
Noname manuscript No.
(will be inserted by the editor)

Choreography of ebXML business collaborations

Birgit Hofreiter, Christian Huemer, Ja-Hee Kim

Institute of Distributed and Multimedia Systems, University of Vienna, at Liebiggasse
4/3-4, 1010 Vienna, Austria (e-mail: birgit.hofreiter@univie.ac.at,
christian.huemer@univie.ac.at, kim@mminf.univie.ac.at)

The date of receipt and acceptance will be inserted by the editor

Abstract The ebXML framework consists of eight loosely coupled specifications
for conducting e-Business. The choreography of ebXML business processes is defined
by instances of the business process specification schema (BPSS). The BPSS is de-
fined as an XML schema. It specifies elements describing the inter-organizational
business processes, called business collaborations, but does not concentrate on intra-
organizational business processes. Most of the underlying semantics were derived
from the meta model of the UN/CEFACT Modeling Methodology (UMM). In this
paper we describe the characteristics of ebXML business collaborations. We demon-
strate how these concepts are captured by UMM and BPSS. These concepts must
be supported by any proposed alternative business process interchange format in
order to bridge between ebXML and other approaches, or even to replace BPSS.

Key words B2B e-Commerce – Business process management – Interchange For-
mats – XML – ebXML

1 Introduction

The exchange of business data between applications of different business partners
goes back to the 1960s. These types of interchanges became known as Electronic
Data Interchange (EDI) (Hill and Ferguson, 1989; Schatz, 1988). The most sig-
nificant revolution in this area happened when XML entered the market. A lot
of XML-based business document standards have been developed (Li, 2000; Ko-
tok, 2000) and more and more companies became interested in business-to-business
electronic commerce (B2B).

In addition to standardizing business document types, approaches supporting
more advanced aspects of a B2B partnership appeared. ISO’s Open-edi reference
model (ISO, 1997) suggests the separation of the business logic in the Business Ser-
vice View from its implementation in the Functional Service View. The most impor-
tant standard of the Business Service View is UN/CEFACTs modelling methodol-
ogy (UMM)(UN/CEFACT TMG, 2003 d). It is a methodology to define business
collaboration models for B2B based on UML (Booch et al., 1998). In this paper we
focus on the choreography of UMM business collaborations.

The two most popular approaches of the Functional Service View are ebXML
and Web Services. ebXML is directed towards e-Business in specific, whereas Web

2 Birgit Hofreiter et al.

Services originated from a remote procedure call background. Nevertheless, Web
Services might be used in a B2B environment as well.

The Web Services base standards are WSDL, UDDI and SOAP. In a B2B en-
vironment, a WSDL file describes a business partner’s interfaces to a collaborative
business process. A UDDI registry is used to publish these services in order to
inform prospective business partners of supported business processes. Once busi-
ness partners with complementary interfaces have found each other, they collabo-
rate by exchanging SOAP messages. Usually a business collaboration is a complex
process that consists of many operations performed between the business partners.
Therefore, a choreography amongst these operations must be defined. For this pur-
pose different languages have been proposed: Web Services Choreography Interface
(WSCI) (W3C, 2002 a), Web Services Conversation Language (WSCL) (W3C, 2002
b), Business Process Execution Language (BPEL) (OASIS, 2003; Leymann and
Roller, 2004), and Web Services Choreography Description Language (WS-CDL)
(W3C, 2004). Since BPEL seems to be the most commonly accepted language, we
demonstrated how a UMM business collaboration is supported by BPEL in another
paper (Hofreiter and Huemer, 2004).

In this paper we do not go into the details of a Web Services environment, but
concentrate on ebXML business collaborations. ebXML offers a set of specifications
in order to define business processes, building blocks for business documents, pro-
files of business partners and agreements between business partners. Furthermore,
it offers a B2B-specific SOAP messaging and a registry/repository. Since we are
interested in the choreography of business processes, we concentrate on the corre-
sponding specification, that is the Business Process Specification Schema (BPSS).
We show how a UMM version 12 business collaboration is implemented in ebXML
by BPSS version 1.1.

Since both UMM and BPSS are specifically targeted towards B2B, and BPSS
development was based on the UMM meta model, it is not surprising that both
specifications share a lot of common concepts. These concepts should be supported
by any other language considered as alternative to describe business collaboration
choreographies. Alternatives might be the above mentioned Web Services languages,
and languages like the Petri Net Markup Language (PNML) (Kindler, 2004), the
Event-Driven Process Chains Markup Language (EPML) (Mendling and Nüttgens,
2004), and the Graph eXchange Language (GXL) (Winter and Simon, 2004).

The remainder of this paper is structured as follows: In Section 2 we intro-
duce the two standards that our approach is based upon: ebXML and UMM. The
overlapping concepts in both standards are business transactions and business col-
laborations. We introduce these key concepts in Section 3 and Section 4. Both
sections have the same substructure. First, we introduce the relevant part of the
UMM meta model. Next we present a UMM example demonstrating the key con-
cepts. The third subsection shows how the UMM concepts are mapped to the BPSS
schema definition. For a better understanding the UMM example is expressed in
a BPSS equivalent in the fourth subsection. In case of the business collaboration
we provide an additional subsection on complex choreographies as compared to
well-known workflow patterns. A short summary in Section 5 concludes the paper.

2 Background information on UMM and ebXML BPSS

2.1 UN/CEFACT’s Modeling Methodology (UMM)

In the mid-1990s UN/CEFACT had successfully introduced their UN/EDIFACT
standards. Since UN/EDIFACT implementations resulted in high start-up costs,
UN/CEFACT already started to look for their next generation EDI standards. For

Choreography of ebXML business collaborations 3

this purpose UN/CEFACT followed the idea of Open-edi. The UN/CEFACT vision
was to develop business collaboration models that do not have the problem of am-
biguity; instead they would describe the complete processes and their information
requirements, including constraints, options in execution, exceptions, etc. Of course,
it was recognized that the issue of businesses wishing to do things differently would
not go away. However, it was envisioned that software providers would implement
the most common scenarios in their software packages for small and medium enter-
prises (SMEs). This should lead to a critical mass of SME users in order to attract
large companies to support these ”common” scenarios instead of insisting on their
proprietary scenarios.

