of the patterns that change the physical representation
like the Image Resizer, which requires scale parameters, or
the shape and color information for the enricher and the
translator. Therefore these patterns modify the feature vector
directly (e. g., by changing the color or size). These changes
are detected and executed on the physical multimedia object.

IV. PATTERN REALIZATION AND EAI SYSTEM
ARCHITECTURE EXTENSIONS

In this section, we describe realizations for the described
logical and physical representations as well as the resulting



architectural extensions to EAI systems. As EAI system, we
chose the open-source Apache Camel [12] due to its broad
support of the existing EIPs [29] and its extensibility for new
patterns and pattern realizations (e. g., multimedia).

A. Pattern Realization

For the pattern realization, we require the following deci-
sions according to the definitions in Sect. III. Besides Apache
Camel as EAI system as part of the physical representation
we chose JavaCV (i. e., based on the widely used OpenCV2 li-
brary) as open source multimedia processing system including
their type converters. For the feature detection with JavaCV,
we use Haar classifiers (e. g., for facial recognition [40]),
which has to be trained with positive examples of a features
(e. g., faces) as well as negative examples (i. e., arbitrary im-
ages without the feature). It is a cascading classifier, consisting
of several simpler classifiers that are subsequently applied to
an image or region and retrieve the coordinates as well as
the object type that can be retrieved. All entering multimedia
messages are processed by applying the classifiers.

The logical representation requires a semantic graph, for
which we use the W3C Resource Definition Framework (RDF)
semantic web standard, similar to metadata representation
of images in Photo-RDF (cf. related work). For the schema
representations, we chose ontologies similar to [37] that exist,
e. g., for humans emotions (cf. vitual human ontology [7]) or
real-world business products. For each ontology, a classifier is
required to the physical runtime system. The selectors on the
semantic RDF graph model are realized by SPARQL queries.
The user interacts with the system (cf. Fig. 2) by selecting
a schema in form of an ontology and adds the SPARQL
query according to the access patterns in Sect. III-C3. If the
system has built-in ontology / classifier combinations, only the
query is added. Thereby only the domain ontology has to be
understood. For parametrized access, our extensions from the
physical representation have to be learned by the user.

B. EAI System Architecture Extensions

The system aspects required for the pattern realization, can
be summarized to the conceptual architecture building-bocks
in Fig. 6. The physical system aspects include multimedia type
converters and multimedia libraries. These libraries require
feature learning components that learn classifiers for the
semantic objects in multimedia data. The libraries evaluated
the data according to the classifiers. For the mapping be-
tween ontologies and classifiers, the Multimedia Cond., Expr.
Evaluation contains the stored domain object models (e. g.,
ontologies; not shown) as well as the repository for user
conditions and expressions (e. g., RDF statements).

For the evaluation of our approach, we extended the existing
EIPs in Apache Camel by JavaCV multimedia processing
and type converters as well as Apache Jena3 ontology, RDF
representation and SPARQL queries.

2OpenCV, visited 05/2017: http://opencv.org/
3Apache Jena, visited 05/2017: https://jena.apache.org/

Fig. 6. Conceptual EAI system architecture with multimedia extensions

V. EVALUATION

In this section, we evaluate the pattern coverage and com-
prehensiveness of our multimedia integration pattern realiza-
tions from Sect. IV, and apply them to the motivating social
media example in a realization and throughput study.

A. Pattern Coverage and Comprehensiveness

The model shall be compact, but comprehensively usable
with different image processing systems. Through the sepa-
ration of the physical runtime and logical representation for
user interaction, the comprehensiveness can be checked by
its pattern coverage and finding mappings to different image
processing systems, while keeping the integration conditions
and expressions stable. For this, we selected five multimedia
processing systems / APIs from established artificial intelli-
gence vendors: Google Vision API, HPE Haven OnDemand,
IBM Watson / Alchemy Services (e. g., also used in [16]
for textual analysis and semantic tagging), Microsoft Cog-
nitive Services, and ABBYY, which focuses exclusively on
OCR / Text. The complete list of references can be found
here http://bit.ly/2ksiqZD.

Pattern Coverage. Figure 7 depicts an overview of the
integration patterns that could be implemented by using the
vendor systems. We added the open-source multimedia pro-
cessing libraries OpenCV and Tesseract – used to realize our
reference system – for comparison as 0.5 (meaning partially
supported due to implementation effort). From our pattern list
(cf. Tab. III), the Feature Detector (i. e., for object, emotion,
geo, OCR) and the Content Enricher are explicitly covered.
While all of the vendors offer object detection and enrichment
capabilities in image or OCR texts (e. g., text, face and
emotion detection) or geometrical shapes (e. g., Google, IBM),
other operations are not supported (e. g., general message
translation, resizer, aggregator, security). Therefore extensions
in form of custom media processing are usually required,
which we realized as integration patterns using OpenCV.

