
Practical Minimum Cut Algorithms

Monika Henzinger1, Alexander Noe1, Christian Schulz2 and Darren Strash3

1 University Vienna, Vienna, Austria
{monika.henzinger, alexander.noe}@univie.ac.at

2 Karlsruhe Institute of Technology, Karlsruhe, Germany and University of Vienna, Vienna, Austria
christian.schulz@{kit.edu, univie.ac.at}

3 Department of Computer Science, Colgate University, Hamilton, NY, USA
dstrash@cs.colgate.edu

Abstract. The minimum cut problem for an undirected edge-weighted graph asks us to divide its set of nodes
into two blocks while minimizing the weight sum of the cut edges. Here, we introduce a linear-time algorithm to
compute near-minimum cuts. Our algorithm is based on cluster contraction using label propagation and Padberg
and Rinaldi’s contraction heuristics [SIAM Review, 1991]. We give both sequential and shared-memory parallel
implementations of our algorithm. Extensive experiments on both real-world and generated instances show that
our algorithm finds the optimal cut on nearly all instances significantly faster than other state-of-the-art algorithms
while our error rate is lower than that of other heuristic algorithms. In addition, our parallel algorithm shows good
scalability.

1 Introduction

Given an undirected graph with non-negative edge weights, the minimum cut problem is to partition the
vertices into two sets so that the sum of edge weights between the two sets is minimized. A minimum cut
is often also referred to as the edge connectivity of a graph [14, 26]. The problem has applications in many
fields. In particular, for network reliability [17, 32], assuming equal failure chance on edges, the smallest
edge cut in the network has the highest chance to disconnect the network; in VLSI design [23], to minimize
the number of connections between microprocessor blocks; and as a subproblem in the branch-and-cut
algorithm for solving the Traveling Salesman Problem and other combinatorial problems [29].

For minimum cut algorithms to be viable for these (and other) applications they must be fast on small
data sets—and scale to large data sets. Thus, an algorithm should have either linear or near-linear run-
ning time, or have an efficient parallelization. Note that all existing exact algorithms have non-linear run-
ning time [13, 14, 18], where the fastest of these is the deterministic algorithm of Henzinger et al. [14]
with running time O

(
m log2 n log log2 n

)
. Although this is arguably near-linear theoretical running time,

it is not known how the algorithm performs in practice. Even the randomized algorithm of Karger and
Stein [18] which finds a minimum cut only with high probability, requires O

(
n2 log3 n

)
time, later im-

proved by Karger [16] toO
(
m log3 n

)
. There is a linear time approximation algorithm, namely the (2+ ε)-

approximation algorithm by Matula [25]. However, the quality of Matula’s algorithm in practice is currently
unknown—no experiments have been published, although Chekuri et al. provide an implementation [7, 37].

To the best of our knowledge, there exists only one parallel algorithm for the minimum cut problem:
Karger and Stein present a parallel variant for their random contraction algorithm [18] which computes a
minimum cut with high probability in polylogarithmic time on n2 processors. However, we are unaware of
any implementation of this algorithm, or any variant that may be suitable for running in a shared-memory
setting. Furthermore, no experiments have been published with any parallelizations. This is not altogether
surprising, as previous experimental studies of the minimum cut problem only include instances of up to
85 900 vertices and 1 024 000 edges [24, Table 4.2, Table A.22], which can be solved in milliseconds even
without parallelization.

1

Our Results. In this paper, we give the first practical shared-memory parallel algorithm for the minimum
cut problem. Our algorithm is heuristic, randomized and has running timeO(n+m) when run sequentially.
The algorithm works in a multilevel fashion: we repeatedly reduce the input graph size with both heuristic
and exact techniques, and then solve the smaller remaining problem with exact methods. Our heuristic
technique identifies edges that are unlikely to be in a minimum cut using label propagation introduced by
Raghavan et al. [31] and contracts them in bulk. We further combine this technique with the exact reduction
routines from Padberg and Rinaldi [28]. We perform extensive experiments comparing our algorithm with
other heuristic algorithms as well as exact algorithms on real-world and generated instances, which include
graphs on up to 70 million vertices and 5 billion edges—the largest graphs ever used for experiments for
the minimum cut problem. Results indicate that our algorithm finds optimal cuts on almost all instances
and also that the empirically observed error rate is lower than competing heuristic algorithms that come
with guarantees on the solution quality. At the same time, even when run sequentially, our algorithm is
significantly faster (up to a factor of 4.85) than other state-of-the-art algorithms.

2 Related Work

We review algorithms for the global minimum cut and related problems. A closely related problem is the
minimum s-t-cut problem, which asks for a minimum cut with nodes s and t in different partitions. Ford and
Fulkerson [9] proved that minimum s-t-cut is equal to maximum s-t-flow. Gomory and Hu [12] observed
that the (global) minimum cut can be computed with n−1 minimum s-t-cut computations. For the following
decades, this result by Gomory and Hu was used to find better algorithms for global minimum cut using
improved maximum flow algorithms [18]. One of the fastest known maximum flow algorithms is the push-
relabel algorithm [11] by Goldberg and Tarjan.

Hao and Orlin [13] adapt the push-relabel algorithm to pass information to future flow computations.
When a push-relabel iteration is finished, they implicitly merge the source and sink to form a new sink
and find a new source. Vertex heights are maintained over multiple iterations of push-relabel. With these
techniques they achieve a total running time of O(mn log n2

m) for a graph with n vertices and m edges,
which is asymptotically equal to a single run of the push-relabel algorithm.

Padberg and Rinaldi [28] give a set of heuristics for edge contraction. Chekuri et al. [7] give an imple-
mentation of these heuristics that can be performed in time linear in the graph size. Using these heuristics
it is possible to sparsify a graph while preserving at least one minimum cut in the graph. If their algorithm
does not find an edge to contract, it performs a maximum flow computation, giving the algorithm worst case
running time O(n4). However, the heuristics can also be used to improve the expected running time of other
algorithms by applying them on interim graphs [7].

Nagamochi et al. [26, 27] give a minimum cut algorithm which does not use any flow computations.
Instead, their algorithm uses maximum spanning forests to find a non-empty set of contractible edges. This
contraction algorithm is run until the graph is contracted into a single node. The algorithm has a running time
ofO(mn+n2 log n). Wagner and Stoer [38] give a simpler variant of the algorithm of Nagamochi, Ono and
Ibaraki [27], which has a the same asymptotic time complexity. The performance of this algorithm on real-
world instances, however, is significantly worse than the performance of the algorithms of Nagamochi, Ono
and Ibaraki or Hao and Orlin, as shown in experiments conducted by Jünger et al. [15]. Both the algorithms
of Hao and Orlin or Nagamochi, Ono and Ibaraki achieve close to linear running time on most benchmark
instances [7, 15]. There are no parallel implementation of either algorithm known to us.