Following this vision, UN/CEFACT started its work on UMM in 1997. UMM
concentrates on the business semantics of a B2B partnership and is, thus, a BOV-
related standard. Its goal is capturing the commitments made by business partners.
These commitments are then reflected in the resulting choreography of the busi-
ness collaboration. Another standards organization following a similar approach is
RosettaNet. In 2000, the company EDIFECS transferred their copyrights of the
RosettaNet modeling approach to UN/CEFACT. UN/CEFACT merged this ap-
proach into UMM. Also other organizations that participated in the development of
UMM, like SWIFT, EAN*UCC, and TM Forum aligned their methodologies with
UMM.

All the UMM artifacts are documented by the means of UML. Moreover, the
methodology is based on the UMM meta model (UN/CEFACT TMG, 2003 c) that
defines a coherent set of stereotypes, constraints, and tag definitions, i.e. a UML
profile for the purpose of modeling business collaborations. It should be noted that
most of the terminology used in this paper refers to the definitions in the UMM
meta model.

The UMM procedure as well as the UMM meta model consists of 4 views in
order to describe business collaboration models. Firstly, the Business Domain View
(BDV) provides a framework for understanding existing business processes and cat-
egorizing these business processes into business areas and process areas. Secondly,
the Business Requirements View (BRV) identifies possible business collaborations
and further elaborates on these collaborations. It describes processes and resources
used to achieve certain objectives, and the resulting commitments. In other words,
the BRV focuses on the economics of a system. Thirdly, the Business Transaction
View (BTV) presents the view of the business process analyst. It defines the or-
chestration of the business collaboration and structures the business information
exchanged. Finally, the Business Service View (BSV) considers the interaction se-
quences between network components in order to map the business collaboration
semantics to collaborating application systems.

2.2 electronic business XML (ebXML)

The business collaboration models defined in the BOV must be supported by an
IT-infrastructure on the FSV layer. UN/CEFACT recognized the growing demand
for XML-based solutions and teamed up with OASIS to start the ebXML initiative
in November 1999. The ebXML vision is best explained by the ebXML scenario
between a large corporation (Company A) and a SME (Company B) as illustrated
in Figure 1 (UN/CEFACT and OASIS, 2001).

Company A requests business details from the ebXML registry (step 1) and de-
cides to build its own ebXML-compliant application. Company A submits its own
business profile information to the ebXML registry. The business profile submitted
to the ebXML registry describes the company’s ebXML capabilities and constraints,
as well as the business scenarios it supports. Company B, which uses an ebXML-

4 Birgit Hofreiter et al.

ebXML Registry

Business Scenarios

Business Profiles

1: Request Business Details

3: Register Implementation Details

Register Company A‘s Profile

2: Build Local System

Implementation

4
:

Q
u
e
ry

a
b
o
u
t

C
o
m

p
a
n
y
 A

‘s

P
ro

fi
le

5: Agree on B
usiness A

rra
ngement

6: D
o B

usiness Transactio
ns

Company B

(SME)

Company A

(Large enterprise)

Fig. 1 ebXML scenario.

compliant software package, discovers the business scenarios supported by Company
A in the registry (step 4). Company B sends a request to Company A stating that
they would like to engage in a business scenario (step 5). Before engaging in the
scenario, company B submits a proposed business arrangement directly to Company
A’s ebXML-compliant software interface. The proposed business arrangement out-
lines the mutually agreed upon business scenarios and specific agreements. Then,
Company A accepts the business agreement. Company A and B are ready to engage
in e-business using ebXML (step 6).

In order to support this secenario ebXML offers a modular suite of specifications.
These specifications provide a standard method to exchange business messages, con-
duct trading relationships, communicate data in common terms and define/register
business processes (Hofreiter et al., 2002). The current set of specifications comprises
the ebXML requirements (ebREQ), technical architecture (ebTA), messaging ser-
vice (ebMSG), registry information model (ebRIM), registry services specification
(ebRS), collaboration protocol profile and agreement specification (CPPA), business
process specification schema (BPSS), and core components (CC).

The ebXML standard to describe business collaborations is the business process
specification schema (BPSS). The relationship to other ebXML standards is as fol-
lows: A BPSS instance will reference business document types that are constructed
from core components (CC). A business partner will reference in its profile (CPP),
all the BPSS instances of the business processes, it is able to support. Both the
instances of the CPP and the BPSS will be stored in an ebXML registry. This
guarantees that potential business partners are able to locate them. Once business
partners agree to execute a certain type of business process, they will reference the
corresponding BPSS instance in their agreement (CPA).

The goal of the BPSS is to provide the bridge between e-business process model-
ing and specification of e-business software components (UN/CEFACT TMG, 2003
b). It provides an XML schema to specify a collaboration between business partners,
and to provide configuration parameters for the partners’ runtime systems in order
to execute that collaboration between a set of e-business software components. The
work on BPSS was based on the UMM meta model. BPSS identified those UMM

Choreography of ebXML business collaborations 5

modeling elements that are relevant for the runtime systems and discarded the rest.
The relevant modeling elements have been expressed in XML schema.

Frankly speaking, the BPSS can be regarded as an ”XML-ification” of UMM’s
BTV. The most important artifacts of the BTV are business transactions and their
choreography into business collaborations. Thus, we concentrate in the next two
sections on each of these artifacts. We do not introduce in detail any other UMM
artifacts. The reader interested in UMM is referred to (UN/CEFACT TMG, 2003
d; Hofreiter and Huemer, 2003). Please note that UMM is an approach intended to
specify business collaborations from top down, re-using existing lower level content
as much as possible. In BPSS it does not matter whether a top-down or bottom-up
approach is used. For educational purposes we use a bottom up approach to describe
the concepts of both UMM and BPSS.

3 Business Transactions

Both UMM and BPSS use the concept of a business transaction in a very similar way.
It is the basic building block to define a choreography of a business collaboration
between collaborating business partners. Communication in a business collaboration
is about aligning the information systems of the business partners. Aligning the
information systems means that all relevant business objects (e.g. purchase orders,
line items, etc.) are in the same state in each information system. If a business
partner recognizes an event that changes the state of a business object, it initiates
a business transaction to synchronize with the collaborating business partner. It
follows that a business transaction is an atomic unit that leads to a synchronized
state in both information systems.

We distinguish two very basic types of business transactions: In the first type,
the initiating business partner reports an already effective and irreversible state
change that the reacting business partner has to accept. Examples are the notifi-
cation of shipment or the update of a product in a catalog. This is the case of a
one way business transaction, because business information (not including business
signals for acknowledgments) flows only from the initiating to the reacting business
partner. In the second type, the initiating partner sets the business object(s) into
an interim state and the final state is decided by the reacting business partner.
Examples include request for registration, search for products, etc. This is the case
of a two way transaction, because business information flows from the initiator to
the responder to set the interim state and backwards to set the final and irreversible
state change. In a business context irreversible means that returning to an original
state requires another business transaction. E.g., once a purchase order is agreed
upon in a business transaction a rollback is not allowed anymore, but requires the
execution of a cancel order business transaction.

