
Dynamic Change Propagation for Process
Choreography Instances

Conrad Indiono and Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science, Vienna, Austria
{firstname.lastname}@univie.ac.at

Abstract. Business process collaborations realize value chains between
different partners and can be implemented by so called process chore-
ographies. Change has become a major driver for costly (re-)negotiations
between the participants. Static a priori prediction models exist to cal-
culate the feasibility of a change request prior to negotiation. However,
the dynamic or behavioral aspect of choreography changes at the chore-
ography instance level has not been investigated yet, i.e., the question
whether a process choreography instance is compliant with the change
request and hence allows for acceptance of the change request. This work
takes the dynamic perspective and analyzes the impact of a single change
request from one partner on the entire (distributed) choreography based
on the notion of change regions and public check points. Change strate-
gies are elaborated to ensure choreography instance state compliance.
One transaction-based approach is specified using rollback regions. It
identifies probabilistically the set of activity nodes to be compensated
at all levels of the business collaboration to ensure state compliance.
The technical evaluation enables observing the properties of the rollback
region.

Keywords: collaborative business processes, dynamic change

1 Introduction
Process choreographies implement business process collaborations between dif-
ferent partners in order to reach a joint business goal. Examples stem from
the manufacturing or logistics domain. “dynamism is the basis for agility” [10]
presents an omnipresent challenge to handling change in process choreographies.
Though some work on the static perspective of process choreography change
exists, e.g., [12,4], approaches to deal with the dynamic perspective of choreog-
raphy change are almost entirely missing [17]. This paper tackles this research
gap by considering the actual execution state of each participating partner’s pro-
cess instance to estimate the impact of a change request on the global business
choreography. The distributed nature of process choreographies poses particular
challenges as it introduces privacy elements, disallowing full insight into direct or
indirect partners’ execution environments. This means that on the static model
level, partners do not know what exact activities are scheduled to be executed
in between the interaction activities. Similarly on the dynamic level, the con-
crete current execution state as well as the historic execution log of each process
instance is not fully known for partners.

„The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-69462-7_22“.

This work extends already established work in the area of static change in
process choreographies [5]. Here choreography change is described as a process
consisting of several steps such as checking change correctness (static and dy-
namic) and negotiating the change request with the partners. The reason for the
latter is that in a fully distributed setting changes cannot be imposed on part-
ners, but have to be agreed on. Hence it can be beneficiary to estimate the costs
of such a negotiation beforehand [8], particularly as negotiation might become
a costly multi-step process [6]. Cost estimation is realized within the so called
change prediction step that is executed before the negotiation takes place. The
impact of the initial change request is estimated in terms of a normalized score
value that allows comparison between the set of available change requests.

So far, merely the static costs of a change have been considered. The dynamic
costs have only been considered in an abstracted manner, i.e., based on the
choreography model level using execution probabilities [7]. In this work, the goal
is to determine the change region of a change for different partners, i.e., the
region in which a change might be critical with respect to the choreography
instance state. Change regions have been proposed for business processes, but
not for process choreographies. Based on the change region it can be determined
whether or not a partner can apply the change right away. Further on, it can be
considered whether or not the application of change compensation actions such
as rollback might be meaningful in order to realize the change. In particular,
the costs for such actions can be taken into consideration when estimating the
change impact. This research goal is reflected in the following research questions:

– How to identify change regions for choreography changes, i.e., those regions
where changing running choreography instances could lead to an inconsistent
state?

– Once the change regions are identified, how to estimate the total impact of
a change request?

The questions are approached following the design science method (cf. [20]).
The relevance of the topic is underpinned by literature [17,8]. The created arti-
facts comprise definitions of fundamental concepts such as change regions as well
as algorithms, i.e., algorithms that determine the rollback regions. The approach
is evaluated based on a proof-of-concept implementation. Thereby the paper is
structured as follows: In Sect. 2, basic terminology is introduced: Section 3 pro-
vides new concepts on choreography instance change. Section 4 provides change
propagation strategies including compensation actions based on rollback. The
evaluation is presented in Sect. 5, followed by related work in Sect. 6 and a
conclusion in Sect. 7.

2 Motivating Example and Fundamentals

As an illustrative example, we study a pc case manufacturing use case consisting
of these roles: pc case manufacturer, buyer, metal supplier and coloring supplier.
The choreography model of this business collaboration is depicted in Fig. 1 and
can be divided into the following areas: choosing a product type (F1), checking

Root Fragment (F0) XOR Fragment (F3)AND Fragment (F2)XOR Fragment (F1)

Buyer

Seller

Inquire & Survey
Product Types

Seller

Buyer

Customization
Specification

Seller

Buyer

Stock Product
Specification

Seller

Metal Supplier

Check Availability
and Estimate T&C

Seller

Color Supplier

Check Availability
and Estimate T&C

Seller

Buyer

Confirm Product
Specification

Seller

Transporter

Notify Transport
of next batch

Transporter

Seller

Start Pickup
of next batch

Seller

Buyer
Notify Unavailability

Transporter

Buyer

Coordinate
delivery of
product

AND Fragment (F4)

triggers
manufacturing

subprocess

…

Fig. 1. Motivating Example: PC Case Manufacturing Use Case

for raw resource availability (F2), the abstracted manufacturing subprocess (F4)
and finally the delivery process (F3).

Consider a change introduced by the manufacturer in (F1), which adds an
option for laser etching custom designs. An associated change is also imple-
mented in Fragment F4, which performs the activity for the laser etching. How
can we estimate the impact these changes have on the other partners? From pre-
vious work [7] we are able to estimate this impact using execution probabilities
and an abstract adaptation cost. In this work, we improve the change region to
determine the beginning of the change and define rollback regions to mark all
possible maximal activities process instances are able to progress to. A concrete
transaction based adaptation is used, which informs the cost calculation.

