
Supplementary Information 
UFBoot2: Improving the Ultrafast Bootstrap 

Approximation 
Diep Thi Hoang, Olga Chernomor, Arndt von Haeseler, Bui Quang Minh and Le Sy 

Vinh 

Method 
 
Speeding up Felsenstein’s pruning algorithm 
 
Here, we will provide a computationally more efficient version of the pruning 
algorithm (Felsenstein 1981). We assume a reversible Markov model of sequence 
evolution with rate matrix !. W.l.o.g., we explain the method for DNA sequences 
with character states {!,!,!,!} and i.i.d. rates.  
 
1. Felsenstein’s pruning algorithm 
 
Given a multiple sequence alignment ! with sites  !!,… ,!!, the log-likelihood of 
tree ! (with branch lengths) and rate matrix ! is computed as: 
 

ℓ ! |!,! = log ! !!|!,!
!

!!!
,     (1) 

 
where ! !!|!,!  is the site likelihood of alignment site !.  
 
 
 
 

 
 
 
 
 
Figure M1. A phylogenetic tree T used to illustrate Felsenstein’s algorithm. It is 
arbitrarily rooted at an internal node r with two direct descending nodes a and b and 
corresponding branch lengths !! and !!.  
 
 
To reduce the expensive computation of ! !!|!,! , Felsenstein (1981) introduced a 
pruning algorithm. Here, T is arbitrarily rooted at a node r with two descending nodes 
a and b. The pruning algorithm recursively traverses the tree to compute the so-called 
partial likelihood vector !!! ! , where ! ∈ !,!,!,!  for the subtree rooted at a 
(Fig. M1). Similarly, one computes the partial likelihood vector at node b: !!! ! . 
These are combined to compute the partial likelihood vector at the root: 
 

a	 b	

r	
ta	 tb	



!!! ! = !!" !! !!! !
!

!!" !! !!! !
!

,      (2) 

 
where  

!!" ! !,!∈ !,!,!,!
= ! ! = !!" 

 
is the probability of substitution from state ! to ! during evolutionary time !. Note 
that !!! !  and !!! !  are computed in a similar manner to eq. (2) from the 
descendants of a and b, respectively. 
 
The site likelihood is then: 
 

! !!|!,! = !!!!! !
!

,       (3) 

where !! is the equilibrium frequency of state !. 
 
Because ! is reversible, the site likelihood does not change as long as the branch 
lengths !! + !! = !  stays fixed, the Pulley principle (Felsenstein 1981). In other 
words, one can set !! = 0 (moving r to a). As a result, ! !! = ! 0  becomes the 
identity matrix and thus combining eq. (2) and (3) gives us: 
 

! !!|!,! = !!
!

!!! ! !!" ! !!! !
!

.       (4) 

 
In essence, Felsenstein’s algorithm is a dynamic programming algorithm. It has a time 
complexity of ! !"!! , where n, s and c are the number of sequences, sites and 
character states (4 for DNA), respectively. The space complexity is ! !"#  to store 
the partial likelihood vectors for all internal nodes of the tree. 
 
2. Eigen-decomposition 
 
Before we explain the more efficient implementation of the branch length 
computation we start with a particular feature of reversible rate matrices and their 
similarity transforms. 
 
Let ! be the rate matrix of the general time reversible model (Lanave et al. 1984) and 
! = diag !!,!! ,!! ,!!  the diagonal matrix of equilibrium state frequencies. Thus, 
the matrix 
 

!! = !!/! ∙ ! ∙  !!!/! 
 
is symmetric with real eigenvalues and real eigenvectors. Moreover, one can compute 
an orthogonal matrix ! of eigenvectors of !! such that 
 
! =!! ∙ !! ∙!, with !! ∙! = ! = diag(1,1,1,1). 
 



! is the diagonal matrix of eigenvalues of !! (and also of !). 
 
We obtain 

! =!! ∙ !!/! ∙ ! ∙  !!!/! ∙! 
 
Due to associativity of matrix multiplication 
 

!! ∙ !!/! ∙ !!!/! ∙! = !. 
 
Thus, !!! =!! ∙ !!/! and ! = !!!/! ∙!and U is the matrix of eigenvectors for !. 
 
!!"!! = !!"! !! and !!" = !!"/ !!. Because !!"! = !!" we obtain 
 

!!"!! = !!!!" .      (5) 
 
Eq. (5) will be used later. 
 
3. Speeding up branch length estimation 
 
To compute ℓ !|!,! , one needs to estimate all branch lengths of !, which in turn 
dominates the runtime. Here, one traverses the tree to optimize each branch at a time 
by e.g., the Newton-Raphson method (Olsen et al. 1994). The tree traversal is 
repeated until the log-likelihood converges. Thus, a common operation is to compute 
ℓ !|!,!  given a length ! for a branch !, !  connecting two nodes ! and !. Because 
eq. (4) is repeatedly applied when optimizing t, one needs to pre-compute the partial 
likelihood vectors !!! .  and !!! .  to save the computations. Thus, the computation 
cost of eq. (4) is !!! for a given branch length t. In the following, we present the 
technique to reduce this cost to !", i.e., a factor of ! faster than the naïve application 
of eq. (4). 
 