3.1 Business Transactions in UMM

In Figure 2 we present an extract of the UMM meta model showing those meta
classes and associations that relate to business transactions. Note, that the seman-
tics presented in this figure span over multiple diagrams of the original UMM meta
model (UN/CEFACT TMG, 2003 c).

In the BRV, the requirements of a business transaction are documented by a
business transaction use case. UMM provides a worksheet that is assigned to a
business transaction use case. The worksheet documents the following requirements:
pre-conditions, begins when, definition, ends when, exceptions, post-conditions, re-
questing business function, responding business function. Usually business experts

6 Birgit Hofreiter et al.

Fig. 2 UMM meta model extract related to business transactions.

will use human language to complete the worksheets. According to the semantics
of business transactions described above, the properties for pre-conditions and post-
conditions reference business states of business entities. A business process analyst
is responsible for guiding the business experts to define these states.

Each business transaction use case results in exactly one business transaction
which is represented by an activity graph. The is secure transport required flag sig-
nals that both business partners must agree to exchange business information using
a secure transport channel. The activity graph of a business transaction is always
built by exactly two business actions, a requesting business activity and a responding
activity. Each business action is performed by exactly one authorized role executed
by a business partner. The assignment of the business action to an authorized role
is realized by the UML concept of swimlanes. The requesting business activity is
assigned to the initiating role and the responding activity is assigned to the react-
ing role. Note, we stick here to the UMM terms, although initiating and reacting
business activities would be better terms, since in one way transactions there exist
a responding activity, but no response is sent.

In UMM we distinguish two types of one-way transactions. If the business in-
formation sent is a formal non-repudiatable notification, the transaction is called
notification. Otherwise the transaction is known as information distribution. Fur-
thermore, there exist four different types of two-way transactions. If the responder
already has the information available beforehand, it is a query/response transaction.
If the responder does not have the information, but no pre-editor context valida-
tion is required before processing, the transaction is a request/confirm one. If the

Choreography of ebXML business collaborations 7

latter is required, the next question is whether the transaction results in a residual
obligation between the business partners to fulfill terms of a contract. If so, it is a
commercial transaction. Otherwise it is a request/response transaction. These types
of business transactions cover all known legally binding interactions between two
decision making applications as defined in Open-edi (ISO, 1997). They have proven
to be useful in RosettaNet. In UMM the requesting business activity is stereotyped
according to the transaction type. This means that there exists a subclass of re-
questing business activity for each of the six patterns. These subclasses do not have
any additional attributes. The subclass structure is not shown in Figure 2, in order
to keep it simple.

The different types of business transaction patterns differ in the default values
for the attributes that characterize business actions: is authorization required, is
non-repudiation required, time to perform, time to acknowledge receipt, and time
to acknowledge acceptance. The values for is non-repudiation of receipt required
and for retry count are only defined for the requesting business activity. Most of
these attributes are self-explanatory. An acknowledgment of receipt is usually sent
after grammar validation, sequence validation, and schema validation. However,
if the is intelligible check required flag is set to false, the acknowledgment is sent
immediately after receipt without any validation. An acknowledgment of acceptance
is sent after validating the content against additional rules to ensure that the content
is processable by the target application. Retry count is the number of retries in case
of control failures.

In a one-way transaction business information is exchanged only from the re-
questing business activity to the responding business activity. In case of a two-way
transaction the responding business activity returns business information to the re-
questing business activity. The exchange of business information is shown by an
object flow. One business action sets an information object flow state that is con-
sumed by the other business action.

An information object flow state refers to an information envelope exchanged
between the business actions. Within an information envelope there are one or
more information entities representing the business information, which might be
structured recursively. Each business information entity is characterized by three
security parameters: is confidential, is tamper proof, and is authenticated. Since
an information envelope is a specialization of an information entity, the security
parameters characterize the information envelope as well.

The structure of the information envelope’s content is modeled in a class di-
agram. In order to guarantee reusability, the structure must be built using com-
mon building blocks. Hence, it was recently agreed that information entities should
be based on ebXML core components (UN/CEFACT TMG, 2003 a). Currently,
UN/CEFACT is building a library of core components which will become the rich-
est and most cross-industry harmonized source for assembling business information.
Since the structure of the information exchanged does not influence the choreogra-
phy - which is the primary focus of this paper - we do not further concentrate on
this topic.

3.2 UMM business transaction example

In order to demonstrate UMM business transactions we take the example of a request
for quote transaction. This business transaction is depicted in the activity diagram
of Figure 3. The white numbers with black background refer to line numbers of the
BPSS code in section 3.4 presenting the BPSS equivalent. In a request for quote
transaction the buyer takes on the role of the initiator and the seller performs the
reacting role. The buyer starts a request for quote activity. This activity creates

8 Birgit Hofreiter et al.

[C
o
n
tr
o
l
F
a
il]

[S
u
c
c
e
s
s
]

<<RespondingBusinessActivity>>

<<RequestResponseActivity>>

Initiating Role : Buyer Reacting Role: Seller

:RequestForQuote

Envelope

:Quote

Envelopeobtain quote

calculate quote

isConfidential: No

isTamperProof: No

isAuthenticated: No

isConfidential: Yes

isTamperProof: Yes

isAuthenticated: Yes

isAuthoriztionRequired: false

isNonRepudiationRequired: false

timeToPerform: 24 hrs

timeToAcknowledgeReceipt: 2 hrs

timeToAcknowledgeAcceptance: 4 hrs

isIntelligibleCheckRequired: true

isNonRepudiationOfReceiptRequired: false

retryCount: 3

timeToPerform: 24 hrs

timeToAcknowledgeReceipt: 2 hrs

timeToAcknowledgeAcceptance: null

isAuthoriztionRequired: false

isNonRepudiationRequired: false

001

018
004

009 014

<<BusinessTransation>> request for quote

Fig. 3 Business transaction ’request for quote’.

a request for quote envelope that triggers the calculate quote activity of the seller.
According to UMM business transaction semantics, the obtain quote activity does
not end after sending the envelope - it is still alive. The calculate quote activity
outputs the quote envelope, which is returned to the obtain quote activity. The
resulting activity graph - which does not show any control flows and is built by
loosely coupled, collaborating activities - does not follow the UML 1.4 semantics.
However, this interpretation is well accepted by the e-business community and all
the patterns are based on this concept.