Definition 1. [Choreography] Adapted from [5], we define a choreography C as
a tuple (G, P, Π, L), where

- G is the choreography model (i.e., Fig. 1).
- P is the set of all participating partners.
- Π= {πp}p∈P is the set of all private models.
- L= {lp}p∈P is the set of all public models.

The Refined Process Structure Tree (RPST) [19] is a structured ap-
proach for representing business process models. It divides the model into several
fragments, each fulfilling the single entry, single exit property (SESE). A frag-
ment is either a trivial one (a leaf in the tree), representing a single interaction
inside a sequence, or a complex one that can be either an XOR or AND fragment
and contain further sub fragments. Fig. 2 shows the pc case manufacturing use
case as a collapsed RPST. It only shows the sequence under the root fragment
(F0), consisting of leaf nodes (trivial fragments, e.g. interactions) and sub trees
representing either XOR or AND fragments (e.g., F1, F2, F3). Note that the
actual manufacturing process F4 is not shown in the root sequence due to it
being embedded under Fragment F3.

Root Fragment (F0) XOR Fragment
(F3)

AND Fragment
(F2)

XOR Fragment
(F1)

Buyer

Seller

Inquire & Survey
Product Types

F1 (XOR) F2 (AND) F3 (XOR)

Fig. 2. Top-level RPST Tree of the PC Case Manufacturing Use Case

Definition 2. [Change Patterns] from [5], we define the following change pat-
terns:

ChangePattern ::= REPLACE(oldFragment ,newFragment)

| DELETE(fragment)

| INSERT (fragment , how , pred , succ)

how ::= Parallel | Choice | Sequence

Example: To implement the laser etching scenario in Fig. 1, the
REPLACE(F0, Fnew) change pattern would be used, where Fnew is based on
F0, with the following changes: Fragment F1 has a new interaction between seller
and buyer for offering the laser etching customization. Fragment F4 is modified,
where laser etching specific interactions (e.g, with the corresponding supplier)
are added.

Definition 3. [Business Process Instance]

A business process instance is a tuple (id, m, r, as), where the following holds:
m ∈ Π ∧ r ∈ P. as is a set of tuples each of the form (a, s), where a ∈ m ∧ s ∈
{inactive, activated, running, aborted, completed} and id is a unique identifier
that is mapped to the busines process instance.

We extend the definition of Choreography from Def. 1 to be: C = (G, P,
Π, L, ΠI), where ΠI is a set of business process instances (see Def. 3), which
are running instantiations of a corresponding business process model and each
activity comprising the process model having an associated state.

3 Dynamic Change Propagation Concepts

To determine the dynamic impacts of a change operation, two components are
required: (1) identify the specific nodes that mark the beginning of the change:
the change region and (2) identify the relative position of all business process
instances (ΠI) to that change region: state compliance. Having that relative po-
sition gives an initial indication whether there could be disproportional costs in-
volved for the proposed change. Those process instances having their state before
the change region are state compliant, and are thus generally non-problematic in
regards to implementing the change. Those process instances whose running ac-
tivities are already past the change region violate state compliance, and change
implementation may potentially become problematic.

3.1 Change Region

As the basis for determining the change region, we can start with the smallest
fragment (see Def. 4), which returns the surrounding RPST fragment contain-
ing all supplied nodes. Example: the smallest fragment that contains { Inquire
& Survey Product Types } would be the interaction itself, because a leaf node
inside a RPST fragment is a fragment. The smallest fragment containing { Cus-
tomization Specification, Notify Transport of next batch } is the root fragment
F0.

Algorithm 1: Change Region Algorithm

Input:

1 δ - a change pattern (see Def. 2)

2 Begin

3 if δ.type ∈ {INSERT,DELETE} then
4 return δ.fragment

5 else
6 ins← δ.newFragment \ δ.oldFragment
7 del← δ.oldFragment \ δ.newFragment
8 Froot ← α(ins+ del); Fmin ← ∅
9 foreach node in ins+ del do

10 if Fmin = ∅ ∨ distance(Froot, node) < distance(Froot, Fmin) then
11 Fmin ← node

12 return Fmin

Definition 4. [Smallest Fragment] (from [5])
Let σ be a public model and S be a set of nodes corresponding to σ. Then:

ασ(S) returns the smallest fragment in model σ that contains all nodes from S.
Formally: ασ(S) = arg min

size(F)

{F ∈ σ | ∀n ∈ S, n ∈ F}

While the smallest fragment is sufficient to determine the beginning of a
change in the cases where the change pattern ∈ {INSERT,DELETE}, it does
not hold for REPLACE. In the case of INSERT , we know a new RPST frag-
ment is being inserted between pred and succ (see Def. 2). Thus taking the
fragment itself to mark the beginning of the change is feasible. The same con-
cept holds for DELETE change patterns. However, in the case where we have
a REPLACE change pattern as in the laser etching example, the smallest frag-
ment would return the root fragment F0 as the surrounding RPST fragment.
The beginning of that root fragment does not mark the real change, which is crit-
ical for determining the necessity of adaptation before implementing the change.
Generally, adaptation is required once the first node marking the change en-
ters a state past activated (i.e., running, aborted, completed). Recall that in the
laser etching example we have two RPST fragments being modified inside the
REPLACE operation: F1 by adding an interaction offer laser etching and F4

which adds new interactions with suppliers related to the new offer. To identify
the concrete change region a simple smallest fragment call is not sufficient. We
need to further identify the fragment nearest to the start node that has been
changed and set that as the beginning of the change region. To do so, we first
need the fragments that have been inserted (in both F1 and F4) and then find
the one with the shortest path from the start of the surrounding fragment: this
fragment (F1) marks the beginning of the change region. Algorithm 1 specifies
such a change region.