Kawarabayashi and Thorup [20] give a deterministic near-linear time algorithm for the minimum cut
problem, which runs inO(m log12 n). Their algorithm works by growing contractible regions using a variant
of PageRank [30]. It was later improved by Henzinger et al. [14] to run in O(m log2 n log log2 n) time.

2

Based on the algorithm of Nagamochi, Ono and Ibaraki, Matula [25] gives a (2+ε)-approximation algo-
rithm for the minimum cut problem. The algorithm contracts more edges than the algorithm of Nagamochi,
Ono and Ibaraki to guarantee a linear time complexity while still guaranteeing a (2+ ε)-approximation fac-
tor. Karger and Stein [18] give a randomized Monte Carlo algorithm based on random edge contractions.
This algorithm returns the minimum cut with high probability and a larger cut otherwise.

3 Preliminaries

Basic Concepts. Let G = (V,E, c) be a weighted undirected graph with vertex set V , edge set E ⊂ V ×V
and non-negative edge weights c : E → N. We extend c to a set of edges E′ ⊆ E by summing the weights
of the edges; that is, c(E′) :=

∑
e={u,v}∈E′ c(u, v). We apply the same notation for single nodes and sets of

nodes. Let n = |V | be the number of vertices and m = |E| be the number of edges in G. The neighborhood
N(v) of a vertex v is the set of vertices adjacent to v. The weighted degree of a vertex is the sum of the
weight of its incident edges. For brevity, we simply call this the degree of the vertex. For a set of vertices
A ⊆ V , we denote by E[A] := {(u, v) ∈ E | u ∈ A, v ∈ V \ A}; that is, the set of edges in E that
start in A and end in its complement. A cut (A, V \ A) is a partitioning of the vertex set V into two non-
empty partitions A and V \ A, each being called a side of the cut. The capacity of a cut (A, V \ A) is
c(A) =

∑
(u,v)∈E[A] c(u, v). A minimum cut is a cut (A, V \ A) that has smallest weight c(A) among all

cuts in G. We use λ(G) (or simply λ, when its meaning is clear) to denote the value of the minimum cut
over all A ⊂ V . At any point in the execution of a minimum cut algorithm, λ̂(G) (or simply λ̂) denotes the
lowest upper bound of the minimum cut that an algorithm discovered until that point. For a vertex u ∈ V
with minimum vertex degree, the size of the trivial cut ({u}, V \ {u}) is equal to the vertex degree of u.
Hence, the minimum vertex degree δ(G) can serve as initial bound.

When clustering a graph, we are looking for blocks of nodes V1,. . . ,Vk that partition V , i.e., V1 ∪ · · · ∪
Vk = V and Vi ∩ Vj = ∅ for i 6= j. The parameter k is usually not given in advance. Many algorithms
tackling the minimum cut problem use graph contraction. Given an edge (u, v) ∈ E, we define G/(u, v) to
be the graph after contracting edge (u, v). In the contracted graph, we delete vertex v and all edges incident
to this vertex. For each edge (v, w) ∈ E, we add an edge (u,w) with c(u,w) = c(v, w) to G or, if the edge
already exists, we give it the edge weight c(u,w) + c(v, w).

The Minimum Cut Algorithm of Nagamochi, Ono and Ibaraki. We discuss the algorithms by Nag-
amochi, Ono and Ibaraki [26, 27] in greater detail since our work makes use of the tools proposed by those
authors. The minimum cut algorithm of Nagamochi, Ono and Ibaraki works on graphs with positive integer
weights and computes a minimum cut by building edge-disjoint maximum spanning forests and contracting
all edges that are not in one of the λ̂− 1 first spanning forests. There is at least one minimum cut that con-
tains no contracted edges. The algorithm has worst case running time O

(
mn+ n2 log n

)
. In experimental

evaluations [7, 15] it is one of the fastest minimum cut algorithms on real-world instances.
The algorithm uses a modified breadth-first graph traversal (BFS) algorithm [26, 27] to find edges that

can be contracted without increasing the minimum cut. The algorithm starts at an arbitrary vertex. In each
step, the algorithm then visits the vertex that is most strongly connected to the already visited vertices.

Using the modified BFS routine, the algorithm computes a lower bound q(e) for each edge e = (v, w)
for the smallest cut λ(G, v,w), which places v and w on different sides of the cut. After finishing the
BFS, all edges with q(e) ≥ λ̂ are contracted as there exists at least one minimum cut without these edges.
Afterwards, the algorithm continues on the contracted graph. A single iteration of the subroutine can be
performed in O(m+ n log n). The authors show that in each BFS run, at least one edge of the graph can be

3

contracted [26]. This yields a total running time of O(mn + n2 log n). However, in practice the number of
iterations is typically much less than n− 1, often scaling proportional to log n.

4 VieCut: A Parallel Heuristic Minimum-Cut Algorithm

In this section we explain our new approach to the minimum cut problem. Our algorithm is based on edge
contractions: we find densely connected vertices in the graph and contract those into single vertices. Due
to the way contractions are defined, we ensure that a minimum cut of the contracted graph corresponds
to a minimum cut of the input graph. Once the graph is contracted, we apply exact reductions. These two
contraction steps are repeated until the graph has a constant number of vertices. We apply an exact minimum
cut algorithm to find the optimal cut in the contracted graph.

Throughout our algorithm we maintain a variable λ̂, which denotes the current lowest upper bound for
the minimum cut. In the beginning, λ̂ equals the minimum node degree of G. After every contraction, if
the minimum node degree in the contracted graph is smaller than λ̂, we set λ̂ to the minimum node degree
of the contracted graph. As we only perform contractions and thus do not introduce any new cuts¸ we can
guarantee that our algorithm will never output a value that is lower than the minimum cut.

The rest of this section is organized as follows: first we give a general overview of our algorithm. Then
we introduce the label propagation algorithm [31], which we use to find clusters in the input graph. Note
that cluster contraction is an aggressive contraction technique. In contrast to previous approaches, it enables
us to drastically shrink the size of the input graph. The intuition behind this technique is that each cluster
consists of a set of nodes that all belong to the same side of the cut; as there are usually many edges inside
the clusters and only a few between clusters. Thus we contract each cluster. We continue this section with
the description of the Padberg-Rinaldi heuristics [28]. These are a set of conditions that can be used to find
edges that can be contracted without increasing the value of the minimum cut. We use these contractions to
further contract the graph after the label propagation step. Both contractions are repeated until the graph has
a constant number of vertices. Then, we apply an exact minimum cut algorithm. We finish the section with
a discussion of our parallelization.

4.1 Fast Minimum Cuts

The algorithm of Karger and Stein spends a large amount of time computing graph contractions recursively.
One idea to speed up their algorithm therefore, is to increase the number of contracted edges per level.
However, this strategy is undesirable: it increases the error both in theory and in practice, as their algorithm
selects edges for contraction at random. We solve this problem by introducing an aggressive coarsening
strategy that contracts a large number of edges that are unlikely to be in a minimum cut.

