
Automatic Generation of Monitoring Code for
Model Based Analysis of Runtime Behaviour

Michael Szvetits
Software Engineering Group

University of Applied Sciences Wiener Neustadt
Wiener Neustadt, Austria

Email: michael.szvetits@fhwn.ac.at

Uwe Zdun
Software Architecture Research Group

University of Vienna
Vienna, Austria

Email: uwe.zdun@univie.ac.at

Abstract—Software systems are getting increasingly complex,
which makes them inherently harder to understand and instru-
ment when their behaviours should be analyzed and adapted.
Observing a system requires an examination of its implementa-
tion and writing the appropriate monitoring code. This process
can be both time consuming and error prone, especially if high-
level system properties should be analyzed which are not directly
reflected in the implementation. Furthermore, analysis needs
often arise at runtime and are handled in an unsystematic way
that is not reusable: For similar analysis tasks, the process of
examining the system and writing the monitoring logic must
be repeated. In this paper we present a language to specify
recurring monitoring patterns which are automatically expanded
into monitoring code for given models of the analyzed system.
As a consequence, the effort for writing monitoring code is re-
duced and recurring analysis tasks are better supported through
automatic code generation.

Keywords-generation; traceability; model; monitoring

I. INTRODUCTION

Software models support development teams in communi-
cating ideas, abstracting technical details and analyzing high-
level properties of the structure and behaviour of a system.
Traceability is an important concept to realize links between
such software models and their corresponding implementation
artefacts to increase the overall understanding of a system,
especially when dealing with software evolution and its ac-
companying change impacts [1]. Traceability links guide the
stepwise refinement of requirements, architectural components
and the software development process itself and usually repre-
sent predecessor-successor or master-subordinate relationships
between software artefacts [2].

If the runtime behaviour of a modelled system element must
be analyzed (e.g., to measure the performance of architectural
components or modelled operations), one has to follow the
traceability links, analyze the corresponding implementation
and write the necessary monitoring code. However, analyzing
runtime behaviour with the help of models requires that
traceability links not only exist between software development
artefacts, but also between logged runtime events and the
model elements they originate from. This forces the analyst to
write the monitoring code carefully and encode the traceability
links into the monitoring instructions, which means that the
analyst is unnecessarily concerned with technical details of the

system environment and instrumentation tools. Furthermore,
analysis needs often arise rather spontaneously at runtime
when unexpected behaviour is noticed, which means that
the running system must provide platform-specific adaptation
facilities to dynamically load and interpret the written mon-
itoring code. While the latter is more a technical challenge,
two challenges remain for the analyst:

1. The process of manually examining the system and writ-
ing the monitoring code is tedious and error prone for high-
level model elements since the corresponding implementation
parts can be complex and scattered over multiple artefacts
within the observed system.

2. Writing platform-specific monitoring code is likely fo-
cussed on the current analysis task at hand without reusability
in mind. For similar recurring analysis tasks, the process of
following the traceability links and writing the appropriate
monitoring code must be repeated even if the target platform
(i.e., the environment and set of frameworks which allow the
system and the monitoring code to run) is the same. In an ideal
setting, analysts would write the monitoring code only once
for every target platform instead of doing repetitive work.

As a result, a more systematic approach is needed where
high-level monitoring needs that arise at runtime are better
supported regarding reusability of low-level, manually written
monitoring code that is related to complex and scattered source
code artefacts. We investigate the following research questions:

• RQ1: How can the effort of writing monitoring code for
high-level runtime characteristics be reduced?

• RQ2: How can existing monitoring code be reused to
support recurring analysis tasks?

The contribution of this paper is a systematic methodology
paired with a pattern matching based template language to
specify recurring, platform-specific monitoring patterns. Mon-
itoring patterns are transformed into a code generator which
takes a model of the analyzed system, a traceability model
and a declaration of the desired runtime events as input.
If the generator can match the models and the monitoring
needs against the specified monitoring patterns, it expands the
patterns into the monitoring code that fits the current analysis
task. As a result, the effort for writing monitoring code is
reduced, the analyst is not concerned with technical details
and recurring analysis tasks are better supported.

Model

Trace

Code

...
import ...
import B.pkg.Type;
import ...
...

...
require-bundle: ...
require-bundle: B;
require-bundle: ...
...