3.2 State Compliance

The second problem with determining dynamic change impact is related to the
following: while each partner is able to calculate the relative position of their

process instances from the change region, partners are only able to estimate this
location due to privacy issues. Using their own private execution log, partners
are able to discern state compliance on their own [13]. For partners to estimate
direct partners’ state compliance, public interactions can be used as checkpoints.
We know that once we have finished an interaction with another partner, the
other partner has equally finished the same interaction in their own private
process. Execution paths from that point on cannot not be accurately determined
by direct partners as it is possible that the partner progresses in such a way
that further interaction with the same partner never happens. A comprehensive
monitoring approach at the cost of privacy would be required if indirect partner
state tracking is required, as these would involve active state reports due to
lack of direct interaction points. Estimating state compliance for direct partners
can be achieved by taking a private execution log and abstracting by public
activities or interactions where the direct partner is involved. The last activity
can be seen as the current state, even though from the perspective of the private
model, the actual progress might be more advanced. Only through passing public
checkpoints can direct partners track state compliance.

Definition 5. [Choreography Instance]

We extend the definition of Choreography from Def. 3 to include choreography
instances: C = (G, P, Π, L, ΠI , κ, κ′,GI), where
- κ : corrid → {(id,m, r, as)} is a total function that maps a unique correlation
identifier to a set of business process instances working on the same business
case (see Def. 3), each assigned a unique private case id, with corrid ∈ GI .
- κ′ : (id,m, r, as) → corrid, a non-injective surjective function that maps a
unique business process instance to a correlation identifier.
- GI is the set of all active unique correlation identifiers, each representing a
single choreography instance.

In our example, a business case is started by the buyer who intends to have a
product manufactured. That buyer process starts with its own case id to track the
product. The seller creates a unique case id once a product buying confirmation
comes in and uses the same id when contacting suppliers. The two suppliers
create their individual private case ids. Finally, the transporter is contacted by
the seller, who may create a separate case id to handle the shipment. Even though
many different case ids exists, the same product is being handled and referenced.
The correlation id groups these unique case ids to the same business case. Thus
a choreography instance groups together all partners and their private process
instances working on the same business case. The known public markings are
used to set the states of each public interaction activity. However, for privacy
reasons, the partner who has direct connections with the most partners has the
most accurate view. The choreography instance from the perspective of the buyer
is more limited compared to the one of the buyer.

An aggregated choreography instance can be created (illustrated in Fig. 3) by
taking all choreography instances (in GI), applying κ on each to retrieve all the
relevant business process instances and abstracting on public activities of the
directly involved partners. The last known public activity can be registered as

Change Region

Buyer

Seller

Inquire & Survey
Product Types

Seller

Buyer

Customization
Specification

Seller

Buyer

Stock Product
Specification

Seller

Metal Supplier

Check Availability
and Estimate T&C

Seller

Color Supplier

Check Availability
and Estimate T&C

Seller

Buyer

Confirm Product
Specification

Seller

Transporter

Notify Transport
of next batch

Transporter

Seller

Start Pickup
of next batch

Seller

Buyer

Notify Unavailability

Transporter

Buyer

Coordinate
delivery of
product

AND Fragment (F4)

triggers
manufacturing

subprocess

…

4

4

3

3

2

3

1 1

Fig. 3. Example of an Aggregated Choreography Instance

the current active node. Such nodes can be counted and the frequency marked
on the choreography model (G). Each count represents a single choreography
instance. It is now possible to determine which choreography instances violate
state compliance: in Fig. 3 these are the three instances inside the change region
(WITHIN), and the seven instances after the change region (AFTER).

4 Dynamic Change Propagation Strategies

Having defined the necessary concepts, we will focus our attention on the me-
chanics of propagating changes to partners, focusing on the question of con-
sistency from the dynamic point of view. At the core, every process instance
needs to be stopped to avoid having process instances in the BEFORE state
(compliant) entering the WITHIN or AFTER state, which makes these process
instances non-compliant in terms of the change requested. This is the pessimistic
approach because we assume that regardless of the future path actually taken, it
might lead to structural conflicts due to the changes to be committed. Activities
that are still before the change region are free to be executed according to the
previous model. The change region represents a critical section, and partners
still need to decide on a common understanding for this region (see Change
Negotiation [6]). Thus any partners proceeding the execution past the change
region have at that point already made a choice with which change alternative
to proceed. Note that choosing the old version is an alternative as well. The
outcome of the change negotiation needs to match this implicitly chosen change
alternative for those process instances to remain structurally compliant. Anyone
diverging from the common understanding means that any work resulting from
that becomes unusable and has to be discarded. Partners are tied to each other
with their decisions on which change alternative to pick.

There is a significant disadvantage with this approach: all choreography in-
stances being affected by the change are stopped and no work can be executed
that falls beyond the first node in the change region, which means there is an
opportunity cost: no productive work can be performed due to the waiting time
until a change alternative has been agreed on for the contested change region.
This waiting time ensures the collaboration stays consistent. An alternative ap-
proach is the optimistic change strategy, which assumes that paying the oppor-
tunity cost (of waiting) is higher than just proceeding with execution and pay
the cost only if actual state violations occur, meaning a different change al-
ternative has been agreed on than the one partners have implicitly chosen to
proceed execution with. In order to accomplish this, we need an approach to
estimate this actual repair cost, which is the cost of transforming non-compliant

process instances to become compliant again. Weighing these two different costs
together (pessimistic cost vs optimistic cost), allows a fair estimation of effort
before change propagation is proposed to partners, and bargaining leverage once
change negotiations start. In this work, the focus is placed on the technique
for determining the repair cost, which occurs for making non-compliant process
instances compliant.

