
Software Specification and Documentation in
Continuous Software Development - A Focus Group
Report
U. VAN HEESCH, T. THEUNISSEN, HAN University of Applied Sciences Arnhem, The Netherlands
O. ZIMMERMANN, University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
(HSR FHO)
U. ZDUN, University of Vienna, Vienna, Austria

We have been observing an ongoing trend in the software engineering domain towards development practices that rely heavily on

verbal communication and small, closely-interacting teams. Among others, approaches like Scrum, Lean Software Development,
and DevOps fall under this category. We refer to such development practices as Continuous Software Development (ConSD).

Some core principles of ConSD are working in short iterations with frequent delivery, striving for an optimal balance between

effectiveness and efficiency, and amplify learning in the development team. In such a context, many traditional patterns of
software specification, documentation and knowledge preservation are not applicable anymore.

To explore relevant topics, opinions, challenges and chances around specification, documentation and knowledge preservation

in ConSD, we conducted a workshop at the 22nd European Conference on Pattern Languages of Programs (EuroPLoP), held
in Germany in July 2017. The workshop participants came from the industry and academia.

In this report, we present the results of the workshop. Among others, we elaborate on the difference between specification

and documentation, the special role of architecture in ConSD in general, and architecture decision documentation in particular,
and the importance of tooling that combines aspects of development, project management, and quality assurance. Furthermore,

we describe typical issues with documentation and identify means to efficiently and effectively organize specification and
documentation tasks in ConSD.

CCS Concepts: •Software and its engineering→ Patterns; Designing software;

Additional Key Words and Phrases: Lean, Agile, DevOps, Continuous Software Development, Specification, Software engineering

ACM Reference Format:
U. van Heesch, et al. 2017. Software specification in continuous software development - A Focus Group Report. EuroPLoP (July
2017), 13 pages.
DOI: https://doi.org/10.1145/3147704.3147742

1. INTRODUCTION

In the last decade, we have been observing a shift in the software industry towards software develop-
ment practices that rely on verbal communication, closely interacting small teams, shorter planning
and controlling horizons (often called sprints or iterations), and frequent delivery. Popular approaches
include Scrum [Alliance 2017], Lean Software Development [Poppendieck and Poppendieck 2003], and
more recently DevOps [Wilsenach 2016]. We refer to collections of these practices as Continuous Soft-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-4848-5/2017/07...$15.00
DOI: https://doi.org/10.1145/3147704.3147742

Proceedings of the 22nd European Conference on Pattern Languages of Programs

2 • U. van Heesch, T. Theunissen, O. Zimmermann, U. Zdun

ware Development (ConSD) [Theunissen and van Heesch 2017] to take into account their predominant
characteristics of continuous, short and time-boxed iterations and incremental refinement.

In continuous software development, some traditional patterns of software specification, documen-
tation and knowledge preservation are not applicable anymore. One of the main challenges is deal-
ing with software specifications and documentation in a continuous development flow. Specifications
take many forms, e.g. requirements specification, architecture specification, design specification, test
specification, and deployment descriptors. Team members primarily value specifications that have an
immediate benefit for their own tasks during an iteration (e.g. specifications of interfaces between sub-
systems). However, depending on the type of software and the type of specification, these specifications
may need to serve additional needs. For instance, they may need to support reasoning about tech-
nical risks, help stakeholders understand complex systems, support (offline) communication between
stakeholders, or capture design decisions with long-term impact.

In our ongoing work on continuous software development (see for instance [Theunissen and van
Heesch 2017]), we conjecture that the diverse types of specifications and documentation with differ-
ent lifespans, different levels of formalism, different levels of detail, and different forms of codification
should be handled individually and differently so that they can satisfy the diverse needs of stake-
holders in ConSD. To further explore relevant topics, opinions, challenges and chances around spec-
ifications and documentation in ConSD (with a focus on architectural specifications), we organised a
workshop at the 22nd European Conference on Pattern Languages of Programs (EuroPLoP), held in
Irsee, Germany in July 2017. In this paper, we report on the results of the focus group and describe
directions for future work on this topic.