...
func f(B.pkg.Type) {
 ...
}
...

A

Traceability
Model

Link

Link

Link

B

Fig. 1. Motivating example regarding code scattering

II. MOTIVATING EXAMPLE

Consider a scenario where a user wants to analyze some
characteristics of a connector between two components, like
the count of calls between them or the time that is actually
spent if one component accesses the other. In a component
diagram, the model element of interest would be the depen-
dency relationship between the two components. If traceability
links to its corresponding implementation artefacts are present,
the user can navigate those links and write the necessary
monitoring code for the affected code fragments. However, the
dependency relationship can manifest itself in various modules
and locations, usually scattered over the system, which makes
writing monitoring code a time-consuming and error-prone
task. Fig. 1 shows this scenario, the red lines represent the
source and target elements of the traceability links.

Now consider that a similar analysis task has to be per-
formed again, either for the same system or a system that
is implemented with the same target platform in mind (e.g.,
Java/OSGi). The previously obtained knowledge of writing the
appropriate platform-specific monitoring code cannot easily
be applied to the new problem: The process of following
traceability links and writing the appropriate monitoring code
must be repeated and might even lead to a large amount
of duplicated code. Our approach allows a user to specify
platform-specific patterns instead of writing the monitoring
code in the first place, and let an automatic routine explore
the observed system for those patterns to generate the needed
monitoring code. This renders the need for writing repetitive
code for similar analysis tasks unnecessary.

III. APPROACH OVERVIEW

Fig. 2 shows an overview of our approach. Our approach
assumes that model elements of a source model are related
to (possibly many) model elements of a platform-specific
target model via traceability links. The traceability links may

Monitoring pattern specification

Generator
feed into

patterni1

patterni2

.....

feed into

Monitoring problem instance

Pattern
expander

feed into

monitoring
code

generates

generates

Platform-specific
target model

High-level
source model

Traceability
model

fe
ed

 in
to

desired event

feed into

Analyst

patternj1

patternj2

.....

Fig. 2. Overview of the pattern based approach

have references to each other to capture essential relationships
between them. Our approach assumes that the target model
closely represents the implementation code, and thus the
system under observation. Specifically for Java, tools like
MoDisco can be used for creating and maintaining a platform-
specific target model of the system almost automatically.

If a high-level analysis task is performed, the analyst states
the desired metric of a model element (e.g., the execution time
of a modelled behaviour) in the source model. Such a metric is
essentially an aggregation expression over the desired runtime
events, for example the sum of time differences between start
and end events of a behaviour to obtain the overall execution
time. We define a runtime event as the most basic unit which
enables the extraction of information from a running system at
a specific point in time. A runtime event thus consists of a time
stamp and arbitrary data, which is often called event arguments
in object-oriented programming terms. A set of reusable event
types and a demonstration of aggregating events are presented
in our previous research results [3]. However, our previous
research results do not address the generation of monitoring
code which yields the runtime events that are necessary for
performing spontaneously arising analysis tasks.

Having the traceability model at hand, the selected model
element of the source model can be traced to the corresponding
model elements of the target model with the help of the
traceability links. The process of finding the model elements
of the target model also incorporates references between the
traceability links. The result of this process is a subset of the
model elements in the target model that are potentially relevant
for the current analysis task.

Together with a declaration of the desired runtime events,
this subset of model elements is then matched against known
monitoring patterns to check if an automatic generation of
appropriate monitoring code is feasible. The declaration of the
desired runtime events is a necessary input for this step since

for one and the same subset of model elements, the appropriate
monitoring code differs depending on the monitoring desire
(e.g., measuring the execution time and the call count of one
and the same behaviour requires different monitoring codes).

Regarding the specification of the monitoring patterns, our
approach provides a language which makes the steps of
defining the monitoring desire, navigating the target model
and writing the monitoring logic explicit (and thus, reusable).
More precisely, the language allows the analyst to operate on
the traced subset of model elements, utilize the relationships
encoded into the traceability model and write the actual mon-
itoring code. Specifying patterns for generating monitoring
code is more flexible than other generation techniques like the
factory pattern since it allows to integrate arbitrary generation
instructions and generate code for arbitrary platforms.