4.1 Transaction-based Optimistic Change Strategy

In this work we will focus on an optimistic change strategy that is based on
transaction support and calculates the repair cost based on performing rollback,
starting with the assumptions on the transaction model.

Transaction Model Assumptions Several papers exist that explore the nec-
essary properties a workflow transaction model should entail ([3]). Here we sum-
marize these properties and assume they are supported, independent of the con-
crete transaction model being used. The work in this paper builds on these
assumptions.

A workflow transaction is either (i) a single activity or (ii) a sequence of
activities and takes as input a consistent state transforming it into another con-
sistent state. Furthermore, workflow transactions are hierarchically nested with
the presence of subprocesses and thus sub activities. Regarding atomicity, work-
flow transactions relax the nothing property of the all-or-nothing concept of
traditional transactions [3]. Whereas traditional transactions expect an opaque
transformation step from one consistent state to another, workflow transactions
are made transparent, where each intermediate consistent state is opened up.
This transparency allows a more fine-grained ability to perform rollbacks to
past consistent states. A rollback path can be defined, which marks the back-
ward sequence of past activities from the current activity up to the desired past
consistent state. This paper takes these eligable states as rollback target in the
context of inter-organizational business processes. We assume that the past con-
sistent states, which have been traversed so far are represented and available in
the form of private and public execution logs. The visibility of which is dependent
on the partner accessing it. These execution logs are one of the required inputs
for performing selective rollback. Note that for all private activities, the owner of
the process instance is able to decide, without coordination with the associated
partners, to which past state to rollback to. But once a public activity occurs
inside the rollback path, the directly associated partner is bound to the same
rollback operation. A transitive effect can be observed as this partner directing
its partners to rollback to the relevant public activity, due to their interaction
activities in the same rollback path. A decision to rollback then, by the nature of
public interactions and the message dependency, affects other partners directly
as well as indirectly. Another assumption is the ability to assign compensation
tasks to activities, which are executed in the case an activity needs to be rolled
back. If a compensation task cannot be semantically mapped, then the activ-
ity is marked as a critical activity. The effects of critical activities are further
discussed in section 4.2.

Regarding consistency, we assume that each committed transaction after the
execution of a single activity results in a consistent state. Accordingly, each
rollback operation and thus the completion of a compensation task results in a
consistent state as well.

Regarding isolation, rolling back activities should not affect concurrently run-
ning workflow transactions (assuming they are not part of the same choreography
instance). In the case of sub activities we have a parent-child dependency be-
tween the parent activities and the called sub activities. Due to this parent-child
relationship, whenever a decision is made to rollback the parent activity, all of
the executed sub activities need to be rolled back as well. Inversely, a rollback
on a sub activity does not necessarily require a rollback on the parent activity.

Regarding durability, we assume together with consistency that all commit-
ted transactions, as well as any compensation tasks executed, are made persis-
tent.

4.2 Rollback Region

Based on the assumptions on the transaction model mentioned in the previous
section, we introduce rollback regions. Rollback region is a technique that can
be classified as a transaction-based optimistic change strategy. It is optimistic
because it allows partners to proceed the execution even while the change re-
quest has not been committed yet. Whether or not the change request will be
committed, the optimistic approach assumes that not every work result needs
to be discarded. It is transaction-based due to the use of rollback, specifically
compensation tasks, to bring non-compliant process instances back to compli-
ance. Rollback regions determine the upper bound up to which a corresponding
partner may proceed execution, and based on that calculates a cost estimation
that would be required in case compliance transformation occurs. Stopping the
execution of a process instance at an interaction gives us certain information
about the corresponding partner we are interacting with. When we are waiting
for a message then we know that the corresponding partner has not yet reached
its corresponding send activity. Conversely, when there is an upcoming receive
message activity with a partner and we haven’t yet sent the required message
for that partner to proceed, we are sure that at the worst case, that partner is
waiting for us. These checkpoints form the basis for rollback regions to estimate
the farthest activity direct partners are able to proceed. All possible paths that
can be drawn between the current activity node up to the checkpoints represent
the rollback paths to be traversed (i.e., by running the sequence of compensation
activities). The cost of a rollback path is defined in Def. 6. The act of commit-
ting a change request is itself conducted within the context of a transaction:
either all choreography instances are transformed into a consistent state, or the
change commit fails and a rollback occurs which results in the consistent state
before the change request was proposed. The rollback region captures the worst
case cost in the event of a rollback. It is important to note that not all rollback
paths need to be traversed, as only the actually traversed path represented by
the private and public execution log needs to be compensated. In the following

sections we will discuss the influencing factors that may determine the farthest
checkpoint that builds the terminal node of a rollback region.

Critical Activities The first influencing factor in determining the farthest
activity is the presence of a critical activity. Recall that critical activities are
those activities not associated with compensation tasks (c.f. Section 4.1), and
thus cannot be compensated in the event of a failed transaction (e.g. rollback).
Since the rollback region requires the presence of compensation tasks to work,
critical activities constrain the possible execution paths for process instances in
the context of a transaction-based optimistic change strategy. Concretely, from
the perspective of a single process instance, if the next activity to be executed is
a critical activity, then the optimistic change strategy becomes impossible due
to not having the prerequisite compensation task to perform a rollback. This
results in a hybrid change strategy where the change strategy can be optimistic
up to the point of the first critical activity, and switching to a pessimistic change
strategy from that point on. Of course, some process instances might emit a
different execution log which does not entail such critical activities. In that case,
the optimistic change strategy persists. A critical activity thus affects how far a
process instance, under an optimistic change strategy regime, may proceed and
in the same way limits the choices for the farthest activity.