The obtain quote activity requires neither authorization nor non-repudiation.
This holds also for the calculate quote activity. Both activities have to be executed
within 24 hours. They expect an acknowledgment of receipt after performing intel-
ligible checks within 2 hours. Furthermore, the obtain quote requires a acknowledg-
ment of acceptance within 4 hours. In case of a time-out the obtain quote activity
tries to restart 3 times. All the security parameters do not apply to the request for
quote envelope, but for the quote envelope.

It becomes obvious that the activity graph of a business transaction shows only
the exchange of business information in the corresponding envelopes, but does not
show any business signals for acknowledgements. These acknowledgments are spec-
ified in the tagged values of the business actions. However, this approach covers
all information necessary for the business service interfaces (BSI) on each partner’s
side. In case of a successful business transaction, the flow of messages will be as
depicted in Figure 4.

3.3 Business Transaction in BPSS

BPSS defines an XML element business transaction to cover the same semantics as
defined in UMM. In Figure 5 we present the business transaction element’s struc-
ture. This structure includes only the important elements and omits elements for
documentation, etc. We use a notation originally used by the software XML Spy,

Choreography of ebXML business collaborations 9

BuyersService SellerService

calculateQuote(RequestForQuoteEnvelope)

signalReceipt(AcknowledgmentOfReceipt)

signalAcceptance(AcknowledgmentOfAcceptance)

requestQuote(QuoteEnvelope)

signalReceipt(AcknowledgmentOfReceipt)

Fig. 4 The messages flow ’request for quote’.

BusinessTransaction

name [0..1]

nameID [1]

Pattern [0..1]

isGuaranteedDeliveryRequired („false)

RequestingBusinessActivity

name [0..1]

nameID [1]

isAuthorizationRequired [„false“]

isIntelligibleCheckRequired [„false“]

isNonRepudiationRequired [„false“]

isNonRepudiationReceiptRequired [„false“]

timeToAcknowledgeReceipt [0..1]

timeToAcknowledgeAcceptance [0..1]

retryCount [0..1]

name [0..1]

nameID [1]

isAuthorizationRequired [„false“]

isIntelligibleCheckRequired [„false“]

isNonRepudiationRequired [„false“]

isNonRepudiationReceiptRequired [„false“]

timeToAcknowledgeReceipt [0..1]

timeToAcknowledgeAcceptance [0..1]

RespondingBusinessActivity

DocumentEnvelope

name [0..1]

nameID [1]

businessDocument [1]

businessDocumentIDREF [0..1]

isPositiveResponse [0..1]

isAuthenticated [0..1]

isConfidential [0..1]

isTamperDetectable [0..1]

DocumentEnvelope

name [0..1]

nameID [1]

businessDocument [1]

businessDocumentIDREF [0..1]

isPositiveResponse [0..1]

isAuthenticated [0..1]

isConfidential [0..1]

isTamperDetectable [0..1]

BusinessDocument

name [0..1]

nameID [1]

specificationLocation [0..1]

specificationID [0..1]

namespacePrefixes [0..1]

0 .. 8

Fig. 5 BPSS business transaction element.

which is well-accepted in the XML community. However, we extend this notation
to show the elements’ attributes as well. For each attribute we define whether it
is required (marked [1]) or optional [0..1]. If a default value is assigned to an op-
tional element we specify the default value [”default”] instead. Furthermore we use
a dotted arrow to depict logical reference to other elements.

In general all BPSS elements include an attribute for a unique id (nameID) and
another one for a human readable identification (name). The business transaction
element further comprises two more attributes. The domain of the patterns attribute
covers the six types of business transactions defined in UMM. The pattern is cor-
rectly placed on the transaction level (as opposed to stereotyping the requesting
business activity in UMM). The attribute is guaranteed delivery required is used to
declare that the business partners must employ only a delivery channel that pro-
vides a delivery guarantee. Note, that this attribute is not semantically congruent
with is secure transport required which characterizes business transactions in UMM.
The latter does not exist in BPSS.

The element business transaction includes the two child elements requesting busi-
ness activity and responding business activity. Their attributes are similar to those
of their UMM equivalents. A value of type duration for time to acknowledge receipt

10 Birgit Hofreiter et al.

and time to acknowledge acceptance signals that the corresponding acknowledgment
is needed. If no acknowledgment is needed the attribute is simply omitted in the
instance. Both is non repudiation required and is non repudiation of receipt required
are attributes of both business action types - in UMM the latter does not exist
for the responding business activity. The retry count for the requesting business
activity is also used as in UMM. The is authorization required attribute is defined,
but deprecated, because it cannot be supported by current ebXML business service
interfaces. In BPSS no attribute time to perform exists, because it is not considered
relevant for the business service interfaces.

In BPSS the element document envelope is equivalent to information envelope in
UMM. The document envelop element is a child element of the business action that
creates it. The requesting business activity includes a mandatory document envelope,
whereas the document envelope is an optional child element of responding business
activity. No link exists from the document element to the business action that con-
sumes the envelope. Since a business transaction includes exactly two collaborating
business actions, it is clear that it must be the other business action (not including
the document as child element). A responding business activity might include more
document envelope children. However, only one of them will be sent at run-time.
In BPSS each different option for a response document type has its own document
envelope. This is contrary to UMM where the same information envelope is used for
different options of documents. The attribute is positive response is set true for all
envelopes that carry documents that lead to a success from a business perspective.

The document envelope element also includes attributes for the security pa-
rameters: is authenticated, is confidential, and is tamper detectable (in UMM: is
tamper proof). In UMM these parameters are booleans. BPSS uses a more sophis-
ticated differentiation with four possible values: none, transient, persistent, and
transient-and-persistent. Transient security focuses on the delivery to the receiving
message service handler. Persistence security applies as soon as the document leaves
the receiving message handler. Transient security is what is considered by UMM.
Therefore, a UMM true for a security parameter maps to transient in BPSS.

Furthermore the document envelope includes the attributes business document
and business document IDREF to reference a business document element, which is
sent as the envelope’s content. The business document element does not include any
substructure to define a document type. Instead its attributes specification location
or specification ID reference the schema of the corresponding document type.

3.4 BPSS Business Transaction Example

The code fragment below presents the BPSS equivalent to Figure 3. Note that we
do not use realistic unique IDs for the nameID attributes. Instead we build IDs by
the first characters of the concept followed by a sequential number (e.g. BA2 for
the second business action) in order to allow easier tracing for the reader.