As derived above we have: 
 

! = ! ∙ ! ∙ !!!. 
 
Thus,  

! ! = !!" = ! ∙ !!" ∙ !!!. 
 
!!" is the diagonal matrix of eigenvalue exponentials. In other words, we have: 
 

!!" ! = !!"!!!!
!

!!"!!,      (6) 

 
for all states ! and !, where !!" and !!"!! are the entries of the eigenvectors matrix ! 
and !!!. Plugging RHS of eq. (6) into eq. (4) gives us 
 

! !!|!,! = !!
!

!!! ! !!"!!!!
!

!!"!!!!! !
!

.        



 
Rearranging the sums in this equation with the observation that !!!!" = !!"!! (eq. 5) 
gives us: 
 

! !!|!,! = !!!! !!"!!!!! !
!

!!"!!!!! !
!!

.         (7) 

 
Denote the two sums in parentheses of eq. (7) as !!! !  and !!! ! , we have: 
 

! !!|!,! = !!!!
!

!!! ! !!! ! .         (8) 

 
Comparing eq. (4) with (8), we achieve a reduction from two nested sums to just one 
sum, given that one stores the two vectors !!! !  and !!! !  instead of the partial 
likelihood vectors of !!! !  and !!! ! . The computational cost of V is twice that of 
the partial likelihood vectors, but in return the branch length estimation using eq. (8) 
is c times faster than eq. (4).  
 
4. The fast pruning algorithm 
 
The new pruning algorithm will compute and store V instead of the partial likelihood 
vectors for every internal node of the tree. To this end, plugging RHS of eq. (6) into 
eq. (2) gives us: 
 

!!! ! = !!"!!!!!
!

!!"!!!!! !
!

!!"!!!!!
!

!!"!!!!! !
!

. 

 
Rearranging this equation and replacing L by V: 
 

!!! ! = !!"!!!!!!!! !
!

!!"!!!!!!!! !
!

.     (9) 

 
And vector V at the root is computed as: 
 

!!! ! = !!"!!!!! !
!

.      (10) 

 
Taking together the fast pruning algorithm proceeds as follows: 
 

1. Perform a post-order tree traversal to compute vectors V for all nodes from V 
vectors of the descendant nodes using eqs. (9) and (10). This computation is 
twice more expensive than computing partial likelihood vectors (eq. 2). 

2. Apply eq. (8) to estimate the branch length for any branch !, !  given that !!! 
and !!! were computed. This computation is 4, 20 and 61 times faster than 
applying eq. (4) for DNA, protein and codon models, respectively. 



References 
Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood 

approach. J. Mol. Evol. 17:368–376. 
Lanave C, Preparata G, Saccone C, Serio G. 1984. A new method for calculating 

evolutionary substitution rates. J. Mol. Evol. 20:86–93. 
Olsen GJ, Matsuda H, Hagstrom R, Overbeek R. 1994. fastDNAmL: a tool for 

construction of phylogenetic trees of DNA sequences using maximum 
likelihood. Comput. Appl. Biosci. 10:41–48. 

 

Figures 

 
Figure S1. Distributions of runtime ratios between SBS and UFBoot2 (left) and 
between SBS and UFBoot2+NNI (right) on 115 empirical MSAs. 
 

 
Figure S2. Distributions of runtime ratios between RBS and UFBoot2 (left) and 
between RBS and UFBoot2+NNI (right) on 115 empirical MSAs. 
 



 
Figure S3. Distributions of runtime ratios between the original UFBoot and UFBoot2 
(left) and between original UFBoot and UFBoot2+NNI (right) on 115 empirical 
MSAs. 
 

Table 
	
Table S1. Command-lines for running IQ-TREE and RAxML bootstrap methods used 
in this study. 
Method Software version Example command-line 
Original 
UFBoot 

IQ-TREE 0.9.6 iqtree -s example.phy -m GTR+G -bb 1000 -p 
0.5 

UFBoot2 IQ-TREE 
1.6.beta5 

iqtree -s example.phy -m GTR+G -bb 1000 

UFBoot2+NNI IQ-TREE 
1.6.beta5 

iqtree -s example.phy -m GTR+G -bb 1000 -
bnni 

SBS IQ-TREE 
1.6.beta5 

iqtree -s example.phy -m GTR+G -b 100 

RAxML search RAxML 8.2.9 raxmlHPC-SSE3 -f d -m GTRGAMMA -p 
$RANDOM -s example.phy -n 
raxsearch.example.phy 

RAxML rapid 
bootstrap with 
bootstopping 

RAxML 8.2.9 raxmlHPC-SSE3 -s example.phy -m 
GTRGAMMA -n rbs.example.phy -x 
$RANDOM -N autoMRE -p $RANDOM 

 
	
 