Sync vs Async Message Passing in Interactions The W3C WS Chore-
ograhy Model defines two distinctive types of interaction activities1: The (a)
one-way interaction, for sending a single message and (b) the request-response
interaction. In the latter case, the sender expects a response from the receiver of
the initial message. In this work we define interactions to be either async or sync,
corresponding to (a) and (b) respectively. The main difference between the two

1 https://www.w3.org/TR/ws-chor-model/

Send
P2

1) Sync:

Receive
P1

Send
P2

Receive
P1

M1

Send
P2

Receive
P1

M2

a) “Receive P1” waits
for message.

b) P1’s “Send P2” activity
is now running, P1 sends
message M1 to P2.

P1:

P2:
c) P2 has received M1,
prepares M2 and sends
that message as reply.

Send
P2

Receive
P1

d) Request-Response
Messages exchanged.
Both activities enter
COMPLETED state.

Send
P2

2) Async:

Receive
P1

Send
P2

Receive
P1

M1

Receive
P2

Send
P1

M2

P1:

P2:

Send
P2

Receive
P1

a) “Receive P1” waits
for message.

b) P1’s “Send P2” activity
is now running, P1 sends
message M1 to P2,

c) P1 enters COMPLETED
state directly after sending
the message. P2 has
received M1, does not
formulate a reply and
enters COMPLETED state.

d) (optional) At a later
time, P1 requires data
from P2, and waits for the
appropriate message M2
for proceeding with its
execution.

= MARKED = ACTIVATED = RUNNING = COMPLETED

Fig. 4. Execution semantics of sync vs async interactions

interaction types is the following: in the case of the asynchronous message pass-
ing style, partners are not obliged to wait for a response after sending a message
to their partner (cf. Figure 4). This sending semantic affects the boundary of the
rollback region (i.e. the farthest activity). In a sync interaction, the two partners
are in lock-step with each other due to the necessary message coordination in
a request-response fashion. From the perspective of the sending partner p1 in a
sync interaction, the farthest activity for the corresponding partner p2 is clear
as long as the interaction has not completed: the current interaction node. The
initial sender has two states to execute inside a sync interaction: the first sending
of the initial message, and an implicit receive state for receiving the reply to the
initial message. The latter prevents the initial sender to progress the execution
of the process instance, and thus also prevent the rollback region from diverging
with the corresponding partner.

In an async interaction it is not as transparent, due to the lack of a blocking
receive activity that would wait for a reply. After an async interaction completes,
the sender will come to a waiting state only if the sender has an explicit receive
activity after the initial async send activity. Note that after a sync interaction
completes (i.e., the receiving partner has received the reply and proceeds exe-
cution), the same non-transparency issue exists for sync interactions. Rollback
region are then non-deterministic, as well as dynamic. It is non-deterministic due
to not knowing which actual execution path will be taken and which blocking
node reached. It is also dynamic, because the rollback region changes as soon
as partners pass checkpoints. A rollback region becomes a cost estimate based
on a temporary snapshot of the current state of the choreography instance, to
estimate the effort and cost required to propagate a change request.

Definition 6. [Cost of a rollback path]

Let RP be the set of private/public activities constituting a rollback path,
which does not contain a critical activity. Assume further a function costcomp(a)
that returns the cost of performing the compensation task associated with an
activity a. Then the cost of a rollback path is the sum of the cost of compensation
tasks to be executed: costrbp(RP) =

∑
a∈RP costcomp(a).

Definition 7. [Blocking Node]

A node is a blocking node if it is either a sync interaction (which includes
an implicit receive activity), an explicit receive activity, a criticial activity (an
activity without a mapped compensation task), or an end node marking the end
of the process instance.

BlockingNode ::= SyncInteractionActivity | ReceiveActivity |
CriticalActivity | EndNode

Rollback Region Algorithm Depending on the perspective of the partner
applying the rollback region, it can have different purposes. On the one hand,
from the perspective of the change initiator, the rollback region is used to cal-
culate the effort required for executing compensation tasks in order to make
process instances compliant according to the old process model. After initiating

XOR Fragment (F0)

P(b)

P(g)

XOR Fragment (F2)

A B

I

J

K

P(a)

P(h)

P(i)

G1

XOR Fragment (F1)

XOR Fragment (F3)

C D

E

F

G

H

P(c)

P(d)

P(e)
P(f)

G2

G3

G4

Example:

Pblocked(F0) = Plocal(F0, C) + Plocal(F0, G) = P(a) x P(c) + P(a) x P(e) x P(f)
Ppass(F0) = 1 - Pblocked(F0)

Plocal(F0, C) = Pedge(F, G1->A) x Pedge(F, G2->C) = P(a) x P(c)
Plocal(F0, G) = Pedge(F, G1->A) x Pedge(F, G2->F) x Pedge(F, G3->G) =
 P(a) x P(e) x P(f)

edgesxor(F0, C) = [G1->A, G2->C]
edgesxor(F0, G) = [G1->A, G2->F, G3->G]

path(F0, C) = [G1->A, A->B, B->G2, G2->C]
path(F0, G) = [G1->A, A->B, B->G2, G2->F, F->G3, G3->G]