Comprehensiveness. The logical representation in our ap-
proach defines the following set of entities, for which a
mapping to concepts from the vision APIs has to be found.
All multimedia types have a domain object type that is derived



Fig. 7. Vendor libraries as part of an integration system

TABLE IV
MODEL COVERAGE COMPARED TO VISION API DEFINITIONS (EXISTS AND

MAPPABLE +, NOT SUPPORTED -, PARTLY EXITS OR MAPPABLE +/-)
Vendor / Image/Any OCR Video
Entity Object type Coord. Info Prob. Page No. Text Time
Google + + +/- +/- - + -
HP + + +/- +/- + + +
IBM + + +/- +/- - + +
Microsoft + + +/- + - + +

from the domain model (ontology), the coordinates of the de-
tected domain object within the medium, object metadata, and
the probability for the correctness of the detection. For OCR,
the actual text and a page number (for documents) is added,
as well as the time (interval) in video streams. Table IV sets
our model entities into context to the vision APIs with respect
to whether the concept exists and a mapping is possible. Since
there was no information for ABBYY, and OpenCV, Tesseract
OCR require explicit programming these systems are left out.
Although the approaches are diverse in their terminology,
provided features and focus areas, the analysis shows a broad
coverage for the general model elements. Notably, the object
type is represented as list in HP, which we map to different
feature vector dimensions. The metadata is mostly provided as
name/value (e. g., Google, HP) pairs or tags (e. g., Microsoft).
This information is only usable in integration conditions and
expressions, if it can be mapped to the model domain. While
all vendors add a likelihood (e. g., Google) or score to their
models, only Microsoft supports a fine-grain likelihood per
feature vector dimension. In terms of compactness of our
model, the page number in OCR documents could be left out,
since it is only supported by HP. We decided to stick to it for
convenience, in case it is available. In summary, our proposed
model can be mostly mapped to concepts from heterogeneous
vendors and appears compact in its representation.

B. Case Study: Social Media Scenario

In this section, we apply the presented approach on the
motivating social marketing scenario presented in Sect. I
and show its impact on the message throughput in terms
of messages sizes and number of detected features (similar
to [30]). Therefore, we extended the open-source integration
system Apache Camel [12] by the architecture components in
Fig. 6 to realize the multimedia patterns from Sect. III. We
discuss the trade-off between message sizes and throughput
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Fig. 8. Multimedia message throughput of the social marketing scenario.

and compare the normal processing with the Detector Re-
gions from Sect. III-C3. As indicated in Fig. 1, the selector
region comprises the content-based router, message filter,
translator, splitter and the enricher, for which the logical
representation can be re-calculated. For this case study we
assume image message workloads from the social media
Open Images Project data set based on Google Flickr [19],
generated by the EIPBench benchmark tool [30]. For in-
stance, for filtering image messages without a human, we
use the SPARQL ASK query ASK{FILTER NOT EXISTS
{?s prefix:hasFace ?o}}, evaluated using the Apache
Jena library, which returns a Boolean that is mapped to the
filter runtime component. Similarly, the selector for split-
ting image messages with multiple humans to single mes-
sages with only one is defined as SELECT ?o WHERE {?s
prefix:hasFace ?o}, returning a list of feature vectors
and their coordinates that are then cut and routed separately
by our splitter extension.

Figure 8 shows the message throughput of the implemented
scenario for an increasing number of features detected in the
images and message sizes. Notably, the number of features
has less impact on the throughput than the message sizes
(corresponding to the image’s resolution). Hence, an image
resizer or splitter pattern could be used to improve the message
throughput, as long as the features can still be detected. For
the detector region measurement, a Feature Detector pattern
is inserted before the content router. All subsequent pattern
are contained in the detector region, and thus do not need
to detect the features again. Figure 9 shows the message
throughput of the scenario for mixed workload messages size
intervals of 1-50 kB, 50-100 kB and 850-900 kB messages
with one, eleven, and seven features, respectively. When using
the detector region the throughput increases by 2.5% and
10.3% for the smaller message sizes, however, only 0.2%
for the bigger message size. While the normal processing is
limited by the pattern with the least throughput, the detector
region is limited by the throughput of the detector. For larger
images the normal and detector region throughput are similar,
due to the increasing costs of the feature detection compared to
the other pattern processing. Therefore only improved image
processing techniques (out of scope), parallel sub-process
execution improve the throughput.
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VI. RELATED WORK

There is a large body of work produced by research
conducted in multimedia processing in venues like ACM
Multimedia, ACM Multimedia Systems, IEEE Multimedia,
IEEE Transactions on Multimedia. While most of the work
targets foundational image processing and feature extraction –
complementary to our work – we subsequently set the relevant
work into context of our solutions for the challenges in Sect. I.

User Interaction and Interoperability (cf. CH1). The work
on queries on multimedia databases and streams targets multi-
media data representation and query, similar to our approach.
In this context, many user interaction approaches focus on the
media’s metadata (e. g., name, type, publisher) and not on the
actual information within the image (e. g., [10]). Commonly,
this metadata is accessible by standards like Photo-RDF4,
which represents the semantic information in images using
RDF. While the metadata denotes textual processing, we focus
on the multimedia processing. In our realization (cf. Sect. IV)
RDF is used to represent multimedia semantics.