The business transaction request for quote starts at line 001. It includes the re-
questing business activity obtain quote (004) and the responding business activity
calculate quote (014). The request for quote envelope (009) is a child of obtain quote
that creates the envelope. Similarly, calculate quote includes the child element quote
envelope. The business documents included in the envelopes (025 and 028) are refer-
enced by their unique id (BD1 and BD2). All the attributes of all the BPSS elements
correspond more or less to the tagged values of the UMM business transaction.

001 <BusinessTransaction
002 nameID="BT1" name="request for quote"
003 pattern="RequestResponse" isGuaranteedDeliveryRequired="true">
004 <RequestingBusinessActivity

Choreography of ebXML business collaborations 11

005 nameID="BA1" name="obtain quote"
006 retryCount="3" isIntelligibleCheckRequired="true" isAuthorizationRequired="false"
007 isNonRepudiationRequired="false" isNonRepudiationReceiptRequired="false"
008 timeToAcknowledgeReceipt="PT2H" timeToAcknowledgeAcceptance="PT4H">
009 <DocumentEnvelope
010 nameID="DE1" name="RequestForQuoteEnvelope"
011 businessDocument="RequestForQuote" businessDocumentIDREF="BD1"
012 isAuthenticated="none" isConfidential="none" isTamperDetectable="none"/>
013 </RequestingBusinessActivity>
014 <RespondingBusinessActivity
015 nameID="BA2" name="calculate quote"
016 isIntelligibleCheckRequired="true" isAuthorizationRequired="false"
017 isNonRepudiationRequired="false" timeToAcknowledgeReceipt="PT2H" >
018 <DocumentEnvelope
019 nameID="DE2" name="QuoteEnvelope"
020 businessDocument="Quote" businessDocumentIDREF="BD2"
021 isAuthenticated="transient" isConfidential="transient"
022 isTamperDetectable="transient"/>
023 </RespondingBusinessActivity>
024 </BusinessTransaction>
025 <BusinessDocument
026 nameID="BD1" name="RequestForQuote"
027 specificationLocation="http://www.example.org/RequestForQuote.xsd"/>
028 <BusinessDocument
029 nameID="BD2" name="Quote"
030 specificationLocation="http://www.example.org/Quote.xsd"/>

4 Business Collaborations

A business process is defined as an organized group of related activities that together
create customer value (Hammer and Champy, 1993). A business collaboration is a
special kind of a business process, characterized by the fact that the activities are
executed by two or more business partners. In case of two business partners the
business collaboration is called a binary collaboration. A multi-party collaboration
implies that three or more partners collaborate. The business transaction as defined
in the previous section is a special type of a binary collaboration. It is the basic
building block for more complex business collaborations. Consequently, a business
collaboration is built out of a number of business transactions. It is important that
the business collaboration defines an execution order for the business transactions,
i.e. a business collaboration choreography.

4.1 Business Collaborations in UMM

An extract of the UMM meta model for business collaborations and their relations
to business transactions is shown in Figure 6. The requirements of a business col-
laboration are documented in a business collaboration use case. In UMM there exist
two subtypes of business collaboration use cases: the business transaction use case -
we already introduced in the previous section - and the business collaboration pro-
tocol use case for more complex business collaborations. The worksheet assigned to
the latter addresses pre-conditions, begins when, definition, ends when, exceptions
and post-conditions.

Each business collaboration protocol use case specifies the requirements for the
choreography that is defined by an activity graph called business collaboration pro-
tocol. Currently, all activities of the business collaboration protocol must be stereo-
typed as business transaction activity. A business transaction activity must be re-
fined by the activity graph of a business transaction. This means that a recursive
nesting of business collaboration protocols is not possible at the moment. However,
it is likely that future versions of UMM will allow a business collaboration activity
that is refined by another business collaboration protocol.

For each business transaction activity the maximum performance time is docu-
mented by the time to perform property. If the underlying business transaction is

12 Birgit Hofreiter et al.

BusinessCollaborationProtocol

baseClass: String = ActivityGraph

BusinessCollaborationUseCase

baseClass: String

+ preConditions: BusinessRules

+ beginsWhen: BusinessRules

+ definition: String

+ endsWhen: BusinessRules

+ exceptions: BusinessRules

+ postConditions: BusinessRules

BusinessTransactionActivity

baseClass: String = ActionState

+ timeToPerform: TimeExpression

+ isConcurrent: Boolean

BusinessTransaction

baseClass: String = ActivityGraph

+ isSecureTransportRequired: Boolean

BusinessPartner

baseClass: String = Class

AuthorizedRole

baseClass: String = Class

BusinessTransactionUseCase

+ requestingBusinessFunction: String

+ respondingBusinessFunction: String

BusinessCollaborationProtocolUseCase

1 1

1..*

2

2

1..*

0..1

1..*

2..*

0..*

1

0..1

1..*1..*

1 1

Fig. 6 UMM meta model extract related to business collaboration.

not finished by this time, the initiating partner has to send a failure notice. Fur-
thermore, the is concurrent property defines whether or not more than one business
transaction activity can be open at one time.

The transition from one business transaction activity to another is triggered by
two types of events that are defined in UML 1.4: the completion of the previous
business transaction and (in addition) the availability of a business object in a
certain state. In addition to business transaction activities a business collaboration
protocol includes the pseudo states used in UML activity diagrams: initial state,
final state, decisions and merge (both of pseudo-state type junction), as well as fork
and join.

A business collaboration protocol specifies the choreography of activities among
two or even more business partners. Due to the 1:1-relationship of business transac-
tion activity and business transaction, the number of business partners participat-
ing in a business transaction activity is exactly two. Different business transaction
activities of the same business collaboration protocol might be performed by a dif-
ferent pair of business partners. However, nested business transaction activities are
not allowed owing to the transition semantics. Nested transactions are common in
multi-party transactions. E.g., verify credit between seller and bank is nested in
register customer between buyer and seller, because it is started after the registra-
tion request but ended before the registration response. In practice, the business
collaboration protocol is used to describe binary collaborations - the primary focus
of UMM.

4.2 UMM Business Collaboration Protocol Example

For the purpose of demonstrating a UMM business collaboration protocol we look
at the example of a simple purchase order management. The over-simplified chore-
ography is shown in Figure 7. Again, the white numbers with black background
refer to lines of the BPSS code in section 4.4 presenting the same concept.