Blocking Nodes = { C, G }

Fig. 5. Fragment-Local Blocking Node Probabilities

the change request, in an optimistic change strategy, the change initiator as-
sumes the change request becomes accepted and proceeds execution, while the
decision to commit to the change is not yet made. On the other hand, from the
perspective of the change acceptor, the rollback region is used to calculate the
effort required in order to make process instances compliant according to the
new process model. This is due to the process execution maintaining the old
version for running the current process instances. The effort then is to make the
process instances compliant to the new process models. The rollback region is
used as the core mechanism to determine the effort required to make process
instances compliant, whether for the old process model or the new one. In both
of the above cases, the rollback region algorithm requires the following inputs:
(1) the change region marking the beginning of the change, (2) the private pro-
cess model of the partner for which the dynamic impact is calculated, and (3)
the private execution log of the same partner. Since the purpose of the rollback
region is to calculate the cost of transforming non-compliant process instances
to become compliant, we define the start node to be the first node within the
change region (i.e., input (1) change region). The end node to be determined
is the farthest activity as discussed earlier. In this section we will focus on the
steps required to determine a rollback region from the perspective of a single
partner. The full specification can be found in Algorithm 2.

Step 1: Determine Fragment-Local Blocking Node Probabilities The
first step of the rollback region algorithm is to determine for each occuring block-
ing node (cf. Def. 7) its local probability of becoming activated. The rollback
region is not deterministic, as the actual path to be executed from the current
activity is still not yet known. In the simplest case we have a single blocking node
on the level of the top-most RPST fragment (inside a sequence). In this case we
can determine that in all cases, landing on this node causes the execution to stop.
In the case of inside an RPST fragment (XOR gateways), we require branching
probabilities (e.g. based on actual historical execution data) to determine the
probability of the execution engine reaching that blocking node. Thus we add

another assumption: we have access to a table of branch probabilities for the
private model of the partner whose impact we want to estimate. Blocking nodes
inside deeply nested subfragments are determined by multiplying the branch
probabilities of reaching that subfragment. Since we are only interested in the
reachability of blocking nodes through branching probabilities, multiple blocking
nodes inside the same subfragments are considered equal and only the first is
considered. By summing up these local probabilities of reaching each blocking
node, we can determine the probability of this RPST fragment becoming a ter-
minal node: Pblocking(F) (cf. Def. 9). The inverse probability of the execution
passing through the same fragment without encountering a blocking node would
then be Ppass(F) = 1− Pblocking(F).

Definition 8. [Reachability of Local Blocking Node] Given
- path(F, node), a function that returns the shortest sequence of edges starting
from the beginning of Fragment F leading to node.
- edgesxor(F, node), a function that returns the edges preceeded by an XOR
node from the path from the beginning of Fragment F leading to node, defined
as αpreceeded by xor(path(F, node)).
- Pedge(edge), a function that returns the local (XOR) branching probability of
that edge being traversed.
The reachability of a local blocking node is defined as

Plocal(F, node) =

{∏
x∈edgesxor(F,node)

Pedge(F, x) if is xor fragment(F)

1.0 otherwise

Figure 5 shows an example which calculates the probabilities of reaching
blocking nodes {C,D} inside a XOR RPST Fragment F0.

Definition 9. [Probability of a blocking RPST Fragment]

Given the local probability of reaching a blocking node inside a RPST frag-
ment F : Plocal(F, node), we can define the probability of the whole RPST frag-
ment blocking the execution:

Pblocking(F) =
∑
∀x∈nodes(F):is blocking node(x)

Plocal(F, x)

Step 2: Determine Terminal Node A terminal node is the farthest activity
a process instance may reach. In the simplest case, the terminal node is the end
node of the process model. This case happens when there is no more blocking
nodes to suspend the execution for a process instance, except the last node (i.e.,
the end node). Another case is a blocking node in the main sequence of the
top-most RPST fragment. This becomes a terminal node due to the certainty
of this node becoming activated in future executions. It could be either due
to partners having to synchronize messaging (receive activity) or reaching a
critical activity. The last case is an RPST fragment one level below the top-
most RPST fragment, which has Pblocking(F) = 1.0 (c.f., Def. 9), meaning an
absolute certainty of activating a blocking node once entered. In contrast, any
Pblocking(F) < 1.0 will have the possibility of executions avoiding blocking nodes

Algorithm 2: Local Rollback Region (LRR) Algorithm

Input:

1 Q - change region

2 πi - Private Process Model of partner i

3 Li - Private Execution Log of partner i

4 Begin

5 ∆← Q(πi); S ← head(∆); cur ← last(Li)

6 if S /∈ Li ∧ S.state /∈ {running, stopped, completed} then
7 return 0

8 else
9 // Step 1: Determine terminal node

10 foreach f in nodespathrpst(cur, πi) do
11 if Pblocking(f) = 1.0 then
12 nodeterminal ← f

13 break;

14 // Step 2: Adjust local probabilities

15 residual← 1.0; probs← ∅; subfrags← ∅
16 foreach f in nodespathrpst(cur, πi) until f = nodeterminal do
17 foreach n in nodes(f) do
18 if is blocking node(n) ∧ n /∈ subfrags then
19 probs← probs+ {(f, Plocal(f, n) ∗ residual)}
20 subfrags← subfrags+ {f}

21 residual← (1− Pblocking(f)) ∗ residual

22 assert(
∑

{(bn,p)∈probs} p = 1.0)

23 // Step 3: Calculate expected cost of rollback region

24 costexpected ← 0.0

25 foreach (bn, p) in probs do
26 costexpected ← costexpected + costrbp(nodespath(cur, bn)) ∗ p

27 return costrbp(nodespath(S, cur)) + costexpected

inside this RPST fragment. To generically determine the terminal node we take
the top-most RPST fragment and in that sequence take each node’s probability
of it becoming a blocking node. The first Pblocking(F) = 1.0 is marked as the
terminal node. An example can be seen in Figure 6, where the end node is
marked as the terminal node, due to F2 being the change region and F3 having
a Pblocking(F3) = 0.6.