IV. APPROACH DETAILS

A. Pattern Matching Language

The motivating example in Section II demonstrated the
need of an automatic routine to explore a model of the
observed system for specific patterns to generate monitoring
code. A well-known strategy for exploring a solution space
for possible solutions that are restricted by constraints is
backtracking. Backtracking guarantees to find all solutions by
recursively exploring the solution space in depth-first order and
reporting solution candidates if they fulfil the given constraints,
usually defined in the form of predicate expressions. We use
a backtracking based approach to find all model elements of
interest in the target model by exploring the relationships that
are encoded in the model. Constraints are specified by user
defined predicates which narrow down the search and bind
variables to model elements of interest which can then be used
in template expressions.

For context-specific analyses, we were looking for a declar-
ative way to define patterns that are extracted from the target
model and a way to express hierarchical relationships between
model elements. For the former part, we were inspired by
Prolog because it has a declarative syntax and is inherently
backtracking based, which fits the first need described above.
For the latter part, we decided to provide predefined predicates
largely inspired by XPath as shown in Table I. Although
inspired by XPath, we decided not to extend one of its existing
implementations because some of our predicates cannot be
expressed easily in XPath (e.g., event) and its syntax does not
fit the rest of our template language.

For the actual code generation, we use a template based
code generator to process the elements of the target model that
match the patterns described by the user defined predicates.
The templates are independent from the process of creating
the target model, which means that the applicability is not
restricted to traceability-related approaches, but also covers
arbitrary monitoring tasks as long as a target model exists.
Furthermore, the backtracking logic is hidden from the analyst
and can be adapted without changing existing, user defined
monitoring patterns. As a result, monitoring patterns can be
reused across many systems and monitoring tasks.

TABLE I
PREDEFINED PREDICATES THAT ALLOW TO NAVIGATE THE TARGET MODEL

Predicate Description Example of Use
ancestor(X,P) Finds parent P of X in a transi-

tive manner.
Find an enclosing type
or behaviour.

child(X,C) Finds child C of X , i.e. X is a
parent of C.

Find a method of a
given class.

descendant(X,D) Finds child D of X in a transitive
manner.

Find a method in a
given package.

element(X) Finds model element X in the
target model.

Declare a root model
element, e.g. a class.

event(X) True if the desired event of the
transformation matches X .

X is the name of the
desired event.

findall(X,P, L) Enumerates all solutions for vari-
able X in predicate P into list L.

Find all packages a
class is located in.

parent(X,P) Finds parent P of X , i.e. X is a
child of P .

Find the method of a
parameter.

sibling(X,S) Finds element S with the same
parent as X .

Find a related pair of
getter and setter.

The key difference between our approach and other model-
to-text transformation approaches is that a monitoring pattern
can appear anywhere in a template, which then gets expanded
as long as the backtracking algorithm is able to satisfy the
constraints declared by the pattern. As a result, the analyst
doesn’t need to follow traceability links manually and write the
monitoring code accordingly, but instead defines a monitoring
pattern once and let the backtracking mechanism expand the
monitoring instructions where necessary. The syntax of such
a monitoring pattern is as follows:
〈pattern〉 ::= 〈constraints〉 ’{’ 〈template〉 ’}’

〈constraints〉 ::= 〈predicate〉 [’,’ 〈constraints〉]

〈predicate〉 ::= 〈name〉 [’(’ 〈params〉 ’)’]

〈params〉 ::= 〈name〉 [’:’ 〈type〉] [’,’ 〈params〉]

〈name〉 ::= ’a’|...|’z’ | 〈name〉 (’a’|...|’z’|’A’|...|’Z’|)

〈type〉 ::= ’A’|...|’Z’ | 〈type〉 (’a’|...|’z’|’A’|...|’Z’|)

〈template〉 ::= template with params in scope

A monitoring pattern consists of user defined constraints and
a template which gets expanded if the backtracking algorithm
is able to satisfy all of the constraints. Each constraint is a
predicate with named parameters (see Table I for examples).
When the transformation algorithm encounters a pattern, it
stepwise tries to satisfy the given predicates by binding their
named parameters to concrete model element instances of
the target model. This constraint satisfaction step utilizes the
hierarchical relationships between the elements found in the
target model and the traceability model. If a predicate cannot
be satisfied, backtracking takes place to find an alternative
solution for the most recently satisfied predicate before retry-
ing the failed one again. If all predicates can be satisfied,
the corresponding template is expanded, whereas the bound
parameters can be used in template expressions to tailor the
generated code to various monitoring needs. Within a template,
text and string literals are expanded as is, while expressions
using the bound parameters are enclosed in pipe symbols
to indicate special interpretation. The process is repeated for
every combination of model elements that satisfy the pattern.