The rest of this paper is organized as follows: Section 2 explains the setup of the focus group and
the characteristics of the participants. In Section 3, we present the results of the discussion. Finally,
Section 4 presents directions for future work on this topic.

2. WORKSHOP SETUP AND PARTICIPANTS

The workshop took place in shape of a so called focus group, for which the EuroPLoP conference has
reserved time slots of 90 minutes. We announced the focus group prior to and during the conference
to attract participants interested in specification in ConSD. Participation was voluntary and advance
registration not required. To attract peoples’ attention and to scope our own areas of interest, we posed
the following set of initial questions as part of the focus group announcement:

(1) What is the difference between specification and documentation? What purposes do they serve and
for whom?

(2) What is the role of architecture specification in continuous software development?
(3) Should software specifications be organized around self-contained documents?
(4) What is the role of models in this context?
(5) What alternate forms of organizing specification items could be a better fit for continuous software

development?
(6) What is the life cycle and scope of the different types of specifications and how does this life cycle

relate to the agile life cycle, for instance?
(7) Refactoring has become a common technique for improving the structure and quality of source-

code. How can similar techniques be used for specifications?
(8) What is the role of (architectural) design decisions in this context? How to share, document, or

update them?
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Software specification in continuous software development - A Focus Group Report • 3

(9) How to efficiently preserve (architectural) knowledge and skills a development team gained through-
out multiple iterations/projects? What difference exists between generic and application-specific
knowledge and skills?

(10) How can agile practices (e.g. sprint retrospectives) be leveraged in this context?
(11) How can information needs by external reviewers and auditors be satisfied?
(12) What is the impact of business and technical domain specifics in this context?

Additionally, we presented a poster summarising our previous work on specification in ConSD (see
Appendix A).

2.1 Participants

In total, we had 16 participants partly from industry and partly from academia. To find out more
about the background of our participants, we asked them to fill in a questionnaire in the beginning of
the focus group. The questionnaire and the results are available online1. As Figure 1 shows, roughly

9/13/2017 Continuous Software Specification

https://docs.google.com/forms/d/1aehOu6t3ZWOMfcfL9PJmBqDzCB_-H50PLhtw2vsNsD8/viewanalytics 1/3

Continuous Software Speci�cation
16 responses

Do you consider yourself primarily a practitioner or a researcher/teacher?

16 responses

How many years of experience do you have as a software engineering

practitioner?

16 responses

How many years of experience do you have as a software architect?

16 responses

Practitioner (it is my primary
job to be involved in software
development)
Researcher (it is my primary
job to do research and/or to
teach)
Both (I really cannot make a
selection between those two)

31.3%

37.5%

31.3%

4 5 7 9 10 15 16 18 20 25
0

1

2

3

4

5

1 (6.3%)1 (6.3%)1 (6.3%) 1 (6.3%)1 (6.3%)1 (6.3%)

4 (25%)4 (25%)4 (25%)

1 (6.3%)1 (6.3%)1 (6.3%) 1 (6.3%)1 (6.3%)1 (6.3%)

2 (12.5%)2 (12.5%)2 (12.5%)

1 (6.3%)1 (6.3%)1 (6.3%) 1 (6.3%)1 (6.3%)1 (6.3%) 1 (6.3%)1 (6.3%)1 (6.3%)

3 (18.8%)3 (18.8%)3 (18.8%)

1

2

3

4

5
4 (25%)4 (25%)4 (25%)

2 (12.5%)2 (12.5%)2 (12.5%)

1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)

2 (12.5%)2 (12.5%)2 (12.5%)

1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)

Fig. 1. Affiliation of participants

one third of the participants consider themselves as practitioners, the other participants are either
academics or related to both industry and academia. We also asked the participants about the number
of years in software engineering experience (see Figure 2). With an average of 13 years of experience,
we mainly had senior software engineers in the workshop. Figure 3 shows the tasks, our participants
are usually involved in when doing software projects. Most participants cover a wide range of typical
software engineering tasks.

2.2 Setup

After a short introduction on continuous software development, we split the participants into four
break-out groups. Each break-out group was moderated by one of the authors. The initial set of ques-
tions shown above served as a rough question guide. However, the discussion was not constrained by
these topics. Each break-out group discussed for one hour and noted insights on a flipchart. Afterwards,
the entire group met again to discuss the findings.