Step 3: Determine Absolute Probabilities of Rollback Paths inside the
Rollback Region Having determined the terminal node, we can now calculate
the absolute probability of reaching each rollback path inside the rollback region.
The only blocking nodes we consider are those starting from the current activity
up to the terminal node (c.f., example in Figure 6). The rollback paths are built by
pairing each candidate blocking node as the end activity with the current active
node as the starting activity. For the adjustment of the probabilities we again
take the sequence of the top-most RPST fragment. For each node, we accumulate
the residual, which is the probability of not being blocked by the current node
(starting with 1.0) and adjust the local probabilities by multiplying it with the

Root Fragment (F0) XOR Fragment
(F3)

AND Fragment
(F2)

XOR Fragment
(F1)Buyer

Seller

Inquire & Survey
Product Types F1 (XOR) F2 (AND) F3 (XOR)

Pblocked:

-

1.0

Padjusted: 0.4

-

-

2

1.0

0.6

1.0

0.0

1

-

0.6

2

Costrbp:

0.6 x 4.0 = 2.4

1.0

1.0 x 0.5 = 0.5

1.0

0.5- 4.0

-Costexpected:

0.0

1 5# of Blocking
Nodes:

Total Costexpected: 0.5 + 2.4 + 0.0 = 2.9

Change Region Current Active

Fig. 6. Example of a rollback region calculation.

residual. This step stops at the terminal node. The invariant to be upheld is the
sum of all absolute probabilities = 1.0.

Step 4: Calculate Expected Cost of a Rollback Region Since rollback
regions are probabilistic and having calculated the absolute probabilities of each
rollback path, we can calculate a final value that represents the expected cost of
that rollback region. Using Def. 6 we can determine the cost of a single rollback
path. This rollback path cost is multiplied by the absolute probability of that
rollback path actually occuring (from the previous step). The sum of all these
individual rollback path costs represents the expected cost of the rollback region.
A fixed cost part exists, which is the rollback path cost that is accrued due to the
already traversed path starting from the change region up to the current active
node.

Using Rollback Region for Change Impact Analysis Recall that the goal
of this work is to have the ability to evaluate several change alternatives in terms
of change impact on the whole choreography. We have tackled that challenge
through the lens of the dynamic state of the individual process instances that
together realize the collaboration, in relation to the position of the proposed
change alternatives individually. By using rollback regions, it is possible to answer
these questions. While the specified rollback region algorithm LRR works from
the perspective of a single partner, and in that context for a single process
instance, we can now aggregate the individual expected costs of each rollback
region for a single choreography instance:

ARR(corrid, q) =
∑

i∈κ(corrid)
LRR(q, i.m, i.as)

The expected cost of a change alternative over the complete collaboration
would then become:

CRR(q) =
∑

corrid∈GI
ARR(corrid, q)

With CRR(q), it is now possible to compare change alternatives in terms
of their impacts by estimating compensation task costs, where the individual

rollback paths dynamically evolve as execution progresses. Note however, that
the LRR expects the private model πi of the partner for whom to calculate the
impact for. The change initiator does not have access to the private models of
the other partners in the collaboration. This means the aggregation conducted in
ARR(k, q) is a fan-out process, where the change initiator asks each partner for
the results of applying the local rollback region algorithm (LRR) and in the end
aggregates the returned individual expected costs. One approach exists to avoid
the communication overhead. The change initiator could estimate the change
impact of a change alternative by substituting the private model of the intended
partner with the corresponding accessible public model. The required execution
log can be either (i) derived through abstraction on the public nodes of the
intended partner or (ii) directly requested. The result of appliying the LRR on
this adjusted input cannot be accurate, as no private activities are accessible and
thus the complete compensation cost of those rollback paths unknown. What is
known are the distances of these rollback paths through the number of checkpoints
past the change region. The expected cost of change alternatives based on these
inputs are only approximations. One way to increase the accuracy would be
by all partners making public several metrics: branching probabilities, average
number of private nodes inside RPST Fragments and average compensation cost
of private activities.

5 Evaluation

As a technical evaluation we have implemented the concepts introduced in this
work, mainly rollback regions and the dependent concepts, as a proof-of-concept.
Furthermore we evaluate the output of the rollback region variations and ensure
the critical invariants are upheld2. The evaluation setup follows this methodol-
ogy: (1) Load a pre-defined choreography specified with BPMN 2.0 XML For-
mat. (2) Specify a change region. (3) Randomly scale private activities for each
role in the choreography with the following set as the number of private ac-
tivities per fragment: {2, 5, 10, 30, 50}. (4) Randomly generate business process
instances (by assigning activity states) and creating the associated choreography
instances, grouping these business process instances together. (5) Calculate the
expected cost using the different rollback region variations: (a) default LRR, (b)
public rollback region, (c) public rollback region with added information (pub-
lic branching probabilities, number of private activities inside each fragment,
average compensation task cost of private activities inside each fragment). (6)
Determine the error rate between (a) and (b) as well as (a) and (c), defined as
the difference between the final costs of each respective algorithms.

The evaluation shows that the error rate is positively correlated with the
number of private activities: as the number of private activities inside a fragment
is scaled up, so does the error rate. Error rate reduction through the rollback
region variant (c) can be observed. Thus it is possible to choose between variants
of the rollback region algorithm depending on the readiness of communication

2 The implementation can be retrieved under https://github.com/indygemma/rollback-
regions

overhead for determining dynamic change impact and sensitivity to the error
rate.