B. Application to the Motivating Example

To demonstrate the usage of the language, we create a
monitoring pattern to solve the problem that was introduced
by the motivating example in Section II. We choose the Java
meta-model provided by the MoDisco project for the platform-
specific target meta-model. This meta-model describes the
building blocks of the Java programming language (e.g., class
definitions, method signatures) and allows us to reference Java
language concepts in the monitoring patterns.

We demonstrate the counting of method calls between
the components based on the traced import statements. We
can achieve this in a crosscutting manner with the help of
generated AspectJ code in the following way (the pattern is
part of a bigger template which is omitted here):

event(DataExchanged), element(imp : ImportDeclaration),
parent(imp, c : CompilationUnit), child(c, t : Type) {

@Before("call(* |imp.importedElement.name|.*(..)
&& within(|c.package.name|.|t.name|+)")

public void measureCallCount_|i++|() {
// Yield event that cross-package call occurred:
// DataExchanged event = new DataExchanged(...);

}
}

The predicate event defines the desired event and must
be communicated by the analyst through the modelling en-
vironment. This is necessary to disambiguate the desire of
the specified monitoring pattern because two different patterns
could target the same set of model elements in their predicates,
but differ in the code that should be generated based on the
runtime characteristic that should be measured. An example
would be a behaviour for which either the call count or the
execution time should be analyzed.

The predicate element searches the relevant part of the target
model for a Java element of type ImportDeclaration, for which
the predicate parent matches its enclosing compilation unit.
The predicate child then locates a type (class, interface, etc.)
of the compilation unit which contains the import statement
of interest. In combination with the backtracking mechanism,
we find all types that potentially make use of traced import
statements and generate the appropriate monitoring code for
each occurrence. Similar rules can also be written for other
concrete dependency manifestations like bundle references or
parameters (recall Fig. 1). Note that in the example above,
the predicates parent and child can also be substituted by the
predicate sibling (see Table I) to shorten the pattern while
achieving the same result. Also note that no elements of
the source meta-model are referenced, which means that the
pattern is independent from the used modelling language.

V. CASE STUDY

We illustrate the applicability of our approach in the con-
text of a case study where runtime characteristics of an
autonomously acting LEGO robot are assessed. The LEGO
robot was built and implemented during a course at the
University of Applied Sciences Wiener Neustadt. The robot
is able to calibrate itself, follow a user-defined path, receive
step-by-step directions from an external operator and discover

its environment on its own. The robot software was realized in
a model-driven manner by generating OSGi bundles and Java
stubs from six UML models (use case, component, package,
class, activity and state diagram) and implementing the cor-
responding Java code for the generated artefacts, leading to a
system consisting of 4195 lines of code. Model transformation
yielded the needed traceability model. We utilized MoDisco
for obtaining the Java target model of the generated code. The
resources of the case study (toolchain, models, model trans-
formation scripts, monitoring patterns, generated monitoring
codes and additional notes) are available online1.

A. Effort Reduction

One of the robot software components controls the move-
ment and the general behaviour of the robot, while another
one is responsible for analyzing and finding paths when the
robot explores the environment on its own. During exploration,
these two components heavily interact with each other to
steer the robot along the computed paths. For assessing the
degree of coupling between these components, we wanted
to measure the count of method calls between them using
aspect-oriented techniques. This turned out to be a complex
and time-consuming task for the analyst because for every pair
of packages contained in the two components, a corresponding
pointcut and advice must be formulated. Furthermore, writing
these aspect-oriented constructs is highly repetitive since the
code fragments only differ in their respective package paths.