In the following, we summarize the findings of the groups.

1https://goo.gl/47NtNf

Proceedings of the 22nd European Conference on Pattern Languages of Programs

4 • U. van Heesch, T. Theunissen, O. Zimmermann, U. Zdun

9/13/2017 Continuous Software Specification

https://docs.google.com/forms/d/1aehOu6t3ZWOMfcfL9PJmBqDzCB_-H50PLhtw2vsNsD8/viewanalytics 1/3

Continuous Software Speci�cation
16 responses

Do you consider yourself primarily a practitioner or a researcher/teacher?

16 responses

How many years of experience do you have as a software engineering

practitioner?

16 responses

How many years of experience do you have as a software architect?

16 responses

Practitioner (it is my primary
job to be involved in software
development)
Researcher (it is my primary
job to do research and/or to
teach)
Both (I really cannot make a
selection between those two)

31.3%

37.5%

31.3%

4 5 7 9 10 15 16 18 20 25
0

1

2

3

4

5

1 (6.3%)1 (6.3%)1 (6.3%) 1 (6.3%)1 (6.3%)1 (6.3%)

4 (25%)4 (25%)4 (25%)

1 (6.3%)1 (6.3%)1 (6.3%) 1 (6.3%)1 (6.3%)1 (6.3%)

2 (12.5%)2 (12.5%)2 (12.5%)

1 (6.3%)1 (6.3%)1 (6.3%) 1 (6.3%)1 (6.3%)1 (6.3%) 1 (6.3%)1 (6.3%)1 (6.3%)

3 (18.8%)3 (18.8%)3 (18.8%)

1

2

3

4

5
4 (25%)4 (25%)4 (25%)

2 (12.5%)2 (12.5%)2 (12.5%)

1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)

2 (12.5%)2 (12.5%)2 (12.5%)

1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)1 (6.3%)

Fig. 2. Years of Software Engineering (SWE) experience

Fig. 3. Involvement in SWE tasks

3. RESULTS

We discussed the difference between specification and documentation; terms which are often used in-
terchangeably in the software engineering domain. Documentation, as understood by our participants,
is a piece of writing conveying information about a software artifact, to be consumed after the software
artifact was built. The primary purpose of documentation is to help stakeholders better understand
certain aspects of the system, be it because they need to support or further develop the system, approve
certain aspects, review or audit it – or because they pay for it.

Specifications are seen as presentations of information meant to support the development process
of a software artifact. Specifications are created and consumed before or during the development of a
software artifact.

In many cases, specification artifacts are also used as documentation. These cases can be particularly
problematic in ConSD, because specification artifacts are only maintained while they are necessary (or
at least immediately beneficial) for the realisation process of a software artifact. As a consequence, the
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Software specification in continuous software development - A Focus Group Report • 5

actual realisation regularly derives from the last maintained state of the specification. When being
used as-is as documentation, these artifacts contain inconsistencies and specification gaps and are
thus less usable for the purpose of documentation.

In the following sections, we present additional insights about documentation and specification
gained during the focus group.

3.1 Specification

Specifications are created upfront and give instructions, rules and guidelines on how software artifacts
should be built or what properties they should have. They are usually prescriptive. Specifications are
described as “living artifacts”, as they are continuously adjusted with progressive insights, as long as
they have a benefit for the development process. Different types of specifications exist, for instance
requirements specifications, test cases, user interface specifications, architectural specifications, or
design specifications (e.g. UML diagrams).

3.1.1 Levels of formalism and detail. We found that the degrees of formalism and completeness
vary greatly between projects and artifacts. In ConSD, team members work together intensively, know
each other well, and rely on oral communications. Therefore, informal rich pictures (e.g., white board
sketches) are preferred over formal specifications. Formalisms are only used when being required by
tools used (e.g. test specifications in Cucumber2), or because very detailed interface specifications are
required (e.g., between a hardware team and a software team or between the provider and the con-
sumers of a public API) [Zimmermann et al. 2017]). Related to this, teams develop a common body
of knowledge, which consists of knowledge about specific technologies, patterns, and solutions applied
in the past. Teams explicitly or tacitly refer to this common body of knowledge when creating spec-
ifications by leaving out details that external consumers of the specifications would require to form
a complete picture, or by using a vocabulary that can be understood by the team members only. An
example of the latter is the use of the term “request controller” in a specification, which if seen out-
of-context, is so generic that it is meaningless for external people, while members of the team know
exactly which component in an existing system is meant by the term.