6 Related Work

The survey presented in [17] sets out the related areas for this work. One dimen-
sion is static versus dynamic change and the other dimension process orchestra-
tions versus process choreographies where this work sits at the intersection of
dynamic change and process choreography. A plethora of approaches exists for
static and dynamic change in process orchestrations [12]. Propagation strate-
gies for process evolution have been at first defined in [2] including abort, flush,
and migrate. For an efficient decision on migrating process instances change re-
gions have been proposed in [1]. Depending on the instance state relatively to
the change region the possibility to migrate this instance can be quickly made.
The most interesting case are instances that are within the change regions - this
holds also true for this work. Static change in process choreographies has been
investigated by different approaches. The survey in [17] only names DYCHOR
[14] and C3Pro [5] to deal with change propagation, i.e., other approaches focus
on structural correctness of the choreography and consistency between public
and private processes. So far only [18] has provided a first approach addressing
dynamic change in process choreographies according to [17]. [18] addresses the
problem of migrating instances after a choreography change by proposing strate-
gies for handling the migration in an ordered way, i.e., by avoiding concurrent
changes and by a protocol for the instances to accept or decline the migration.
As opposed to [18], this work focuses on the instance states and the costs of the
migration. Both approaches seem to be complementary.

Several transactional models for processes have been proposed (for an overview
see [15]). Particular focus was put on how to deal with long-running transactions
(i.e., instances) such as SAGAS [9] and Spheres [11]. Rolling back instances in
order to reach a compliant state again was proposed for process orchestrations
by [16]. This approach exploits selected ideas from transactional process man-
agement and transfers them to the context of dynamic choreography change.

7 Summary

In this work we have defined rollback regions, an algorithm to determine the ex-
pected cost of a change request in the context of process choreography instances.
The algorithm is based on a transactional model that supports compensation
tasks, the messaging semantics of interaction activities (sync vs async), as well
as the actual states each single business process instance are situated in relation
to the change region. There are several variations to the algorithm, and the eval-
uation shows that it is possible to choose the most appropriate one depending
on sensitivity to communication overhead as well as error rate. In future work
we would like to tackle the data perspective of applying change propagation
requests, both in how it affects dynamic change impact analysis and state com-
pliance, as well in the context of the change propagation algorithms themselves.
Rollback regions can be further extended to support loops as well as studying
alternative adaptations (e.g., versioning) to ensure state compliance.

Acknowledgment This work has been funded by the Vienna Science and Tech-
nology Fund (WWTF) through project ICT15-072.

References

1. van der Aalst, W.: Exterminating the dynamic change bug: A concrete approach
to support workflow change. Information Systems Frontiers 3(3), 297–317 (2001)

2. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data Knowl. Eng.
24(3), 211–238 (1998)

3. Eder, J., Liebhart, W.: Workflow transactions. In: Workflow Handbook 1997,
pp. 195–202 (January 1997), handbook of the Workflow Management Coalition
(WfMC)

4. Eshuis, R., Norta, A., Roulaux, R.: Evolving process views. Information and Soft-
ware Technology 80, 20 – 35 (2016)

5. Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing with change in
process choreographies: Design and implementation of propagation algorithms. Inf.
Syst. 49, 1–24 (2015)

6. Fdhila, W., Indiono, C., Rinderle-Ma, S., Vetschera, R.: Finding collective deci-
sions: Change negotiation in collaborative business processes. In: On the Move to
Meaningful Internet Systems. pp. 90–108 (2015)

7. Fdhila, W., Rinderle-Ma, S.: Predicting change propagation impacts in collabora-
tive business processes. In: Symposium on Applied Comp. pp. 1378–1385 (2014)

8. Fdhila, W., Rinderle-Ma, S., Indiono, C.: Change propagation analysis and pre-
diction in process choreographies. Int. J. Cooperative Inf. Syst. 24(3) (2015)

9. Garcia-Molina, H., Salem, K.: Sagas. In: Special Interest Group on Management
of Data. pp. 249–259 (1987)

10. Grefen, P., Rinderle-Ma, S., Dustdar, S., Fdhila, W., Mendling, J., Schulte, S.:
Charting process-based collaboration support in agile business networks. IEEE
Internet Computing (2017)

11. Guabtni, A., Charoy, F., Godart, C.: Spheres of isolation: Adaptation of isolation
levels to transactional workflow. In: Business Process Management. pp. 458–463
(2005)

12. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer, Heidelberg New York Dor-
drecht London (2012)

13. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems: A survey. Data Knowl. Eng. 50(1), 9–34 (Jul 2004)

14. Rinderle, S., Wombacher, A., Reichert, M.: Evolution of process choreographies in
DYCHOR. In: On the Move to Meaningful Internet Systems. pp. 273–290 (2006)

15. Rinderle-Ma, S., Grefen, P.W.P.J.: Towards flexibility in transactional service com-
positions. In: International Conference on Web Services. pp. 479–486 (2014)

16. Sadiq, S.W.: Handling dynamic schema change in process models. In: Australasian
Database Conference. pp. 120–126 (2000)

17. Song, W., Jacobsen, H.A.: Static and dynamic process change. IEEE Transactions
on Services Computing (2015)

18. Song, W., Zhang, G., Zou, Y., Yang, Q., Ma, X.: Towards dynamic evolution of
service choreographies. In: Asia-Pacific Services Computing Conference. pp. 225–
232 (2012)

19. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Busi-
ness Process Management. pp. 100–115 (2008)

20. Wieringa, R.: Design Science Methodology for Information Systems and Software
Engineering. Springer (2014)

	Dynamic Change Propagation for Process Choreography Instances