We first give a high level overview before diving into the details of the algorithm. Our algorithm starts
by using a label propagation algorithm to cluster the vertices into densely connected clusters. We then use a
correcting algorithm to find misplaced vertices that should form a singleton cluster. Finally, we contract the
graph and apply the exact reductions of Padberg and Rinaldi [28]. We repeat these contraction steps until
the graph has at most a constant number n0 of vertices. When the contraction step is finished we apply the
algorithm of Nagamochi, Ono and Ibaraki [27] to find the minimum cut of the contracted graph. Finally, we
transfer the resulting cut into a cut in the original graph. Pseudocode can be found in Appendix A.

The label propagation algorithm (LPA) was proposed by Raghavan et al. [31] for graph clustering. It is
a fast algorithm that locally minimizes the number of edges cut. We outline the algorithm briefly. Initially,
each node is in its own cluster/block, i.e. the initial block ID of a node is set to its node ID. The algorithm
then works in rounds. In each round, the nodes of the graph are traversed in a random order. When a node

4

v is visited, it is moved to the block that has the strongest connection to v, i.e. it is moved to the cluster C
that maximizes c({(v, u) | u ∈ N(v)∩C}). Ties are broken uniformly at random. The block IDs of round i
are used as initial block IDs of round i + 1. In the original formulation [31], the process is repeated until
the process converges and no vertices change their labels in a round. Kothapalli et al. [21] show that label
propagation finds all clusters in few iterations with high probability, when the graph has a distinct cluster
structure. Hence, we perform at most ` iterations of the algorithm, where ` is a tuning parameter. One LPA
round can be implemented to run in O(n+m) time. As we only perform ` iterations, the algorithm runs
in O(n+m) time as long as ` is a constant. In this formulation the algorithm has no bound on the number
of clusters. However, we can modify the first iteration of the algorithm, so that a vertex i is not allowed to
change its label when another vertex already moved to block i. In a connected graph this guarantees that
each cluster has at least two vertices and the contracted graph has at most |V |2 vertices. The only exception
are connected components consisting of only a single vertex, i.e. isolated vertices with a degree of 0, which
can not be contracted by the label propagation algorithm. However, when such a vertex is detected, our
minimum cut algorithm terminates immediately. In practice we do not use the modification, as the label
propagation usually returns far fewer than |V |2 clusters.

Once we have computed the clustering with label propagation, we search for single misplaced vertices
using a correcting algorithm. A misplaced vertex is a vertex, whose removal from its cluster improves
the minimum weighted degree of the contracted graph. Figure 1 gives an example in which the clustering
misplaces a vertex. To find misplaced vertices, we sweep over all vertices and check for each vertex whether
it is misplaced. We only perform this correcting algorithm on small clusters, which have a size of up to
log2(n) vertices, as it is likely that large clusters would have more than a single node misplaced at a time.
In general, one can enhance this algorithm by starting at any node whose removal would lower the cluster
degree and greedily adding neighbors whose removal further lowers the remaining cluster degree. However,
even when performing this greedy search on all clusters, this did not yield further improvement over the
single vertex version on small clusters.

After we computed the final clustering, we contract it to obtain a coarser graph. Contracting the cluster-
ing works as follows: each block of the clustering is contracted into a single node. There is an edge between
two nodes u and v in the contracted graph if the two corresponding blocks in the clustering are adjacent
to each other in G, i.e. block u and block v are connected by at least one edge. The weight of an edge
(A,B) is set to the sum of the weight of edges that run between block A and block B of the clustering.
Our contractions ensure that a minimum cut of the coarse graph corresponds to a cut of the finer graph with
the same value, but not vice versa: we can not guarantee that a minimum cut of the contracted graph is
equal to a minimum cut of the original graph. It is possible that a single cluster contains nodes from both
sides of the cut. In this case, contracting the cluster eliminates this minimum cut. If all minimum cuts are
eliminated, λ(GC) > λ(G). Thus our newly introduced reduction for the minimum cut problem is inexact.
However, the following lemma holds (the proof can be found in Appendix B):

Lemma 1. If there exist a minimum cut of G such that each cluster of the clustering C is completely con-
tained in one side of the minimum cut of G and |VC | > 1, then λ(G) = λ(GC).

Exact Reductions by Padberg and Rinaldi. We use the Padberg-Rinaldi reductions to further shrink the size
of the graph. These are exact reductions, which do not modify the size of the minimum cut. Our algorithm
contracts all edges which are marked by the Padberg-Rinaldi heuristics. In our experiments, we also tried
run the exact reductions first and cluster contraction last. However, this resulted in a slower algorithm since
not many exact reductions could be applied on the initial unweighted network. We now briefly discuss the
exact reductions by Padberg and Rinaldi [28]:

5

2

2

2

2

2

3 2

Fig. 1: A case in which label propagation misplaces vertices. Left: label propagation assigns the centered
vertex correctly to the left (red) cluster. However, this results in a situation in which the contracted graph
does not contain the minimum cut anymore. Setting the centered vertex to be a singleton fixes this problem.

Lemma 2 (Padberg-Rinaldi). If two vertices v, w ∈ V with an edge (v, w) ∈ E satisfy at least one of
the following four conditions and (v, w) is not the only edge adjacent to either v or w, then they can be
contracted without increasing the value of the minimum cut:

1) c(v, w) ≥ λ̂,
2) c(v) ≤ 2c(v, w) or c(w) ≤ 2c(v, w),
3) ∃u ∈ V such that c(v) ≤ 2{c(v, w) + c(v, u)} and c(w) ≤ 2{c(v, w) + c(w, u)}, or
4) c(v, w) +

∑
u∈V min{c(v, u), c(w, u)} ≥ λ̂.

We use this lemma to find contractible edges in the graph. In our implementation, we perform so-called
“runs” of the Padberg-Rinaldi heuristics similar to the implementation of Chekuri et al. [7], where each run
takes linear time and is split into two passes. In the first pass of a run, we iterate over all edges of G and
check conditions 1 and 2. Whenever we encounter an edge (u, v), that satisfies either condition 1 or 2, we
mark it as contractible. After finishing the pass, we build the contracted graph. More precisely, we perform
contraction in linear time by deleting all unmarked edges, contracting connected components and then re-
adding the deleted edges as defined in the contraction process. In practice, we achieve better performance
using a union-find data structure [10], which results in a running time of O(nα(n) +m)

It is not possible to perform an exhaustive check for conditions 3 and 4 on all triangles in G in linear
time, as a graph might have as many as Θ(m

3
2) triangles [33]. In the beginning of a pass, we mark each

vertex as unscanned. When scanning two adjacent unscanned vertices v and w, we check condition 3 for
all vertices u in the common neighborhood N(v) ∩ N(w). As we iterate over all vertices in the common
neighborhood, we can compute the sum in condition 4 by adding up the smaller of the two edge weights
for each vertex in the common neighborhood. Afterwards we mark both v and w as scanned. This ensures a
time complexity of O(n+m), as each edge is processed at most twice. However, not for all possible edges
(v, w) it is tested whether the vertices v and w can be contracted.