The business collaboration in question is a binary collaboration between a buyer
and a seller. The first activity is request for quote. This business transaction activity
is refined by the homonymous business transaction that we detailed in section 3. It

Choreography of ebXML business collaborations 13

<<BusinessTransactionActivity>>

request for quote

<<BusinessTransactionActivity>>

register customer

<<BusinessTransactionActivity>>

order product

[NOT Product.Ordered]

[NOT Product.Quoted]

[Product.Quoted]

[Product.Ordered]

PurchaseOrderManagement.BusinessFailure

[NOT CustomerInformation.Confirmed] [CustomerInformation.Confirmed]

[CustomerInformation.Confirmed]

[CustomerInformation.Rejected]

PurchaseOrderManagement.BusinessSuccess

timeToPerform: 24 hrs

isConcurrent: true

timeToPerform: 48 hrs

isConcurrent: true

timeToPerform: 12 hrs

isConcurrent: false

PurchaseOrderManagement.BusinessFailure

001 <<BusinessCollaborationProtocol>> Purchase Order Management

008

011

018 025

078

032

036

044

040

048

056 063

070

Fig. 7 Business collaboration protocol ’purchase order management’.

must be executed in 24 hours and might be concurrent. If request for quote does not
result in a quote for the product, i.e. the business entity product is in state quoted,
the business collaboration ends with a business failure. If a quote for the product is
received, the buyer is able to order the product. However, ordering requires the buyer
to be registered at the seller. Hence, a decision node splits for either going directly to
the order product activity or first to the register customer activity. Register customer
must be performed in 12 hours and concurrent registrations do not make any sense.
If the customer is not registered by the seller, the collaboration ends with a business
failure. If the customer information is confirmed by the seller the product is ready to
be ordered. Order product must be realized in 48 hours and concurrent instantiations
are possible. A successful order process, which sets the business object product into
state ordered, leads to a business success of the purchase order management.

4.3 Business Collaboration in BPSS

The choreography of a business collaboration is described in BPSS by the element
binary collaboration. As the name of this element suggests, it defines business col-
laborations between two business partners only. The BPSS schema file includes an
element for multi-party collaboration. However, the element was deprecated and it
will be subject to major changes in future BPSS versions. Consequently, we do not
consider multi-party collaborations in this paper. The support of recursively struc-
turing binary collaborations is a key difference compared to UMM. Accordingly,
an activity of a binary collaboration is either a business transaction activity, which
is refined by a business transaction, or a collaboration activity, which is refined by
another binary collaboration.

The binary collaboration element includes attributes as defined in a UMM busi-
ness collaboration use case: begins when, ends when, pre-condition, and post-condition.
A binary collaboration must be completed within the time frame specified in the
time to perform attribute. The business partner which initiates the first activity
of the binary collaboration is referenced by initiating role IDREF. We already ex-
plained that binary collaborations might be nested. If a binary collaboration cannot
be a top level one, but must be nested in another one, the value of is inner collabora-
tion is set true. The pattern attribute is reserved for future use, when UN/CEFACT
has developed reference models for negotiation, order-fulfillment-settlement, long
term contract with periodic releases, etc.

14 Birgit Hofreiter et al.

BinaryCollaboration

name [0..1]

nameID [1]

pattern [0..1]

beginsWhen [0..1]

endsWhen [0..1]

preCondition [0..1]

postCondition [0..1]

timeToPerform [0..1]

initiatingRoleIDREF [0..1]

isInnerCollaboration [„false“]

Role

name [0..1]

nameID [1]

Start

name [0..1]

nameID [1]

toBusinessState [1]

toBusinessStateIDREF [0..1]

BusinessTransactionActivity

name [0..1]

nameID [1]

fromRole [1]

fromRoleIDREF [0..1]

toRole [1]

toRoleIDREF [0..1]

beginsWhen [0..1]

endsWhen [0..1]

preCondition [0..1]

postCondition [0..1]

businessTransaction [1]

businessTransactionIDREF [0..1]

isConcurrent [„true“]

isLegallyBinding [„true“]

timeToPerform [0..1]

CollaborationActivity

name [0..1]

nameID [1]

fromRole [1]

fromRoleIDREF [0..1]

toRole [1]

toRoleIDREF [0..1]

beginsWhen [0..1]

endsWhen [0..1]

preCondition [0..1]

postCondition [0..1]

binaryCollaboration [1]

binaryCollaborationIDREF [0..1]

Success

name [0..1]

nameID [1]

fromBusinessState [1]

fromBusinessStateIDREF [0..1]

conditionGuard [0..1]

ConditionExpression

expressionLanguage [1]

expression [1]

prefix [0..´1]

Failure

name [0..1]

nameID [1]

fromBusinessState [1]

fromBusinessStateIDREF [0..1]

conditionGuard [0..1]

Transition

name [0..1]

nameID [1]

fromBusinessState [1]

fromBusinessStateIDREF [0..1]

onInitiation [„false“]

toBusinessState [1]

toBusinessStateIDREF [0..1]

conditionGuard [0..1]

2

1.. 8

1.. 8

1.. 8

0.. 8

Fork

name [0..1]

nameID [1]

type [„OR“]

timeToPerform [0..1]

0.. 8

Join

name [0..1]

nameID [1]

waitForAll [„true“]

0.. 8

Decision

name [0..1]

nameID [1]

0.. 8

ConditionExpression

expressionLanguage [1]

expression [1]

prefix [0..´1]

ConditionExpression

expressionLanguage [1]

expression [1]

prefix [0..´1]

ConditionExpression

expressionLanguage [1]

expression [1]

prefix [0..´1]

Fig. 8 BPSS Binary Collaboration element .

The binary collaboration element includes child elements that represent the com-
ponents of the corresponding UMM activity graph. These elements can be classified
into the categories business partners, activities, pseudo states and transitions. The
binary collaboration element includes two role elements, one for each participating
business partner type.

A binary collaboration is built by one or more activities. Each activity is de-
scribed either by a business transaction activity element or a collaboration activity
element. Each one uses the from Role and from Role IDREF attributes to refer-
ence the initiating role, and the to role and to role IDREF attributes to reference
the reacting role. The referenced role elements must be the ones included in the
same binary collaboration. Again, the begins when, ends when, pre-condition and
post-condition attributes refer to corresponding use case descriptions. A business
transaction activity element references the refining business transaction element by
the attributes business transaction and business transaction IDREF. Similarly, a
collaboration activity element references a refining binary collaboration element by
the attributes binary collaboration and binary collaboration IDREF. Only business
transaction activity elements contain the attributes is concurrent and time to per-

Choreography of ebXML business collaborations 15

form as defined in UMM. Furthermore, they include an attribute to signal that
performing the business transaction is legally binding, which is true by default.