Thus, teams who do not know each other well and do not share a common body of application-specific
and application-generic knowledge, require more formal and more detailed specifications than teams
who share such a body of knowledge. Experienced teams can apply a kind of specification-by-exception
approach, in which only derivations from their standard way are specified. One participant stated it
like this: “We know what we are doing, so no need to write everything down.”. This phenomenon, in
our perception, is independent of the type of specification.

3.1.2 Architecture specification. One break-out group explicitly discussed the role of architecture
specification in ConSD. At first, the idea of creating comprehensive up-front specifications may seem
to conflict with the principles of ConSD, such as avoiding waste and being agile. Nevertheless, the
members of the focus group emphasised the important role of architecture reasoning and architecture
specification at the beginning of larger projects or re-engineering efforts. Apart from the often-cited
advantages of architecture like identifying risks and reasoning about quality attributes, architecture
(primarily smart system partitioning) is seen as an enabler for agile working. This is pre-dominantly
the case for larger systems which are too complex to be handled in the working memory of a human
being at the same time. Smaller systems, and/or systems built the same way as other systems in
the past, do not require much architecture specification. One participant said: “Let’s not create large
systems!” to express that systems that do not require architecture specifications to be manageable, are

2https://cucumber.io/

Proceedings of the 22nd European Conference on Pattern Languages of Programs

6 • U. van Heesch, T. Theunissen, O. Zimmermann, U. Zdun

a much better fit for ConSD. Architecture issues arise mainly in large systems. If large systems are
required by the nature of the problem, then architectural styles that split the system into small parts
that can be developed and comprehended in isolation can be a solution. Microservices are one example
of such an approach [Zimmermann 2017].

In ConSD, architecture specification is often done using a whiteboard and primarily describes the
system partitioning into sub-systems and major components. For each component, the responsibilities
and interfaces are described. Architectural design is discussed during iteration planning meetings
(e.g. a sprint planning meeting in Scrum) and if required in a special “architectural stand-up” meeting
during iterations.

3.1.3 Tooling. Especially in ConSD, teams rely heavily on integrated tool suites that combine as-
pects of project management with features of development tools. An example of such a stack is the
combination of an IDE (e.g. IntelliJ3 for Java), Git4, JIRA5 , Confluence6, Jenkins7, and SonarQube8.

With such a tool stack, specification activities, coding, testing, quality management, and project
controlling are closely intertwined and enable lightweight traceability between the different activities.
To give an example, imagine the following typical flow (using tools mentioned by the participants):

(1) A functional requirement is specified in form of a user story with acceptance criteria and an effort
estimate in a backlog in JIRA.

(2) When a team member picks up the requirement, (s)he discusses design implications with other
team members using a whiteboard.

(3) The team member takes a picture of the whiteboard and shows it on a page in confluence, which
furthermore contains agreements (e.g. on interfaces) made with the team members.

(4) Directly in JIRA, (s)he then creates a feature branch in the git repository and starts coding in the
IDE. The IDE has integrated git support. (S)he uses the analysis features of the IDE to achieve high
test coverage and to make sure the code conforms to the previously agreed on coding standards,
which are also checked by the Continuous Integration (CI) server, Jenkins in this case.

(5) The time spent on the issues is (semi-)automatically logged by JIRA, so that (s)he only needs to
approve the efforts when logging work on an issue.

(6) When the feature is readily implemented and tested, (s)he pushes the code to the git repository.
The push triggers the CI-server, which runs tests, checks test coverage and coding standards; fur-
thermore, the CI server triggers the code quality service (here SonarQube) and reports the results
to the developers.

(7) Afterwards, the developer creates a pull-request in git, which triggers her team mates to do a code
review, supported by the analytics provided by the SonarQube dashboard.

(8) After the pull request was merged with the master branch, the developer marks the JIRA task as
done. A burndown chart is automatically updated to reduce the remaining required efforts in the
current iteration.

