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Abstract 

The standard bootstrap (SBS), despite being computationally intensive, is widely used in 

maximum likelihood phylogenetic analyses. We recently proposed the ultrafast bootstrap 

approximation (UFBoot) to reduce computing time while achieving more unbiased branch 

supports than SBS under mild model violations. UFBoot has been steadily adopted as an 

efficient alternative to SBS and other bootstrap approaches. 

Here, we present UFBoot2, which substantially accelerates UFBoot and reduces the risk of 

overestimating branch supports due to polytomies or severe model violations. Additionally, 

UFBoot2 provides suitable bootstrap resampling strategies for phylogenomic data. UFBoot2 

is 778 times (median) faster than SBS and 8.4 times (median) faster than RAxML rapid 

bootstrap on tested datasets. UFBoot2 is implemented in the IQ-TREE software package 

version 1.6 and freely available at http://www.iqtree.org.  

Keywords: phylogenetic inference, ultrafast bootstrap, maximum likelihood, model 

violation, polytomies  
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Standard nonparametric bootstrap (SBS) (Efron 1979; Felsenstein 1985) is widely used in 

maximum likelihood (ML) phylogenetic analyses to estimate branch supports of a 

phylogenetic tree inferred from a multiple sequence alignment (MSA). To achieve this, SBS 

generates a large number of resampled MSAs and reconstructs an ML-tree for each 

bootstrapped MSA. The resulting bootstrap ML trees are then used either to compute branch 

supports for the ML-tree reconstructed from the original MSA or to build a consensus tree 

with support values. 

Although fast ML-tree search algorithms exist for large datasets (Vinh and von Haeseler 

2004; Stamatakis 2006; Guindon et al. 2010; Nguyen et al. 2015) SBS is still very 

computationally intensive. To improve computing time rapid bootstrap (RBS; Stamatakis et 

al. 2008) and the ultrafast bootstrap (UFBoot; Minh et al. 2013) were developed. While RBS 

resembles the conservative behavior of SBS (i.e., underestimating branch supports), UFBoot 

provides relatively unbiased bootstrap estimates under mild model misspecifications.  

The key idea behind UFBoot is to keep trees encountered during the ML-tree search for the 

original MSA and to use them to evaluate the tree likelihoods for the bootstrap MSAs. To 

speed up likelihood computation even further for bootstrap MSAs, IQ-TREE employed the 

resampling estimated log-likelihood (RELL) strategy (Kishino et al. 1990). For each 

bootstrap MSA the tree with the highest RELL score (RELL-tree) represents the ML-

bootstrap tree. Contrary to SBS, UFBoot does not further ML optimize this tree. The 

discrepancy in branch supports between UFBoot and SBS emerges as bootstrap trees inferred 

by UFBoot and SBS might be different. 

Here, we present UFBoot2 that substantially speeds up UFBoot and reduces the risk for 

overestimated branch support due to polytomies or severe model violations. We also discuss 
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several resampling strategies for phylogenomics data recently implemented in UFBoot2. In 

the following we will outline these improvements. 

Accelerating UFBoot 

The likelihood computation is the major runtime bottleneck of all ML software because it lies 

at the core of all analyses. The pruning algorithm (Felsenstein 1981) efficiently computes the 

likelihood of phylogenetic trees, but still does not scale well for large data sets. Therefore, we 

adopted a modification to Felsenstein’s algorithm (see Method, Supplementary Material 

online), first introduced in RAxML. The modification exploits the reversible property of 

models of sequence evolution typically used in phylogenetic analysis, which led to a 

theoretical speedup of 4 (for DNA) or 20 (for protein data) when estimating branch lengths. 

Moreover, we employed the SIMD (single instruction, multiple data) feature to concurrently 

compute the likelihood of two MSA-sites with streaming SIMD extensions or four MSA-sites 

with advanced vector extensions, thus leading to a theoretical speedup of two or four 

compared with a non-SIMD implementation. IQ-TREE code was further optimized to avoid 

redundant computations. 

We benchmark the runtimes on 70 DNA and 45 protein MSAs (DOI 

10.5281/zenodo.854445) from TreeBASE, previously analyzed in Nguyen et al. (2015). The 

command-lines used to perform bootstrap methods are provided in Supplementary Table S1. 

UFBoot2 achieved a median speedup of 2.4 times (maximum: 77.3) compared with UFBoot 

version 0.9.6 (released on October 20, 2013).  

Correction for polytomies 

Polytomies refer to multifurcating nodes in the tree that cannot be resolved due to low 

phylogenetic signal in the data. However, phylogenetic reconstruction always assumes 
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strictly bifurcating trees. When resolving polytomies there might be multiple equivalently 

optimal bifurcating trees (Whelan and Money 2010). As UFBoot (and other bootstrap 

approaches) saves only a single optimal bifurcating tree for each bootstrap MSA, it might 

cause over-optimistic bootstrap supports for short branches (Simmons and Norton 2014).   