Final Step: Exact Minimum Cut Algorithm. To find the minimum cut of the final problem kernel, we use the
minimum cut algorithm of Nagamochi, Ono and Ibaraki, as described in Section 3.

Lemma 3. The algorithm VieCut has a running time complexity of O(n+m). (Proof in Appendix B)

4.2 Parallelization

We describe how to parallelize VieCut. We parallelize each part of the algorithm, except the final invoca-
tion of the algorithm of Nagamochi, Ono, and Ibaraki.

6

Parallel Label Propagation. To perform the label update for vertex v, we only need to consider vertices
in the neighborhood N(v). Therefore the label propagation algorithm can be implemented in parallel on
shared-memory machines [35] using the parallel for directive from the OpenMP [8] API. We store
the cluster affiliation for all vertices in an array of size n, where position i denotes the cluster affiliation of
vertex i. We explicitly do not perform label updates in a critical section, as each vertex is only traversed
once and the race conditions are not critical but instead introduce another source of randomness.

Parallel Correcting Step. As the clusters are independent of each other for this correcting step, we parallelize
it a cluster level, i.e. a cluster is checked by a single thread but each thread can check a different cluster
without the need for locks or mutexes.

Parallel Graph Contraction. After label propagation has partitioned the graph into c clusters, we build the
cluster graph. As the time to build this contracted graph is not negligible, we parallelize graph contraction
as well. One of the p threads performs the memory allocations to store the contracted graph, while the
other p − 1 threads prepare the data for this contracted graph. When c2 > n, we parallelize the graph on a
cluster level. To build the contracted vertex for cluster C, we iterate over all outgoing edges e = (u, v) for
all vertices randomness and graph locality by randomly shuffling small blocks of vertex IDs but traversing
these shuffled blocks successively. If v ∈ C, we discard the edge, otherwise we add c(u, v) to the edge
weight between C and the cluster of vertex v. When c2 < n, we achieve lower running time and better
scaling when every thread builds a temporary graph data structure. In this contraction step, the vertices are
assigned to thread at runtime. These temporary graphs are then combined by a single thread.

Parallel Padberg-Rinaldi. In parallel, we run the Padberg-Rinaldi reductions 1, 3 and 4 on the contracted
graph. As these criteria are local and independent, they can be parallelized trivially. Updates to the union-
find data structure are inside of a critical section. Performing reduction 2 in parallel would entail in
additional locks, as the vertex weights need to be updated on edge contraction.

4.3 Further Details

The label propagation algorithm by Raghavan et al. [31] traverses the graph vertices in random order. Other
implementations of the algorithm [35] omit this explicit randomization and rely on implicit randomization
through parallelism, as the vertex processing order in parallel label propagation is non-deterministic. Our
implementation to find the new label of a vertex v in uses an array, in which we sum up the weights for
all clusters in the neighborhood N(v). Therefore randomizing the vertex traversal order would destroy any
graph locality, leading to many random reads in the large array, which is very cache inefficient. Thus we
trade off randomness and graph locality by randomly shuffling small blocks of vertex ids but traversing
these shuffled blocks successively.

Using a time-forward processing technique [40] the label propagation as well as the contraction algo-
rithm can be implemented in external memory [1] using Sort(|E|) I/Os overall. Hence, if we only use the
label propagation contraction technique in external memory and use the whole algorithm as soon as the
graph fits into internal memory, we directly obtain an external memory algorithm for the minimum cut
problem. We do not further investigate this variant of the algorithm as our focus is on fast internal memory
algorithms for the problem.

7

5 Experiments

In this section we compare our algorithm VieCut with existing algorithms for the minimum cut problem
on real-world and synthetic graphs. We compare the sequential variant of our algorithm to efficient imple-
mentations of existing algorithms and show how our algorithm scales on a shared-memory machine.

Experimental Setup and Methodology. We implemented the algorithms using C++-17 and compiled all
codes using g++-7.1.0 with full optimization (-O3). All of our experiments are conducted on a machine
with two Intel Xeon E5-2643 v4 with 3.4GHz with 6 CPU cores each and 1.5 TB RAM in total. In general,
we perform five repetitions per instance and report the average running time as well as cut.

Algorithms. We compare our algorithm with our implementations of the algorithm of Nagamochi, Ono
and Ibaraki (NOI) [27] and the (2 + ε)-approximation algorithm of Matula (Matula) [25]. In addition, we
compare against the algorithm of Hao and Orlin (HO) [13] by using the implementation of Chekuri et al. [7].
We also performed experiments with Chekuri et al. ’s implementations of NOI, but our implementation is
generally faster. For HO, Chekuri et al. give variants with and without Padberg-Rinaldi tests and with an
excess detection heuristic [7], which contracts nodes with large pre-flow excess. We use three variants of
the algorithm of Hao and Orlin in our experiments: HO_A uses Padberg-Rinaldi tests, HO_B uses excess
detection and HO_C uses both. We also use their implementation of the algorithm of Karger and Stein [7,
18, 37] (KS) without Padberg-Rinaldi tests. We only perform a single iteration of their algorithm, as this
is already slower than all other algorithms. Note that performing more iterations yields a smaller error
probability, but also makes the algorithm even slower. The implementation crashes on very large instances
due to overflows in the graph data structure used to for edge contractions. We do not include the algorithm
by Stoer and Wagner [38], as it is far slower than NOI and HO [7, 15] and was also slower in preliminary
experiments we conducted. We also do not include the near-linear algorithm of Henzinger et al. [14], as
the other algorithms are quasi linear in most instances examined and the algorithm of Henzinger et al. has
large constants. We performed preliminary experiments with the core of the algorithm, which indicate that
the algorithm is slower in practice.

Instances. We perform experiments on clustered Erdős-Rényi graphs that are generated using the generator
from Chekuri et al. [7], which are commonly used in the literature [7, 15, 27, 28]. We also perform experi-
ments on random hyperbolic graphs [22, 39] and on large undirected real-world graphs taken from the 10th
DIMACS Implementation Challenge [2] as well as the Laboratory for Web Algorithmics [4, 5]. As these
graphs contain vertices with low degree (and therefore trivial cuts), we use the k-core decomposition [3],
which gives the largest subgraph, in which each vertex has a degree of at least k, to generate input graphs.
We use the largest connected components of these core graphs to generate graphs in which the minimum
cut is not trivial. For every real-world graph, we use k-cores for four different values of k. Appendix C
shows basic properties of all graph instances in more detail. The graphs used in our experiments have up
to 70 million vertices and up to 5 billion edges. To the best of our knowledge, these graphs are the largest
instances reported in literature to be used for experiments on global minimum cuts.