The binary collaboration contains also elements for pseudo states known from
UML: fork, join, and decision. However, the semantics of the BPSS elements is
not always identical to UML. If the type attribute of fork is XOR, only one of
the successors will become active and the first one wins. If the type is OR, the
interpretation corresponds to UML, where all successors occur in parallel. A fork
has a time to perform attribute. If this time interval is succeeded, the state will
be automatically moved to the corresponding join. The join element has a wait for
all attribute, which is true by default and corresponds in this case to the UML
semantics. If it is false, only the first transition reaching the join state activates
the successor. Furthermore, the condition of a decision element is given in the child
element condition expression. The use of pseudo states in order to define complex
choreographies is explained in more detail in section 4.5.

The transition element specifies the transition from one state to another by
using the attributes from business state, from business state IDREF, as well as to
business state and to business state IDREF. A referenced business state might be a
business transaction activity element, a collaboration activity element, as well as one
of the pseudo states fork, join, and decision. The on initiation attribute is set true,
if the transition occurs already when the requesting document is sent in the source
transaction. This enables nesting transactions. The guard of a transition is given
in the condition guard attribute. Values correspond to an enumeration of different
business/protocol success and failure indicators. More complex guards, like that of
business entity states, have to be specified in the child element condition expression.

The elements start, success, and failure are a combination of the corresponding
pseudo state and a transition to/from it. There is only one start element, but one ore
more success and failure elements. The attributes from business state, from business
state IDREF, to business state, and to business state IDREF, and condition guard
are identical to those in the transition element. Similarly, a condition expression is
an optional child element.

4.4 BPSS Binary Collaboration Example

In the code fragment below we show the BPSS definition of the binary collaboration
purchase order management that is equivalent to the business collaboration protocol
of Figure 7. For a better understanding we refer to both line numbers and element
IDs. The binary collaboration is performed by a buyer (006) and a seller (007). The
binary collaboration includes three activities: request for quote (BTA1, 011), register
customer (BTA2, 018), and order product (BTA3, 025). Additionally, it contains a
decision state (D1, 078).

The collaboration starts off with request for quote. Thus, the start element (008)
points to this business transaction activity element (BTA1). In case that this trans-
action results in a failure and no quote is made, no matter whether this is due
to a protocol failure or a business failure, the collaboration is terminated. This is
specified by a failure element (E2, 036). A business success of request for quote,
which sets the object product into state quoted, results in a transition (048) from
request for quote (BTA 1) to the decision node (D1). The decision (078) is based
on whether the object customer information is in state confirmed or not. If so, it
results in a transition (056) from the decision (D1) to register customer (BTA2),
and in a transition (063) from decision (D1) to order product (BTA3) otherwise.

A business success of register customer, i.e. the customer information is in state
confirmed, leads to a transition (070) from register customer (BTA2) to order prod-
uct (BTA3). In case of any failure of register customer, the purchase order man-

16 Birgit Hofreiter et al.

agement is terminated. The failure element (E3, 040) defines the transition from
register customer (BTA2) to the end state. Similarly, any failure of order product
terminates the binary collaboration. The transition from order product (BTA3) to
the failure state is defined by another failure element (E4, 044). Only if order product
results in a business success, i.e. the product is in state ordered, the purchase order
management collaboration results in an overall business success. A success element
(E1, 032) defines this transition from order product (BTA3) to the successful end
state.

001<BinaryCollaboration
002 nameID="BC1" name="PurchaseOrderManagement"
003 initiatingRoleIDREF="R1" isInnerCollaboration="false"
004 pattern="nopatterns exist yet" timeToPerform="P4D"
005 preCondition="X" beginsWhen="X" endsWhen="X" postCondition="X">

006 <Role nameID="R1" name="buyer" />
007 <Role nameID="R2" name="seller"/>

008 <Start
009 nameID="S1"
010 toBusinessState="request for quote" toBusinessStateIDREF="BTA1"/>

011 <BusinessTransactionActivity
012 nameID="BTA1" name="request for quote"
013 businessTransaction="request for quote" businessTransactionIDREF="BT1"
014 fromRole="buyer" fromRoleIDREF="R1"
015 toRole="seller" toRoleIDREF="R2"
016 isConcurrent="true" timeToPerform="P1D"
017 preCondition="X" beginsWhen="X" endsWhen="X" postCondition="X "/>
018 <BusinessTransactionActivity
019 nameID="BTA2" name="register customer"
020 businessTransaction="register customer" businessTransactionIDREF="BT2"
021 fromRole="buyer" fromRoleIDREF="R1"
022 toRole="seller" toRoleIDREF="R2"
023 isConcurrent="false" timeToPerform="PT12H"
024 preCondition="X" beginsWhen="X" endsWhen="X" postCondition="X"/>
025 <BusinessTransactionActivity
026 nameID="BTA3" name="order product"
027 businessTransaction="order product" businessTransactionIDREF="BT3"
028 fromRole="buyer" fromRoleIDREF="R1"
029 toRole="seller" toRoleIDREF="R2"
030 isConcurrent="true" timeToPerform="P2D"
031 preCondition="X" beginsWhen="Xt" endsWhen="X" postCondition="X"/>

032 <Success
033 nameID="E1"
034 fromBusinessState="order product" fromBusinessStateIDREF="BTA3"
035 conditionGuard="BusinessSuccess"/>
036 <Failure
037 nameID="E2"
038 fromBusinessState="request for quote" fromBusinessStateIDREF="BTA1"
039 conditionGuard="Failure"/>
040 <Failure
041 nameID="E3"
042 fromBusinessState="register customer" fromBusinessStateIDREF="BTA2"
043 conditionGuard="Failure"/>
044 <Failure
045 nameID="E4"
046 fromBusinessState="order product" fromBusinessStateIDREF="BTA3"
047 conditionGuard="Failure"/>

048 <Transition
049 nameID="T1"
050 fromBusinessState="request for quote" fromBusinessStateIDREF="BTA1"
051 toBusinessState="Decision1" toBusinessStateIDREF="D1"
052 conditionGuard="BusinessSuccess">
053 <ConditionExpression expressionLanguage="OCL"
054 expression="Product.oclInState(Quoted) = TRUE"/>
055 </Transition>
056 <Transition
057 nameID="T2"
058 fromBusinessState="Decision1" fromBusinessStateIDREF="D1"
059 toBusinessState="register customer" toBusinessStateIDREF="BTA2" >
060 ConditionExpression expressionLanguage="OCL"
061 expression="CustomerInformation.oclInState(Confirmed) = FALSE"/>
062 </Transition>