The process sketched above shows how development activities are closely accompanied and sup-
ported by the tool chain. As a side effect, the tool chain provides traceability between requirements,

3https://www.jetbrains.com/idea/
4https://git-scm.com/
5https://www.atlassian.com/software/jira
6https://www.atlassian.com/software/confluence
7https://jenkins.io
8https://www.sonarqube.org/

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Software specification in continuous software development - A Focus Group Report • 7

tasks, design artifacts, code, required time, and code quality. Apart from supporting the realisation of
software artifacts (here a functional requirement), the information in the tools also serve documenta-
tion needs, as one can easily click through the history of executed tasks. The process above entails the
following forms of specification:

—A requirements specification in form of a user story.

—Acceptance criteria, which likewise serve as acceptance tests.

—An effort estimation for the user story.

—A design specification in form of a white board sketch and additional agreements between developers
specified in Confluence.

—Test specifications in the source code.

—Coding standards to be used in the IDE and in the CI-server.

—Further code quality standards to be used by SonarQube; some of these standards are architectural
(e.g. regarding reliability, security, maintainability, and complexity).

Apart from the design specification on the white board and the Confluence page, all specifications are
required and used by the tools, which apply the specifications automatically to support the developer.

While they are key artifacts for systems built in a model-driven way [Soley 2000], architecture spec-
ifications still seem to play a tangential role at least in some ConSD communities. That said, code
quality tools support some forms of architectural analysis, as mentioned above. However, some popu-
lar examples exist of tools that use architectural specifications in the same way as the specifications
described above. Ansible 9, for instance, is a tool for automating deployment tasks using so-called play-
books: text-based specifications of how production, staging, test, and development machines are set-up.
Apart from automating deployment tasks, Ansible can be used for checking standard compliance, e.g.,
regarding security measures.

3.2 Documentation

As described above, we define documentation as artifacts meant to be consumed after a software arti-
fact was realised. Especially in ConSD, the need and the effort spent on documentation is a sensitive
topic, because developers strive for avoiding efforts that do not provide immediate value. Additionally,
it can be stated that the vast majority of software developers does not like creating documentation
[Herbsleb and Moitra 2001].

The focus group discussions related to documentation dealt with the following questions:

(1) For which purpose do we create documentation and what types of documentation do we observe in
ConSD?

(2) When should we create documentation and how much is enough?

(3) What is the role of architecture decision documentation in ConSD?

(4) What problems can be observed regarding documentation?

(5) How to effectively and efficiently provide documentation in ConSD?

In the following sections, we summarise the results for each of those questions.

9https://www.ansible.com

Proceedings of the 22nd European Conference on Pattern Languages of Programs

8 • U. van Heesch, T. Theunissen, O. Zimmermann, U. Zdun

3.2.1 Purpose and types of documentation in ConSD. Generally, documentation is meant to explain
aspects of software artifacts to stakeholders. Consequently, different types of documentation exist to
address the diverging information needs of the stakeholders. Basically every type of specification men-
tioned above has a corresponding type of documentation. As one example, design specification is used
to support the initial creation of a software artifact, while design documentation is used to explain
the design of a realised artifact to developers who need to maintain or further develop the software
artifact. One participant stated that “places with rapid staff turnover more urgently feel the need for
elaborate documentation”. Additionally, for some types of applications, documentation is required for
getting market admission (e.g. for medical or safety-critical systems), or documentation is a contractual
deliverable.

As in the context of specification, the participants said that missing documentation is most problem-
atic in large systems (without further discussing what large means exactly). Smaller systems could
usually be comprehended by analysing configuration files and source code. Regarding architecture
documentation, a participant stated that “architectural design documentation is not needed very often
during the development. When it is required, you pull the architecture.”. Pulling here refers to gener-
ating architectural overviews from other existing artifacts, e.g. UML component diagrams from source
code.

To support the automatical generation of design documentation, the participants in different break-
out groups mentioned the tool Doxygen10. Doxygen is an example for a tool that creates documentation
from source code and special annotations used in source code. Apart from providing textual explana-
tions on modules, methods, parameters and the like, Doxygen can generate several graphs and dia-
grams to explain the structure of the software in terms of modules and packages. This approach is
compatible with the mindset of the software craftsmanship school of thought, who proclaim that the
truth is only in the code [Martin 2008].