Configuring the Algorithm. In preliminary experiments we tuned the parameters of our algorithm on
smaller random hyperbolic graphs. These experiments have been performed on instances not used for the
evaluation here. We detail these experiments in Appendix D, and omit them here due to space constraints. In
further experiments conducted in this section, we use the configuration of VieCut given by the parameter

8

12
.5

K
25

K
50

K

10
0K

15
0K

20
0K

25

26

27

28

29

Number of Vertices

R
un

ni
ng

Ti
m

e
pe

rE
dg

e
(n
s)

n = 12.5K - 200K, d = 10%, k = 2

2 8 16 32 64 128
24

25

26

27

28

29

210

211

Number of Clusters

n = 100K, d = 10%, k = 2 - 128

2.510 25 50 75 100

25

26

27

28

29

Density [%]

n = 100K, d = 2.5% - 100%, k = 2

KS
HO_A
HO_B
HO_C
NOI
Matula
seqVieCut

Fig. 2: Total running time in nanoseconds per edge in clustered Erdős-Rényi graphs

tuning in Appendix D, which performs two iterations of LPA and randomly shuffles blocks of 128 vertices
each. We set the bound n0 to 10 000 and did not encounter a single instance with more than a single bulk
contraction step.

5.1 Experimental Results

Clustered Erdős-Rényi Graphs. Clustered Erdős-Rényi graphs have distinct small cuts between the clusters
and do not have any other small cuts. We perform three experiments varying one parameter of the graph class
and use default parameters for the other two parameters. Our default parameters are n = 100 000, d = 10%
and k = 2. The code of Chekuri et al. [7] uses 32 bit integers to store vertices and edges. We could therefore
not perform the experiments with m ≥ 231 with HO. Figure 2 shows the results for these experiments. First
of all, on 20% of the instances KS returns non-optimal results. No other algorithm returned any non-optimal
minimum cuts on any graph of this dataset. Moreover, seqVieCut is the fastest algorithm on all of these
instances, followed by Matula, which is 40 to 100% slower on these instances.

seqVieCut is faster on graphs with a lower number of vertices, as the array containing cluster af-
filiations – which has one entry per vertex and is accessed for each edge – fits into cache. In graphs with
k = 2, 4, 8, the final number of clusters in the label propagation algorithm is equal to k, as label propagation
correctly identifies the clusters. In the graph contraction step, we iterate over all edges and check whether
the incident vertices are in different clusters. For this branch, the compiler assumes that they are indeed in
different cluster. However, in these graphs, the chance for any two adjacent nodes being in the same cluster
is 1

k , which is far from zero. This results in a large amount of branch misses (for n = 100 000, d = 10%,
k = 2: average 14% branch misses, in total 1.5 billion missed branches). Thus the performance is better
with higher values of k. The fastest exact algorithm is NOI. This matches the experiments by Chekuri et al.
[7].

Random Hyperbolic Graphs. We now perform experiments on random hyperbolic graphs with n = 220−225
and an average degree of 25 − 28. We generated 3 graphs for each of the 24 possible combinations yielding
a total of 72 RHG graphs. Note that these graphs are hard instances for the inexact algorithms, as they
contain few – usually only one – small cuts and both sides of the cut are large. From a total of 360 runs,
seqVieCut does not return the correct minimum cut in 1% of runs and Matula does not return the correct
minimum cut in 31% of runs. KS, which crashes on large instances, returns non-optimal cuts in 52% of the
runs where it ran to completion. Figure 3 shows the results for these experiments. On nearly all of these

9

220 221 222 223 224 225
26

27

28

29

Number of Vertices

R
un

ni
ng

Ti
m

e
pe

rE
dg

e
[(
n
s)

]
Average Node Degree: 25

220 221 222 223 224 225

26

27

28

29

210

211

Number of Vertices

Average Node Degree: 26

220 221 222 223 224 225

26

27

28

Number of Vertices

Average Node Degree: 27

220 221 222 223 224 225
25

26

27

28

29

Number of Vertices

Average Node Degree: 28

KS
HO_A
HO_B
HO_C
NOI
Matula
seqVieCut

Fig. 3: Total running time in nanoseconds per edge in RHG graphs

graphs, NOI is faster than HO. On the sparse graphs with an average degree of 25, seqVieCut, Matula
and NOI nearly have equal running time. On denser graphs with an average degree of 28, seqVieCut is
40% faster than Matula and 4 to 10 times faster than NOI. HO_A and HO_C use preprocessing with the
Padberg-Rinaldi heuristics. Multiple iterations of this preprocessing contract the RHG graph into two nodes.
The running time of those algorithms is 50% higher on sparse graphs and 4 times higher on dense graphs
compared to seqVieCut. Figure 7 shows a time breakdown for seqVieCut on large RHG graphs with
n = 225. Around 80% of the running time is in the label propagation step and the rest is mostly spent in
graph contraction. The correcting step has low running time on most graphs, as it is not performed on large
clusters.

Real-World Graphs. We now run experiments on six large real-world social and web graphs. Most of these
graphs have many small cuts. On these graphs, there are no non-optimal minimum cuts for any algorithm
except for KS, which has 36% non-optimal results. Figure 4 gives slowdown plots to the fastest algorithm
(seqVieCut in each case) for the real-world graphs. On these graphs, seqVieCut is the fastest algorithm,
far faster than the other algorithms. Matula is not much faster than NOI, as most of the running time is
in the first iteration of their BFS algorithm, which is similar for both algorithms. On the largest real-world
graphs, seqVieCut is approximately 3 times faster than the next fastest algorithm Matula. We also see
that seqVieCut, Matula and NOI all perform better on denser graphs. For Matula and NOI, this can
most likely be explained by the smaller vertex priority queue. For seqVieCut, this is mainly due to better
cache locality. As HO does not benefit from denser graphs, it has high slow down on dense graphs.

The highest speedup in our experiments is in the 10-core of gsh-2015-host, where seqVieCut is
faster than the next fastest algorithm (Matula) by a factor of 4.85. The lowest speedup is in the 25-core of
twitter-2010, where seqVieCut is 50% faster than the next fastest algorithm (HO_B). The average
speedup factor of seqVieCut to the next fastest algorithm is 2.37. NOI and Matula perform badly on
the cores of the graph twitter-2010. This graph has a very low diameter (average distance is 4.46), and
as a consequence the priority queue used in these algorithms is filled far quicker than in graphs with higher
diameter. Therefore the priority queue operations become slow and the total running time is very high.

To summarize, both in generated and real-world graphs, even in sequential runs seqVieCut is up to
a factor of 6 faster than the state of the art, while achieving a high solution quality even for hard instances
such as the hyperbolic graphs. The performance of seqVieCut is especially good on the real-world graphs,
presumably as these graphs have high locality.