Further known related work targets the retrieval of mul-
timedia information from (distributed) databases [4]. The
multimedia semantics are represented by semantic attributes
based on extended generalized icons with a logical and
physical representation on a database. While our approach
separates these different representations as well, [4] targets
extended normal forms and functional dependencies between
different attributes and does not define user interaction with
the multimedia semantics on a business application-relevant
feature level that could be used for message processing. More
recently, Lin et al. developed a similarity query mechanism for
images [22] in the area of multimedia queries on multimedia
databases. While no query syntax is provided, the operator
could be used to formulate decisions based on image similarity.

System Architecture (cf. CH2). Our evaluations in Sect. V
identified the need for a change in the common EAI system ar-
chitectures [23]. While we collected the components required
for EAI, we consider the existing work on multimedia pro-
cessing system architectures complementary to our approach.
For instance, there are several systems for parallel media
processing. For processing large video streams, is handled
using distributed resource management in [39]. Similarly [1]
introduces a dataflow process network of actors, connected

4W3C - Photo-RDF, visited 05/2017: http://www.w3.org/TR/photo-rdf/

by FIFO queues, that process multimedia data and fire events
based on rules according to a domain-specific metamodel.

The OCAPI system was developed for the semantic integra-
tion of programs using a knowledge base approach including a
query processor and reasoner over image data for syntactic and
semantic integration. The knowledge base is used similar to the
ontologies in our approach – giving a semantic context, while
the query language works on the image primitives, thus rather
technical. No standard query mechanism is provided, however,
the R∗-based indexing technique might be considered for
optimizing the image message processing. The EADS WebLab
project denotes a service oriented architecture for developing
multimedia processing applications [8]. It neither targets inte-
gration processes, nor the EIPs, but defines an exchange format
based on a Media Unit to solve the problem of semantic inter-
operability between the information processing components.
Similar to our approach, the media types image, OCR text
and video are distinguished, coordinates are specified, and a
temporal segment is defined for videos. The query approach
is based on a proprietary model.

In the related business workflow domain, [27] define the
ARIA system with quality of service (QoS) guaranteeing
multimedia workflow processing. The defined media filter and
fusion multimedia operators in ARIA are similar to our mes-
sage filter and aggregator patterns. However, the processing is
limited to simple 1:1 and fork 1:n workflows.

Multimedia Processing (cf. CH3). The recent survey on
event-based media processing and analysis addresses ap-
proaches and challenges in the domain of multimedia event
processing considering audio, video and social events [37].
Events are human actions or spacial, temporal, relationship
state changes of objects, which are mostly represented in
event or situational calculi as well as contextual ontologies.
Similarly, we use domain-specific ontologies to represent the
message schema in our realization (cf. Sect. IV). The app
analysis is based on mobile apps like Flickr. The challenges
name the discussed “Semantic gap” as well as a “Model Gap”,
which is the trade-off between an event model’s complexity
and its detection performance, which we discussed as part of
our evaluation (cf. Sect. V).

Overlapping with the challenges of interoperability and
system architecture, [5] defines an interoperable interface for
distributed image processing using grid computing based on
CORBA object exchange. However, the interface and the
operations target low-level image processing (e. g., for point
and image arithmetic operations). [14] defines a system that
segments and indexes TV programs according to their audio,
visual, and transcript information. However, the approach uses
a “Media-To-Text” preprocessing, while subsequent operations
are then executed “Text-to-Text”. More recent work on parallel
processing of multimedia data mining for computer vision uses
map-reduce techniques [38] or cloud-based hadoop systems
[42]. The solutions provided target the efficient multimedia
program execution on a lower level (e. g., edge detection and
segmentation), which could be considered for more efficient
message processor implementations.



VII. CONCLUSION

In this paper, we address the fundamental topics of multi-
media application integration and provide a solution toward a
more standard user interaction and configuration of multimedia
scenarios. We conducted literature and application studies to
identify industrial and mobile scenarios requiring multimedia
integration, which resulted to a list of patterns (mostly in
[11], [29]) relevant for multimedia processing (cf. Q1+2).
For the underlying integration semantics of these patterns we
defined multimedia pattern realizations, to which we mapped
the operations from the analysis (cf. Q3). We outlined a
compact logical, multimedia representation – toward a uniform
user interaction that takes the image semantics into account –
evaluated the compactness and comprehensiveness by compar-
ison with a selection of vision API vendors. For multimedia
processing, the common architecture of EAI has to be extended
(cf. Q4). We discussed the fundamental components (cf. Q5)
and conducted a case study based on the motivating social
marketing scenario (cf. Q6).

Thereby we identified further challenges targeting more
efficient message processing (e. g., read / write optimizations
like message indexing, process optimizations), interactions
with non-standard message transformation operations (e. g.,
image resizer), new processing types compared to the EIPs
(e. g., streaming [29]) and definition of visual integration
scenario editors (e. g., query by sketch / visual queries).

Acknowledgments: We thank David Hentschel for his im-
plementation support with the multimedia pattern realizations.
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