3.2.2 When is documentation created and how much is enough. As described above, documentation
is meant to be consumed after the realisation of a software artifact. After, in this context, can mean
during a subsequent task, in the next iteration, as part of an approval process by stakeholders, or
during maintenance, for instance. Most participants explained that they use items created as speci-
fication also as documentation. In such cases, they plan for extra time close to releases for updating
specifications so they are self-contained and consistent with the current state of the software. Docu-
mentation is treated as a piece of technical writing that needs to use the language of the prospective
consumers. Especially in cases where documentation is a contractual deliverable, documentation tasks
are taken over in the task planning and controlling system, efforts are estimated, and the results are
reviewed to increase the quality of the writing. However, the participants agreed that the time spent
on documentation should be limited to the minimum responsible amount. For reasons of efficiency, one
participant advised: “Do slightly less than you think is required”, so that if stakeholders complain that
information is missing, this can easily be added, but no time is unnecessarily spent on documentation.

3.2.3 Architecture decision documentation. Architecture decision documentation is a special type of
documentation. The literature advocates thorough documentation of architecture decisions, e.g. using
decision templates (e.g. [Tyree and Akerman 2005; Zdun et al. 2013]) or dedicated decision views (e.g.
[van Heesch et al. 2012; Nowak et al. 2010]). During the focus group, the participants agreed that some
form of architecture decision documentation is needed. However, the detail level and required compre-
hensiveness of architecture decision documentation was discussed controversially. Some participants
stated that only the outcome of decisions is documented, but not the rationale behind the decisions

10http://www.stack.nl/∼dimitri/doxygen

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Software specification in continuous software development - A Focus Group Report • 9

and not the considered alternatives. One participant explained that he would “not document rationale
because it is transient.”. What he meant was that decisions are made in a specific context that can
quickly change over time. Part of the context is the knowledge and experience of the people who made
the decisions, the available technologies at that time, current software hypes, and approaching dead-
lines, to name a few. He concluded that the rationale would most likely not be (fully) valid anymore and
that therefore the effort you would need to spent on thoroughly documenting rationale is not reason-
able. Another participant added that “having rationale too explicit can also cause people not to think
carefully themselves”. These statements of course could be seen as self-serving assumptions, because
the participants might be developers themselves who do not enjoy creating documentation.

Interestingly, the participants mentioned that most decisions are documented in the beginning of
iterations, while other types of documentation are delayed to the last responsible moment where the
documentation needs to be delivered. Especially for architecture decisions, it would be more beneficial
to document them after the software artifacts were realised and evaluated, because this gives new
insights regarding the fitness of the decisions, which could be processed in the documentation. This
is particularly the case for decisions that would not have been made with the progressive insight
available.

3.2.4 Recurring problems of documentation. We also discussed typical problems with documenta-
tion and identified the following recurring issues (or ”documentation smells” to pick up a term from
refactoring). Participants reported incidents such as:

Version maze. Often, documentation is not explicit about the version of the software it describes.
It is then unclear to the reader whether the information provided is still up-to-date. Even worse,
documentation is sometimes compiled of items that describe different versions. In such cases, the
documentation drastically looses merit.
Cyclic references. Documentation items often consist of multiple items or documents referencing
each other intensively. Sometimes, important aspects are not thoroughly described, because docu-
mentation items reference each other in a cyclic way without actually providing the information at
some place.
Incompleteness. The participants experienced that documentation often contains “TODOs” and