Shared-Memory Parallelism. Figure 5 shows the speedup of parVieCut compared to the sequential vari-
ant and to the next fastest algorithm, which is Matula in all of the large graph examined. We examine the
largest graphs from each of the three graph classes and perform parallel runs using 1, 2, 3, . . . , 12 threads.

10

20

21

22

23

24

107 108 109 1010

Sl
ow

 D
ow

n

Number of Edges

KS
HOA
HOB
HOC
NOI

Matula

20

21

22

23

24

101 102 103 104

Sl
ow

 D
ow

n

Average Degree

KS
HOA
HOB
HOC
NOI

Matula

Fig. 4: Slowdowns of competitors to VieCut in large real-world graphs. We display slowdowns based on
the absolute number of edges (left), and by the average vertex degree (right) in the graph

12 4 6 8 12 24
0

1

2

3

4

Number of Threads

Sp
ee

du
p

to
Se

qu
en

tia
l

RHG, n ≈ 225, m ≈ 232

12 4 6 8 12 24
0

1

2

3

4

Number of Threads

gsh-2015-host, k = 10

12 4 6 8 12 24
0

1

2

3

4

5

6

Number of Threads

uk-2007-05, k = 10

12 4 6 8 12 24
1
2

4

6

8

12

Number of Threads

n = 200K, d = 10%, k = 2

12 4 6 8 12 24
1
2
4
6
8

12

Number of Threads

n = 100K, d = 100%, k = 2

parVieCut
Matula

Fig. 5: Speedup on large graphs over our algorithm using 1 thread.

We also perform experiments with 24 threads, as the machine has 12 cores and supports multi-threading.
On average, parVieCut with 12 is 6.3 times faster than seqVieCut (24 threads: 7.9x faster), while
still having a low error rate even on hard instances. On large RHG graphs we have 2 non-optimal results
out of 195 runs. All other results of parVieCut on large graphs were optimal. Compared to the next
fastest sequential algorithm Matula, this is an average speedup factor of 13.2 (24 threads: 15.8x faster).
parVieCut scales better on the graph uk-2007-05 (k = 10) and especially on the clustered Erdős-
Rényi graphs, presumably as these graphs contain many vertices with high degree. Figure 8 shows average
running time breakdowns averaged over all graphs. For this figure, the correcting algorithm is turned off for
the two Erdős-Rényi graphs. We can see that label propagation scales better than graph contraction. With
one thread, label propagation uses 81% of the total running time, with 24 threads, it uses 71% of the total
running time.

6 Conclusions and Future Work

We presented the linear-time heuristic algorithm VieCut for the minimum cut problem. VieCut is based
on the label propagation algorithm [31] and the Padberg-Rinaldi heuristics [28]. Both on real-world graphs
and a varied family of generated graphs, VieCut is significantly faster than the state of art. Our algorithm
has far higher solution quality than other heuristic algorithms while also being faster. Important future work
includes checking whether using better clustering techniques affect the observed error probability. However,
these clustering algorithms generally have higher running time.

11

Acknowledgements

The research leading to these results has received funding from the European Research Council under the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) /ERC grant agreement No. 340506

References

[1] Y. Akhremtsev, P. Sanders, and C. Schulz. (semi-) external algorithms for graph partitioning and clus-
tering. In 2015 Proceedings of the Seventeenth Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 33–43. SIAM, 2014.

[2] D. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and D. Wagner. Benchmarking for Graph
Clustering and Partitioning. In Encyclopedia of Social Network Analysis and Mining. Springer, 2014.

[3] V. Batagelj and M. Zaversnik. AnO(m) algorithm for cores decomposition of networks. arXiv preprint
cs/0310049, 2003.

[4] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multiresolution coordinate-
free ordering for compressing social networks. In S. Srinivasan, K. Ramamritham, A. Kumar, M. P.
Ravindra, E. Bertino, and R. Kumar, editors, Proceedings of the 20th International Conference on
World Wide Web, pages 587–596. ACM Press, 2011.

[5] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In Proc. of the Thirteenth
International World Wide Web Conference (WWW 2004), pages 595–601, Manhattan, USA, 2004.
ACM Press.

[6] D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM Computing
Surveys, 38(1):2, 2006.

[7] C. S. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and C. Stein. Experimental study of mini-
mum cut algorithms. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’97), pages 324–333. SIAM, 1997.

[8] L. Dagum and R. Menon. OpenMP: An industry standard API for shared-memory programming. IEEE
Computational Science and Engineering, 5(1):46–55, 1998.

[9] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,
8(3):399–404, 1956.

[10] B. A. Galler and M. J. Fisher. An improved equivalence algorithm. Communications of the ACM,
7(5):301–303, 1964.

[11] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal of the ACM,
35(4):921–940, 1988.

[12] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial and
Applied Mathematics, 9(4):551–570, 1961.

[13] J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a graph. In Proceedings of
the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 165–174. Society for Industrial
and Applied Mathematics, 1992.

[14] M. Henzinger, S. Rao, and D. Wang. Local flow partitioning for faster edge connectivity. In Proceed-
ings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1919–1938. SIAM,
2017.

[15] M. Jünger, G. Rinaldi, and S. Thienel. Practical performance of efficient minimum cut algorithms.
Algorithmica, 26(1):172–195, 2000.

12

[16] D. R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46–76, 2000.
[17] D. R. Karger. A randomized fully polynomial time approximation scheme for the all-terminal network

reliability problem. SIAM Review, 43(3):499–522, 2001.
[18] D. R. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the ACM,

43(4):601–640, 1996.
[19] G. Karypis and V. Kumar. Metis: A software package for partitioning unstructured graphs, partitioning

meshes, and computing fill-reducing orderings of sparse matrices, version 4, 1998.
[20] K.-i. Kawarabayashi and M. Thorup. Deterministic global minimum cut of a simple graph in near-

linear time. In Proceedings of the 47th Annual ACM on Symposium on Theory of Computing, pages
665–674. ACM, 2015.

[21] K. Kothapalli, S. V. Pemmaraju, and V. Sardeshmukh. On the analysis of a label propagation algo-
rithm for community detection. In Proceedings of the 14th International Conference on Distributed
Computing and Networking (ICDCN 2013), volume 7730 of LNCS, pages 255–269. Springer, 2013.

[22] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguná. Hyperbolic geometry of complex
networks. Physical Review E, 82(3):036106, 2010.

[23] B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI networks. IEEE Transactions
on Computers, 33(5):438–446, 1984.

[24] M. S. Levine. Experimental study of minimum cut algorithms. Master’s thesis, Massachusetts Institute
of Technology, 1997.

[25] D. W. Matula. A linear time 2 + ε approximation algorithm for edge connectivity. In Proceedings of
the 4th annual ACM-SIAM Symposium on Discrete Algorithms, pages 500–504. SIAM, 1993.