As an alternative, we decided to write a monitoring pattern
which is expanded for every pair of packages within two
dependent components. In the target model, the dependency
between two components is realized as an OSGi manifest
attribute of the form Require-Bundle: lego.path. Having the
traceability model and the target model at hand, it is quite
easy to write a monitoring pattern which selects the manifest
attribute, finds the corresponding packages and generates the
necessary monitoring code (see the full template online):

event(DataExchanged), element(man : ManifestAttribute) {
if (man.key.equals("Require-Bundle")) {

/* Find parent bundle of "man" (source).
* Find bundle named in "man.value" (target).
* Iterate all packages of source bundle.
* Iterate all packages of target bundle.
* Generate the code for each pair. */ }

}

For the analyst, measuring the count of method calls between
the two components is then just a matter of annotating the
dependency between the components with the desired metric.
The metric language is out of the scope of this paper, but
essentially allows the analyst to apply various selection and
aggregation functions (e.g., filter, minimum, maximum, aver-
age) over received runtime events and access their individual
properties while remaining on the model level. The automatic
routine extracts the desired event from the metric expression
(here: DataExchanged), utilizes the traceability model to find
the model elements in the target model which correspond
to the annotated model element (here: the manifest attribute

1see: http://jarvis.fhwn.ac.at/case-study-robot/

http://jarvis.fhwn.ac.at/case-study-robot/

that corresponds to the annotated dependency) and expands
the pattern accordingly. The pattern can also be reused for
annotating dependencies between other components without
writing any additional monitoring code.

For a quantification of the reduced effort, we experienced
that the monitoring pattern needed less lines of code than
writing the generated aspect (45 vs. 55, see online resources).
However, in our case the pattern was only expanded four times.
We expect that our approach outperforms manual writing of
monitoring code in a much larger scale when the system under
observation tends to get bigger. In our particular case, the effort
for writing the monitoring pattern is constant, while the effort
for writing the monitoring code manually increases with the
term m ∗ n, where m and n are the count of packages in the
dependent components. Another interesting fact is that writing
the monitoring code manually for the presented case leads
to 85.5% duplicated code for the whole aspect (see online
resources). Our approach does not suffer from this repetition.

B. Reusability

Regarding reusability, we applied our written monitoring
patterns to another system which is modelled using a different
modelling language, but is also realized in a model-driven
manner with the same target platform (and thus, the same
target meta-model) in mind. The system is a simple online
shop application which is modelled with the help of compo-
nents and their contracts using SOA Designer2. The models
and their corresponding code generator were created during a
course at the University of Applied Sciences Wiener Neustadt
for the purpose of teaching model-driven techniques, but the
system was not fully implemented like the robot system.

The system consists of seven components and their respec-
tive interfaces which were transformed via model transforma-
tion into interacting OSGi bundles and Java interfaces. We
wanted to measure the count of authentication requests (i.e.,
the number of requests between specific interfaces) and wanted
to reuse the monitoring pattern of the robot system which
already yields the necessary events of interacting components.
While we were able to reuse the monitoring pattern, we had to
adapt it slightly to generate the monitoring code only for the
particular authentication interface and not for any type within
the target component (which was the case in the robot system).
This modification, however, was quite simple and only needed
an additional clause in the pattern expression and swapping a
wildcard expression with a concrete interface name.

Note that another pattern was tested regarding effort re-
duction and reusability between the two systems. The result
demonstrates a complete reuse of the pattern without further
modifications. This case can be found in the online resources.

VI. DISCUSSION

Regarding applicability, although we use UML/SOA and
AspectJ throughout this paper, our approach is not limited
to these concepts since the monitoring patterns can be ex-
panded to arbitrary monitoring code. Many other scenarios

2see: http://marketplace.obeonetwork.com/module/soa

are conceivable, for example the analysis of business processes
(e.g., modelled with BPMN) where the annotation of a process
activity generates monitoring code that is attached to the
underlying business process execution engine.

In our approach, we assume that writing monitoring code
is equally complex as writing monitoring patterns for the
target model since the model is an exact representation of
the implementation. However, we could show that the degree
of reusability is very high for the monitoring patterns. When
writing monitoring code by hand (i.e., not using our approach),
one could achieve better results through refactoring (e.g., to
prevent duplicated code). However, we argue that monitoring
code for an ad-hoc arising analysis task is seldomly written
with good software design principles in mind.