gaps, i.e. parts of the system, or aspects, that are not described. This could be related to the phe-
nomenon that many people write documentation incrementally rather than iteratively. The writer
starts with a high level of rigor and comprehensiveness, but eventually misses time or motivation
to continue in the same fashion. As a result, the documentation becomes more and more inaccurate,
or contains large gaps. When wikis are used, empty pages or page stubs with ”under construction”
as only content are a symptom of this issue.
Copy/paste of code or raw specification:. Sometimes, documentation writers take over large large
snippets of code or design artifacts that are too detailed to effectively serve as documentation. One
participant gave an example “A large class diagram with hundreds of classes, methods and pa-
rameters thrown at the reader has no value”. Sometimes, production data ends up in external
documentation by accident; usage of text that violates Netiquette or is not politically correct has
also been reported and qualifies as a specification/documentation smell as well.
Presentation planet. Very often, documentation is prepared in form of a slide-based presenta-
tion. This can easily be explained by the fact that managers and other non-technical stakeholders
appreciate short summaries with a language they understand. Using slide-based presentations as
the only means to document comes with several downsides. Presentations are often way too ab-
stract for many purposes (especially for developers and operators), the slides alone are ambiguous

Proceedings of the 22nd European Conference on Pattern Languages of Programs

10 • U. van Heesch, T. Theunissen, O. Zimmermann, U. Zdun

and require the “voice-over” to be understood, and they typically do not contain references to the
realized items they document. Info decks, as described by M. Fowler 11can be a reasonable compro-
mise.
Zombie specifications. Also known as dead documents. Specifications and documentation items
might not have any readership and might not have been updated in a long time. You can tell
from missing references to them in meetings and other specification/documentation items, as well
as from access logs. Such items qualify as waste from a lean management point of view; they
should either be updated and improved to meet an information need in a particular target audience,
marked as ”stalled” and archived, or discarded.

3.2.5 How to effectively and efficiently provide documentation in ConSD?. To remedy some of the
aforementioned problems, the focus group participants discussed how the effort for creating documen-
tation artifacts in ConSD can be minimised, while still providing the necessary information to the
stakeholders. In other words, how can documentation be created effectively and efficient? At first, the
idea is intriguing to simply reuse specification artifacts as documentation. However, as mentioned
above, this comes with the downside that the documentation may contain gaps and inconsistencies.
One idea to tackle this problem was to apply practices known from source code refactoring also to
the documentation process. In software development, refactoring refers to the process of restructur-
ing existing source code to make it more effective, or to make it more maintainable without changing
the behaviour of the software. Likewise, refactoring specification into documentation would apply to
improving the expressiveness and suitability of existing specifications so that they can be used as
documentation. Refactoring specifications leads to documentation without changing the design of the
software. We discussed the following (initial and incomplete) specification refactorings:

Split to stick to single responsibility. The single responsibility principle is taken over from ag-
ile software development [Martin 2003]. Interpreted in the context of documentation, the principle
states that every specification or documentation item should cover one specific aspect or part of the
software that should entirely be encapsulated by this documentation item. Groups of stakeholder
concerns addressed by viewpoints can be used to source these responsibilities.
Apply open/closed principle. When refactoring specifications, make sure they are open for ex-
tension, but closed for modifications. This principle is adapted from the corresponding principle
used by the agile software development community [Martin 2003]. Applied to specifications, you
need to make sure that adding additional information does not require (major) rework of the exist-
ing documentation. Semantic versioning12 should be applied to specifications and documentation
items just like for code.
Remove repetition.. Do not repeat yourself is a lean and agile tenet, so one should not provide
the same piece of information in different documentation artifacts. Repetition results in increased
efforts and higher risk of inconsistency when information is changed. The ”definition of done” for
specifications and documentation should include a check whether the same things have already
been said elsewhere.
Replace specification by realisation. Related to the previous item, once a specified software ar-
tifact was realised, refer to the realisation instead of providing the same information in a different
way. To give examples, instead of describing object interaction using a UML-sequence diagram, let
the code speak for itself. Contemporary IDEs have become so powerful that exposing source code
in the IDE is preferred by many developers over reading sequence diagrams.

11see https://martinfowler.com/bliki/Infodeck.html
12see http://semver.org/

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Software specification in continuous software development - A Focus Group Report • 11

Document general structure instead of concrete realisation. Instead of repeating informa-
tion that is also provided by the source code itself, describe the general structure of a software
artifact or pick one example and explain how the example can be adapted to other cases, as well.
Throw specifications away. Some specifications have fully served their purpose when a software
artifact was realised. These specifications can be thrown away in the sense that they can be deleted
and only kept in the history of the knowledge management tool (e.g. Confluence as mentioned
above).
Provide yellow pages. Instead of striving for one large self-contained and complete document,
split up documentation items into smaller coherent chunks and provide overview pages with links
to these smaller chunks. A documentation chunk can be text, source code, a diagram, a model, a
whiteboard sketch or anything else that has value as documentation.