To correct for this shortcoming UFBoot2 implemented the following technique. Instead of 

assigning the bootstrap tree with the highest RELL for each bootstrap MSA, UFBoot2 will 

randomly select one of the trees encountered during tree search, whose RELL score is less 

than !!""# (default: 0.5) away from the highest RELL. As a result, UFBoot2 will not give 

high supports for branches resolving the multifurcations. 

It was shown with a star tree simulation that SBS and RBS sometimes led to false positives 

(bootstrap supports ≥95% for non-existing branches), whereas with this technique UFBoot 

never supported such branches (support values ≤88%) (Simmons and Norton 2014). We 

repeated the star tree simulation for UFBoot2 with the same setting as proposed in (Simmons 

and Norton 2014). We used Seq-Gen 1.3.2x (Rambaut and Grass 1997) to evolve 100 DNA 

MSAs, each of 15,000 sites, along a 4-taxon star tree with four terminal branch lengths of 

0.05, under JC model. For each MSA, we performed UFBoot2 runs under JC and GTR+Γ, 

each with 1,000 bootstrap replicates and up to 1,000 search iterations (invoked in IQ-TREE 

via "-bcor 1" option). The simulation results show that UFBoot2 resembles the original 

UFBoot in that it never supports non-existing branches (support values ≤88%). 

Reducing the impact of model violations 

Minh et al. (2013) showed that severe model violations inflate UFBoot support values. To 

resolve this issue UFBoot2 provides an option to conduct an additional step once the tree 

search on the original MSA is completed. Here, the best RELL-trees are further optimized 

using a hill-climbing nearest-neighbor interchange (NNI) search based directly on the 
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corresponding bootstrap MSA. Thus, this extra step operates like SBS, but with a quick tree 

search to save time. Bootstrap supports are then summarized from the resulting corrected 

bootstrap trees. In the following, we called this UFBoot2+NNI, which can be invoked in IQ-

TREE via “-bnni” option. 

We repeated the PANDIT simulations (Minh et al. 2013) to compare the accuracy of 

UFBoot2 and UFBoot2+NNI with SBS (1000 replicates using IQ-TREE) and RBS (RAxML 

bootstopping criterion). The simulations include 5,690 DNA MSAs (DOI 

10.5281/zenodo.854445) generated by Seq-Gen (Rambaut and Grass 1997), where the model 

parameters and the tree (which we will call the true tree in the following) were inferred from 

the original MSAs downloaded from the PANDIT database (Whelan et al. 2006). The 

accuracy of a bootstrap method M is defined by !! ! , the percentage of branches with 

support value ! (across all reconstructed trees) that occur in the true tree (Hillis and Bull 

1993). Thus, !! !  reflects the probability that a branch with support ! is a true branch. 

Figure 1 shows the results (y-axis depicts !! ! ). If the sequence evolution model used to 

infer the ML-tree agrees with the model used for simulations, then SBS, RBS and 

UFBoot2+NNI underestimated branch supports, the latter to a lower degree (Figure 1A; 

curves above the diagonal). This conservative behavior of SBS and RBS corroborates 

previous studies (Hillis and Bull 1993; Minh et al. 2013). Whereas UFBoot2 obtained almost 

unbiased branch supports (Figure 1A; curve close to the diagonal), i.e., closely matching the 

true probability of branches being correct. Thus, UFBoot2 resembles the behavior of the 

original UFBoot (Minh et al. 2013).  

Severe model violations do not influence SBS (Figure 1B; RBS not shown because RAxML 

does not support simpler models). However, UFBoot2 (like UFBoot) overestimated the 

branch supports (Figure 1B; curve below the diagonal), while UFBoot2+NNI only slightly 
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underestimated the bootstrap values (Figure 1B; curve closest to the diagonal). Thus, 

UFBoot2+NNI helps to overcome the problem of unduly high supports by UFBoot2 in the 

presence of severe model violations. 

In terms of computation times based on the analysis of 115 benchmark MSAs, UFBoot2 and 

UFBoot2+NNI showed a median speedup of 778 (range: 200-1848) and 424 (range: 233-749) 

compared with SBS, respectively. Compared with RBS, UFBoot2 and UFBoot2+NNI are 8.4 

(range: 1.5-51.2) and 5.0 (range: 0.8-32.6) times faster, respectively. Therefore, 

UFBoot2+NNI is two times (median) slower than UFBoot2. Figures S1, S2 and S3 

(Supplementary Material online) show the distributions of runtime ratios between SBS/RBS/ 

UFBoot and UFBoot2/UFBoot2+NNI. 

We conclude that UFBoot2 and UFBoot2+NNI are fast alternatives to other bootstrap 

approaches. Under no or mild model violations, UFBoot2 has the interpretation of unbiased 

bootstrap support as suggested for UFBoot (Minh et al. 2013). That is, one can trust branches 

with UFBoot2 support ≥ 95%. Users are advised to apply model violation detection methods 

(Goldman 1993; Weiss and von Haeseler 2003; Nguyen et al. 2011) before bootstrap 

analyses. UFBoot2+NNI should be applied if severe model violations are present in the data 

set at hand.  