Regarding the research question RQ1, the presented case
study indicates that the effort of writing monitoring code
can be reduced by a large amount if monitoring patterns
must be expanded multiple times. We achieve this by making
the exploration of the target model explicit using a pattern
based transformation language which allows to define the
exploration steps that would otherwise be done manually for
every recurring analysis task. The resulting pattern expander
not only allows to generate monitoring code for specific
analysis tasks, but also abstracts platform-specific details of the
monitoring code from the analyst. As a result, the analyst is not
concerned with concepts of the target model or the monitoring
technique (e.g., AspectJ) and can focus on writing high-level
aggregation expressions of the yielded runtime events.

Regarding the research question RQ2, the presented case
study demonstrates that monitoring patterns can be applied
without or with minimal changes to recurring analysis tasks
which concern systems running on the same target platform.
The case study also demonstrates that monitoring patterns are
independent of the modelling language used for designing the
system, which allowed us to transfer the idea of model based
monitoring seamlessly between the two software systems.

Summarized, our pattern based approach yielded promising
results to be a viable alternative for manually written mon-
itoring code while abstracting from the technical details of
the actual monitoring environment. However, in this paper
we linked the term effort very strongly to the amount of
code lines that must be written, which highly depends on
the coding style of the analyst. Many other characteristics
are conceivable to compare the reduction of the effort, for
example the time that an analyst actually spends on writing
the monitoring instructions or the time that an analyst actually
needs to manually follow the traceability links. However, these
comparisons are much harder to perform within experimental
settings since the analysts must receive a basic training in the
used monitoring techniques, which is a task that cannot easily
be performed without introducing a certain amount of bias.

VII. RELATED WORK

The models@run.time research community studies models
that are causally connected to a running system to enable
monitoring and control on a higher abstraction level than the

http://marketplace.obeonetwork.com/module/soa

code [4]. Various strategies have been proposed to maintain
such a causal connection between the system and its models,
like Triple Graph Grammars [5], model transformation [6] and
layered interpretation of monitored data [7]. While models at
runtime ensure that maintenance tasks can be performed on a
more abstract level, they often require separate meta-models
and transformation scripts for the monitoring infrastructure.
Our approach utilizes existing models from the software design
phase and traceability links that are created automatically
when model transformations are performed. As a result, our
approach is much easier to apply in real world scenarios where
models of a system already exist.

We solved the problems introduced by our motivating exam-
ples with the help of aspect-oriented techniques. Various other
approaches exist that utilize aspect-oriented programming in
combination with model driven engineering techniques [8]–
[10]. Many of the approaches only support the generation
of stubs [11], [12] or focus on extending UML to transform
custom aspect models to their corresponding code [12]. To the
best of our knowledge, there exists no systematic approach
that addresses reusability at the model level by utilizing
traceability information combined with a model of the actual
implementation. Furthermore, using behaviour models and full
code generation with aspect-oriented techniques seems under-
represented in literature [8]. We showed that the utilization of
traceability link relationships can be used for such cases.

Another tool that utilizes aspect-oriented techniques is
Kieker [13]. While the tool provides a flexible architecture to
add additional monitoring capabilities and an efficient runtime
with minimal overhead, a model driven instrumentation using
traceability information is currently not supported. As a result,
reusability of generation logic is not fully supported at the
degree that is theoretically possible. Two other tools, PEPP and
AICOS [14], are specialized for performance measurements of
parallel programs. These tools are bound to the programming
language C and require separate models for the analysis
(function program, functional implementation, monitoring and
performance models) which limits the scope of the approach
in terms of applicability to arbitrary meta-models.

There exist various model-to-text transformation languages
that are comparable to our proposed template language, e.g.,
ATL, Epsilon, QVT, and Viatra [15]. While many model trans-
formation languages provide meta-models for their traceability
support, none of them makes advanced usage of the produced
traceability information to detect non-trivial relationships be-
tween model elements. Although graph based transformation
languages like Henshin [15] provide sophisticated mechanisms
to extract relationships between model elements, they lack the
ability to generate code from the matched patterns instead of
creating and/or rewriting models according to specified rules.

VIII. CONCLUSIONS

In this paper we presented a language to specify recurring
monitoring patterns which are automatically expanded into
monitoring code for given models of the analyzed system.
The language allows to define the steps of exploring a

platform-specific target model for model elements and their
relationships that fit the current analysis task at hand and
offers a template based code generation mechanism to create
the necessary monitoring code automatically. The exploration
steps and writing the monitoring code would otherwise be
done manually for every recurring analysis task. A case study
showed that the effort for writing monitoring code is reduced
and recurring analysis tasks are better supported through
automatic code generation without disturbing the analyst with
technical details of writing platform-specific monitoring code.