[26] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and capacitated graphs.
SIAM Journal on Discrete Mathematics, 5(1):54–66, 1992.

[27] H. Nagamochi, T. Ono, and T. Ibaraki. Implementing an efficient minimum capacity cut algorithm.
Mathematical Programming, 67(1):325–341, 1994.

[28] M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut problem. Mathemat-
ical Programming, 47(1):19–36, 1990.

[29] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problems. SIAM Review, 33(1):60–100, 1991.

[30] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the
web. Technical report, Stanford InfoLab, 1999.

[31] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect community structures
in large-scale networks. Physical Review E, 76(3):036106, 2007.

[32] A. Ramanathan and C. J. Colbourn. Counting almost minimum cutsets with reliability applications.
Mathematical Programming, 39(3):253–261, 1987.

[33] T. Schank and D. Wagner. Finding, counting and listing all triangles in large graphs, an experimental
study. In Proceedings of the 4th International Workshop on Experimental and Efficient Algorithms
(WEA 2005), volume 3503 of LNCS, pages 606–609. Springer, 2005.

[34] S. B. Seidman. Network structure and minimum degree. Social Networks, 5(3):269–287, 1983.
[35] C. L. Staudt and H. Meyerhenke. Engineering high-performance community detection heuristics for

massive graphs. In Proceedings of the 42nd International Conference on Parallel Processing (ICPP
2013), pages 180–189. IEEE, 2013.

[36] C. L. Staudt, A. Sazonovs, and H. Meyerhenke. NetworKit: An interactive tool suite for high-
performance network analysis. CoRR, abs/1403.3005, 2014.

[37] C. Stein and M. Levine. Minimum cut code. http://www.columbia.edu/~cs2035/code.
html, 1996. Accessed: 2017-06-09.

13

http://www.columbia.edu/~cs2035/code.html
http://www.columbia.edu/~cs2035/code.html

[38] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM, 44(4):585–591, 1997.
[39] M. von Looz, H. Meyerhenke, and R. Prutkin. Generating random hyperbolic graphs in subquadratic

time. In Proceedings of the 26th International Symposium on Algorithms and Computation (ISAAC
2015), volume 9472 of LNCS, pages 467–478. Springer, 2015.

[40] N. Zeh. I/o-efficient graph algorithms. EEF Summer School on Massive Data Sets, 2002.

A Algorithm Overview

Algorithm 1: VieCut
1 input graph G = (V,E, c : V → N>0), n0 : bound for exact algorithm
2

3 G ← G
4 while |VG | > n0 do

// compute inexact kernel
5 C ← computeClustering(G) // label propagation clustering
6 C′ ← fixMisplacedVertices(G, C) // fix misplaced vertices
7 GC′ ← contractClustering(G, C′) // perform contraction
8

// further apply exact reductions
9 E ← findContractableEdges(GC′) // find contractable edges with Padberg-Rinaldi

10 G ← contractEdges(GC′ , E) // perform contraction
11 end
12 (A,B)← NagamochiOnoIbaraki(G) // solve minimum cut problem on final kernel
13 (A′, B′)← solutionTransfer(A,B) // transfer solution to input network
14

15 return (A′, B′)

B Proofs

Lemma 1. If there exist a minimum cut of G such that each cluster of the clustering C is completely con-
tained in one side of the minimum cut of G and |VC | > 1, then λ(G) = λ(GC).

Proof. As node contraction removes cuts but does not add any new cuts, λ(GC) ≥ λ(G) for each contraction
with |VC | > 1. For an edge e in G, which is not part of some minimum cut of G, λ(G) = λ(G/e) [18].
Contraction of a cluster C inG can also be represented as the contraction of all edges in any spanning tree of
C. If the cluster C is on one side of the minimum cut, none of the spanning edges are part of the minimum
cut. Thus we can contract each of the edges without affecting the minimum cut of G. We can perform this
contraction process on each of the clusters and λ(GC) = λ(G). �

Lemma 3. The algorithm VieCut has a running time complexity of O(n+m).

Proof. One round of all reduction and contraction steps (Algorithm 1, lines 4-11) can be performed in
O(n+m). The label propagation step contracts the graph by at least a factor of 2, which yields geometri-
cally shrinking graph size and thus a total running time ofO(n+m). We break this loop when the contracted

14

graph has less than some constant n0 number of vertices. The exact minimum cut of this graph with con-
stant size can therefore be found in constant time. The solution transfer can be performed in linear time by
performing the coarsening in reverse and pushing the two cut sides from each graph to the next finer graph.

When the graph is not connected, throughout the algorithm one of the contracted graphs can contain
isolated vertices, which our algorithm does not contract. However, when we discover an isolated vertex, our
algorithm terminates, as the graph certainly has a minimum cut of 0. �

C Instances

Clustered Erdős-Rényi Graphs. Many previous experimental studies of minimum cut algorithms used a
family of clustered Erdős-Rényi graphs with m = O(n2) [7, 15, 27, 28]. This family of graphs is specified
by the following parameters: number of vertices n = |V |, d the graph density as a percentage where m =

|E| = n·(n−1)
2 · d

100 and the number of clusters k. For each edge (u, v), the integral edge weight c(u, v) is
generated independently and uniformly in the interval [1, 100]. When the vertices u and v are in the same
cluster, the edge weight is multiplied by n, resulting in edge weights in the interval [n, 100n]. Therefore
the minimum cut can be found between two clusters with high probability. We performed three experiments
on this family of graphs. In each of these experiments we varied one of the graph parameters and fixed
the other two parameters. These experiments are similar to older experiments [7, 15, 27, 28] but scaled to
larger graphs to account for improvements in machine hardware. We use the generator noigen of Andrew
Goldberg [37] to generate the clustered Erdős-Rényi graphs for these experiments. This generator was also
used in the study conducted by Chekuri et al. [7]. As our code uses the METIS [19] graph format, we use a
script to translate the graph format. All experiments exclude I/O times.

Random Hyperbolic Graphs (RHG) [22]. Random hyperbolic graphs replicate many features of real-
world networks [6]: the degree distribution follows a power law, they often exhibit a community structure
and have a small diameter. In denser hyperbolic graphs, the minimum cut is often equal to the minimum
degree, which results in a trivial minimum cut. In order to prevent trivial minimum cuts, we use a power law
exponent of 5. We use the generator of von Looz et al. [39], which is a part of NetworKIT [36], to generate
unweighted random hyperbolic graphs with 220 to 225 vertices and an average vertex degree of 25 to 28.
These graphs generally have very few small cuts and the minimum cut has two partitions with similar sizes.