We also discussed when and how this process could take place in ConSD. Most participants said that
the end of an iteration would be the most suitable point in time. Ideally, documentation refactoring
is done in pairs to decide when a documentation artifact is clear enough for the indented audience.
Reading the text out loud during the pair documentation refactoring session can be an intense and
highly productive experience. When preparing documentation, one should make good use of the fea-
tures provided by the typical tool suites used in ConSD, e.g., for cross-referencing between wiki pages,
tasks, requirements, code, and quality metrics.

4. FUTURE WORK

We plan to perform further research on how architecture specification and documentation can be bet-
ter aligned with ConSD practices and tools. As part of this research, we will investigate further into
the purposes, efforts, and differences between specifications and documentation, including the preser-
vation of rationale that went into architectural decisions made. In particular, research on DevOps and
continuous delivery in relation to architecture is interesting here, as well as ensuring that architecture
models are closer aligned to other software engineering artifacts like source code and configuration
files, for instance.

The research results will be used to develop a lightweight architecture framework that embraces the
principles of continuous software development.

ACKNOWLEDGMENTS

We would like to thank all participants of the focus group on software specification in continuous
software development, which took part at EuroPLoP 2017.

REFERENCES

Scrum Alliance. 2017. What is Scrum? An Agile Framework for Completing Complex Projects-Scrum Alliance. (2017). https:
//www.scrumalliance.org/ (Retrieved April 21, 2017).

J. D. Herbsleb and D. Moitra. 2001. Guest Editors’ Introduction: Global Software Development. IEEE Software 18, 2 (2001),
16–20.

R. C. Martin. 2003. Agile Software Development: Principles, Patterns, and Practices. (2003).
R. C. Martin. 2008. Clean Code: A Handbook of Agile Software Craftsmanship. (2008).
M. Nowak, C. Pautasso, and O. Zimmermann. 2010. Architectural decision modeling with reuse: challenges and opportunities.

In Proceedings of the 2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge, SHARK 2010, Cape Town, South
Africa, May 2, 2010. 13–20. DOI:http://dx.doi.org/10.1145/1833335.1833338

M. Poppendieck and T. Poppendieck. 2003. Lean Software Development: An Agile Toolkit. Addison-Wesley Longman Publishing
Co., Inc.

R. Soley. 2000. Model driven architecture. OMG white paper 308, 308 (2000), 5.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

12 • U. van Heesch, T. Theunissen, O. Zimmermann, U. Zdun

T. Theunissen and U. van Heesch. 2017. Specification in Continuous Software Development. In Proceedings of the 14th European
Conference on Pattern Languages of Programs (EuroPLoP), Irsee.

J. Tyree and A. Akerman. 2005. Architecture Decisions: Demystifying Architecture. IEEE Software 22, 2 (2005), 19–27.
U. van Heesch, P. Avgeriou, and R. Hilliard. 2012. A documentation framework for architecture decisions. Journal of Systems

and Software 85, 4 (2012), 795–820.
R. Wilsenach. 2016. DevOps Culture. (2016). http://martinfowler.com/bliki/DevOpsCulture.html
U. Zdun, R. Capilla, H. Tran, and O. Zimmermann. 2013. Sustainable Architectural Design Decisions. IEEE Software 30, 6

(2013), 46–53.
O. Zimmermann. 2017. Microservices tenets. Computer Science - R&D 32, 3-4 (2017), 301–310.
DOI:http://dx.doi.org/10.1007/s00450-016-0337-0

O. Zimmermann, M. Stocker, D. Lbke, and U. Zdun. 2017. Interface Representation Patterns - Crafting and Consuming Message-
Based Remote APIs. In Proceedings of the 14th European Conference on Pattern Languages of Programs (EuroPLoP), Irsee.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

• 13

Appendices
A. POSTER

● ●

●

●

●
○
○
○

Proceedings of the 22nd European Conference on Pattern Languages of Programs