Resampling strategies for phylogenomic data 

Recent phylogenetic analyses are typically based on multiple genes to infer the species tree, 

the so-called phylogenomics. To facilitate phylogenomic analysis, UFBoot2 implements 

several bootstrap resampling strategies: (i) resampling MSA-sites within partitions (denoted 

as MSA-site resampling as the default option), (ii) resampling genes instead of MSA-sites 

(gene-resampling, invoked via “-bsam GENE” option) and (iii) resampling genes and 

subsequently resamples MSA-sites within each gene (gene-site resampling, invoked via “-
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bsam GENESITE” option) (Gadagkar et al. 2005). Strategy (i) preserves the number of 

MSA-sites for all genes in the bootstrap MSAs, whereas strategies (ii) and (iii) will lead to 

different number of sites in the bootstrap MSAs. 

To investigate the impact of the three resampling strategies, we reanalyzed the metazoan data 

with 21 species, 225 genes and a total of 171,077 amino-acid sites (Salichos and Rokas 

2013). Figure 2 shows the ML tree inferred with IQ-TREE under edge-unlinked partition 

model (Chernomor et al. 2016), which allows separate sets of branch lengths across 

partitions. The tree replicates previous results (Salichos and Rokas 2013) and shows the 

Protostomia clade (Telford et al. 2015). However, discrepancies between resampling 

strategies are observed: while MSA-site and gene-resamplings obtained high supports 

(>95%) for branches along the backbone of the tree (Figure 2; bold lines), lower supports 

(80%) were estimated by gene-site resampling.  

By further examining 14 other empirical data sets (Bouchenak-Khelladi et al. 2008; Fabre et 

al. 2009; van der Linde et al. 2010; Stamatakis and Alachiotis 2010; Pyron et al. 2011; 

Nyakatura and Bininda-Emonds 2012; Springer et al. 2012; Hinchliff and Roalson 2013; 

Salichos and Rokas 2013; Dell’Ampio et al. 2014), we observed more discrepancies between 

resampling strategies (data not shown). Exceptionally for some data sets a number of 

branches showed almost no support (≤10%) for one resampling but high supports (≥95%) for 

the other two resampling strategies. However, there is no tendency towards systematically 

lower supports obtained by one resampling strategy.  

Taking into account the above findings, we recommend to apply all alternative resampling 

strategies. If similar bootstrap supports are obtained, then one can be more confident about 

the results.  

Conclusions 
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UFBoot2 significantly improves speed and accuracy of bootstrap values compared to 

UFBoot. It also offers new functionalities in the presence of model violations and in its 

applicability to phylogenomic data. In general, since SBS, RBS and UFBoot2+NNI share a 

disadvantage of being conservative, more research is necessary to understand the different 

biases introduced by the available phylogenetic bootstrap estimation methods. 
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Figure captions 

Figure 1. Accuracy of the standard bootstrap (SBS), RAxML rapid bootstrap (RBS), ultrafast 

bootstrap (UFBoot2) and UFBoot2 with correction (UFBoot2+NNI) for (A) correctly 

specified models and (B) severely misspecified models. The y-axis depicts the percentage of 

all branches with support value ! (across all reconstructed trees) that occur in the true tree. 

Curves above the diagonal indicate underestimation of branch supports whereas curves below 

the diagonal indicate overestimation. For each point (!,!) in the curve representing the 

accuracy of bootstrap method M, x is an inferred bootstrap value by method M whereas y 

measures the probability of branches assigned by M with support value x to be true branches, 

i.e. occuring on the true tree. Specifically, let !! (!!) be the set of branches with support 

value ! in all trees and present (absent) in the true tree. The ! value is computed as the ratio 

between |!!| and |!|, where  ! = |!!|+ |!!|. 

Figure 2. Maximum likelihood tree inferred under the edge-unlinked partition model. 

Numbers attached to the branches show the UFBoot2 bootstrap supports using MSA-site, 

gene, and gene-site resampling strategies (omitted when all three supports are 100%).  
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Figure 1 
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Figure 2 

 

 

0.3

Strongylocentrotus purpuratus

Daphnia pulex
Apis mellifera

Monosiga brevicollis

Nematostella vectensis

Ixodes scapularis

Lottia gigantea

Trichoplax adhaerens

Branchiostoma floridae

Helobdella robusta

Caenorhabditis elegans

Gallus gallus
Mus musculus

Danio rerio

Tribolium castaneum

Xenopus tropicalis
Homo sapiens

Drosophila melanogaster
Bombyx mori

Ciona intestinalis

Schistosoma mansoni
99/99/84

99/98/80

100/92/91

100/100/97

99/98/80

99/98/80

79/86/70

D
eu
te
ro
st
om

ia

Pr
ot
os
to
m
ia

Downloaded from https://academic.oup.com/mbe/article-abstract/doi/10.1093/molbev/msx281/4565479
by Vienna University Library user
on 10 November 2017