REFERENCES

[1] M. A. Javed and U. Zdun, “A systematic literature review of traceability
approaches between software architecture and source code,” in 18th
International Conference on Evaluation and Assessment in Software
Engineering (EASE 2014), May 2014.

[2] “Ieee standard glossary of software engineering terminology,” IEEE Std
610.12-1990, pp. 1–84, Dec 1990.

[3] M. Szvetits and U. Zdun, “Reusable event types for models at runtime
to support the examination of runtime phenomena,” in 2015 ACM/IEEE
18th International Conference on Model Driven Engineering Languages
and Systems (MODELS), Sept 2015, pp. 4–13.

[4] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” Com-
puter, vol. 42, no. 10, pp. 22–27, Oct. 2009.

[5] H. Giese, L. Lambers, B. Becker, S. Hildebrandt, S. Neumann, T. Vogel,
and S. Wätzoldt, “Graph transformations for mde, adaptation, and
models at runtime,” in Proceedings of the 12th international conference
on Formal Methods for the Design of Computer, Communication, and
Software Systems: formal methods for model-driven engineering, ser.
SFM’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 137–191.

[6] H. Song, Y. Xiong, F. Chauvel, G. Huang, Z. Hu, and H. Mei, “Generat-
ing synchronization engines between running systems and their model-
based views,” in Proceedings of the 2009 international conference on
Models in Software Engineering, ser. MODELS’09. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 140–154.

[7] S.-W. Cheng, D. Garlan, B. R. Schmerl, J. a. P. Sousa, B. Spitznagel,
P. Steenkiste, and N. Hu, “Software architecture-based adaptation for
pervasive systems,” in Proceedings of the International Conference on
Architecture of Computing Systems: Trends in Network and Pervasive
Computing, ser. ARCS ’02, Karlsruhe, Germany, 2002, pp. 67–82.

[8] A. Mehmood and D. N. A. Jawawi, “A comparative survey of aspect-
oriented code generation approaches,” in Software Engineering (My-
SEC), 2011 5th Malaysian Conference in, Dec 2011, pp. 147–152.

[9] J. Zhu, C. Guo, Q. Yin, J. Bo, and Q. Wu, “A runtime-monitoring-
based dependable software construction method,” in 2008 The 9th
International Conference for Young Computer Scientists, Nov 2008, pp.
1093–1100.

[10] K. s. Lee and C. G. Lee, “Model-driven monitoring of time-critical sys-
tems based on aspect-oriented programming,” in 2011 Fifth International
Conference on Secure Software Integration and Reliability Improvement,
June 2011, pp. 80–87.

[11] J. Bennett, K. Cooper, and L. Dai, “Aspect-oriented model-driven
skeleton code generation: A graph-based transformation approach,” Sci.
Comput. Program., vol. 75, no. 8, pp. 689–725, Aug. 2010.

[12] K. Cooper, L. Dai, S. Dascalu, N. Mehta, and S. Velagapudi, “Towards
aspect-oriented model-driven code generation in the formal design
analysis framework.” in Software Engineering Research and Practice.
Citeseer, 2007, pp. 628–633.

[13] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey, and
D. Kieselhorst, “Continuous monitoring of software services: Design and
application of the kieker framework,” Kiel University, Research Report,
November 2009.

[14] R. Klar, A. Quick, and F. Soetz, “Tools for a model-driven instrumenta-
tion for monitoring,” in Proceedings of the 5th International Conference
on Modelling Techniques and Tools for Computer Performance Evalu-
ation. Citeseer, 1992, pp. 165–180.

[15] E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, A. Hegedüs, M. Her-
rmannsdörfer, T. Horn, E. Kalnina, C. Krause, K. Lano, M. Lepper,
A. Rensink, L. Rose, S. Wätzoldt, and S. Mazanek, “A survey and
comparison of transformation tools based on the transformation tool
contest,” Sci. Comput. Program., vol. 85, pp. 41–99, Jun. 2014.