Real-world Graphs. We use large real-world web graphs and social networks from [2, 4, 5], detailed in
Table 1. The minimum cut problem on these web and social graphs can be seen as a network reliability
problem. As these graphs are generally disconnected and contain vertices with very low degree, we use a
k-core decomposition [3, 34] to generate versions of the graphs with a minimum degree of k. The k-core
of a graph G = (V,E) is the maximum subgraph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E, which fulfills
the condition that every vertex in G′ has a degree of at least k. We perform our experiments on the largest
connected component of G′. For every real-world graph we use, we compute a set of 4 different k-cores, in
which the minimum cut is not equal to the minimum degree k.

We generate a diverse set of graphs with different sizes. On the large graphs gsh-2015-host and
uk-2007-05, we use cores with k in 10, 50, 100 and 1000. In the smaller graphs we use cores with k in
10, 30, 50 and 100. twitter-2010 and com-orkut only had few cores where the minimum cut is not
trivial. Therefore we used those cores. As hollywood-2011 is very dense, we multiplied the k value of
all cores by a factor of 2.

15

graph n m k n m λ δ

hollywood-2011 2.2M 114M 20 1.3M 109M 1 20
[4, 5] 60 576K 87M 6 60

100 328K 71M 77 100
200 139K 47M 27 200

com-orkut 3.1M 117M 16 2.4M 112M 14 16
[4, 5] 95 114K 18M 89 95

98 107K 17M 76 98
100 103K 17M 70 100

uk-2002 18M 262M 10 9M 226M 1 10
[2, 4, 5] 30 2.5M 115M 1 30

50 783K 51M 1 50
100 98K 11M 1 100

twitter-2010 42M 1.2B 25 13M 958M 1 25
[4, 5] 30 10M 884M 1 30

50 4.3M 672M 3 50
60 3.5M 625M 3 60

gsh-2015-host 69M 1.8B 10 25M 1.3B 1 10
[4, 5] 50 5.3M 944M 1 50

100 2.6M 778M 1 100
1000 104K 188M 1 1000

uk-2007-05 106M 3.3B 10 68M 3.1B 1 10
[2, 4, 5] 50 16M 1.7B 1 50

100 3.9M 862M 1 100
1000 222K 183M 1 1000

Table 1: Statistics of real-world web graphs used in experiments. Original graph size and k-cores used in
experiments with their respective minimum cuts

D Algorithm Configuration

We performed experiments to tune the number of label propagation iterations and to find an appropriate
amount of randomness for our algorithm. We conducted these experiments with different configurations on
generated hyperbolic graphs (see Section C) with 215 to 219 vertices with an average degree of 25 to 28 and
compared error rate and running time. The instances used here are different to the one used in the main text.

Table 2 shows the number of non-optimal cuts returned by VieCut with different numbers of label
propagation iterations indicated by the integer in the name. Each implementation traverses the graph in
blocks of 256 randomly shuffled elements as described in Section 4.3. The variant VieCut25 performs up
to 25 iterations or until the label propagation converges so that only up to 1

10000 of all nodes change their
cluster. On average the variant performed 20.4 iterations. The results for all variants with 2 to 25 iterations
are very similar with 14 to 19 non-optimal results and 2.44% and 3.80% average distance to the optimum.
As the largest part of the total running time is in the label propagation step, running the algorithm with a

VieCut1 VieCut2 VieCut3 VieCut4 VieCut5 VieCut10 VieCut25

of non optimal cuts 29 14 15 16 19 19 18
average distance to opt. 16.2% 2.44% 2.46% 3.30% 3.80% 3.37% 3.14%
Table 2: Error rate for configurations of VieCut in RHG graphs (out of 300 instances)

16

215 216 217 218 219

22

23

24

25

26

27

Number of Vertices

R
un

ni
ng

Ti
m

e
pe

rE
dg

e
[(
n
s)

]
Average Node Degree: 25

215 216 217 218 219

22

23

24

25

26

27

Number of Vertices

Average Node Degree: 26

215 216 217 218 219

22

23

24

25

26

27

Number of Vertices

Average Node Degree: 27

215 216 217 218 219
21

22

23

24

25

26

27

Number of Vertices

Average Node Degree: 28

KS
VieCut_global
Matula
VieCut1024
VieCut512
VieCut256
VieCut128
VieCut_fast
VieCut_cons
parVieCut128
parVieCut_cons

Fig. 6: Total running time in nanoseconds per edge in RHG graphs

lower amount of iterations is obviously faster. Therefore we use 2 iterations of label propagation in all of
our experiments.

To compare the effect of graph traversal strategies, we compared different configurations of our al-
gorithm. Configuration VieCut_cons does not randomize the traversal order, i.e. it traverses vertices
consecutively by their ID, VieCut_global performs global shuffling, VieCut_fast swaps each ver-
tex with a random vertex with a index distance up to 20. The configurations VieCut128, VieCut256,
VieCut512, VieCut1024 randomly shuffle blocks of 128, 256, 512, or 1024 vertices and introduce ran-
domness without losing too much data locality. We also include the configurations parVieCut_cons and
parVieCut128, which are shared-memory parallel implementation with 12 threads. As a comparison, we
also include the approximation algorithm of Matula and a single run of the randomized algorithm of Karger
and Stein.

Figure 6 shows the total running time for different configurations of VieCut. From the sequential
algorithms, VieCut_cons has the lowest running time for all algorithms. The algorithm, however, returns
non-optimal cuts in more than 1

3 of all instances, with an average distance to the minimum cut of 44% over
all graphs. The best results were obtained by VieCut128, which has an average distance of 0.83% and only
10 non-optimal results out of 300 instances. The results are very good compared to Matula, which has 57
non-optimal results in these 300 instances and an average distance of 5.57%. VieCut128 is 20% faster on
most graphs than Matula, regardless of graph size or density. In the main text we use the configuration
VieCut128 with 2 iterations, there named VieCut. On these small graphs, the parallel versions have a
speedup factor of 2 to 3.5 compared to their sequential version. parVieCut128 has 17 non-optimal results
and an average distance of 4.91% while parVieCut_cons has 29 non-optimal results and 20% average
distance to the minimum cut. Therefore we use parVieCut128 for all parallel experiments in the main
text (named parVieCut).

17

E Additional Figures

0

20%

40%

60%

80%

100%

R
un

ni
ng

Ti
m

e

NOI Algorithm
Padberg-Rinaldi Tests
Graph Contraction
Fix Misplaced Vertices
Label Propagation

Fig. 7: Running Time Breakdown for RHG Graphs with n = 225 and m = 232

1 2 3 4 5 6 7 8 9 10 11 12 24
0

20%

40%

60%

80%

100%

Number of Threads

R
un

ni
ng

Ti
m

e
Pe

rc
en

ta
ge NOI Algorithm

Padberg-Rinaldi Tests
Graph Contraction
Fix Misplaced Vertices
Label Propagation

Fig. 8: Parallel Running Time Breakdown in Large Graphs

18

	Practical Minimum Cut Algorithms