Choreography of ebXML business collaborations 17

063 <Transition
064 nameID="T3"
065 fromBusinessState="Decision1" fromBusinessStateIDREF="D1"
066 toBusinessState="order product" toBusinessStateIDREF="BTA3" >
067 <ConditionExpression expressionLanguage="OCL"
068 expression="CustomerInformation.oclInState(Confirmed) = TRUE"/>
069 </Transition>
070 <Transition
071 nameID="T4"
072 fromBusinessState="register customer" fromBusinessStateIDREF="BTA2"
073 toBusinessState="order product" toBusinessStateIDREF="BTA3"
074 conditionGuard="BusinessSuccess">
075 <ConditionExpression expressionLanguage="OCL"
076 expression="CustomerInformation.oclInState(Confirmed) = TRUE"/>
077 </Transition>

078 <Decision
079 nameID="D1" name="Decision1" >
080 <ConditionExpression expressionLanguage="OCL"
081 expression="CustomerInformation.oclInState(Confirmed)"/>
082 </Decision>
083 </BinaryCollaboration>

4.5 Complex choreographies in UMM and BPSS

Our purchase order management example specifies a rather simple choreography. In
real world situations a choreography will be much more complex. In this subsection
we analyze the expressive power of BPSS in order to handle complex choreogra-
phies. This analysis is based on well-known workflow patterns. Aalst et al. propose
the pattern based approach for comparison of the expression powers of commercial
workflow management systems (Van der Aalst et al., 2003). These patterns have
also been used to analyze the expression power of UML activity diagrams (Dumas
and Ter Hofsteded, 2001). The patterns are categorized into six classes - basic
control patterns, advanced branching and synchronization patterns, structural pat-
terns, patterns involving multiple instances, state-based patterns, and cancelation
patterns. In total, 20 patterns have been identified. Table 1 summarizes the work-
flow patterns that UMM and BPSS support. Support is shown as +. - means that
UMM/BPSS does not support the pattern. +/- means that a pattern is partially
supported. If the pattern is not implemented by activity structures, but is realized
by tagged values, we denote this fact by the character t. Furthermore, those patterns
that are supported by BPSS are depicted in Figure 9.

The first class of patterns we consider are the basic control patterns. These
patterns are sequence, parallel split, synchronization, exclusive choice, and simple
merge. In general, they are similar to definitions of elementary control flow concepts
provided by WfMC (WfMC, 1999). Sequence pattern (Figure 9a) means that an
activity starts after the completion of its predecessor. This is the most simple case.
Parallel split pattern (Figure 9b) is the behavior of an AND-fork. This means a
single activity has multiple successors that occur in parallel. In UMM the pseudo
state fork is used to realize this pattern. In BPSS there exists a fork element as well.
However, its type attribute must be set to OR. Synchronization pattern (Figure
9b) forms an antithesis to the parallel split pattern. A successor starts only if all its
predecessors are completed. In UMM this pattern is realized by the pseudo state
join. The graphical notation of join is identical to that of fork and is often called
synchronization bar due to its shape. The join element exists in BPSS as well. It is
important to set its wait for all attribute to true. Exclusive choice pattern (Figure
9c) chooses only one transition from several alternatives based on a decision. It is
realized in UMM by the pseudo state decision and mutually exclusive guards on
the transitions from the decision state to the alternatives. In BPSS, the element
decision fulfills the same function as the decision state in UMM. Simple merge
pattern (Figure 9c) makes an antithesis of the exclusive choice pattern. Multiple

18 Birgit Hofreiter et al.

UMM v. 12 BPSS v. 1.10
Sequence + +
Parallel Split + +
Synchronization + +
Exclusive Choice + +
Simple Merge + +
Multi Choice + +
Synchronizing Merge + +
Multi Merge - -
Discriminator - +
Arbitrary Cycles +/- +
Implicit Termination t +
MI without Synchronization t +
MI with a Priori Design Time Knowledge - -
MI with a Priori Runtime Knowledge - -
MI without a Priori Runtime Knowledge - -
Deferred Choice + +
Interleaved Parallel Routing - -
Milestone t +
Cancel Activity - -
Cancel Case + +

Table 1 Comparison of UMM and BPSS

A

B

(a) Se-
quence

A

B C

D

(b) Parallel split and
synchronization

A

B C

D

][ba <][ba ≥

(c) Exclusive choice
and simple merge

A

B C

D

][ba <][ca <

(d) Multi choice and
synchronizing merge

A

B C

D

discriminator

(e) Discriminator

A

B

C

E

D

][ba <

][ba ≥

][dc <

][dc ≥

][fe <

][fe ≥

(f) Arbitrary cycle

A

B C

xor

(g) Deferred
choice

A

B

D

C

(h) Cancel Case

Fig. 9 Patterns supported by BPSS.

Choreography of ebXML business collaborations 19

branches of which only one can be active due to a previous exclusive choice are
merged into a single activity. There is no need for synchronization. This pattern
is realized in UMM and BPSS by direct transitions from the last activity of each
branch to the single successor. Only in UMM a merge state (notation is identical
to the decision state) might be alternatively used.

The second category are the advanced branching and synchronization patterns.
Multi choice pattern (Figure 9d) allows one or more threads to continue according
to given conditions. In UMM the realization is similar to the parallel split. How-
ever, conditions must guard the transitions from the fork to a successors. BPSS
uses the same concept. Synchronizing merge pattern (Figure 9d) is the antithe-
sis of the multiple choice. Those branches which fulfilled the conditions of the multi
choice converge into one continuing activity. In UMM and in BPSS the realization
is identical to the synchronization pattern, because it is assumed that the merge
pseudo state knows which branches have started and does not wait for others.
Multi merge pattern merges two threads into one continuing activity. It is exe-
cuted whenever a precedence thread reaches the multi merge pattern. In UMM it
is not supported, since forks and joins must be well-nested. BPSS does not support
the multi merge pattern either. Discriminator pattern (Figure 9e) is similar to
the synchronization pattern since multiple threads converge to one tread and the
following thread is executed only once. However, the continuing activity starts after
the first preceding thread finishes. Again, this pattern is not supported by UMM,
because there is no semantically equivalent pseudo state. In BPSS such a pseudo
state exists. The pattern is realized by a join element, whose wait for all’s value is
false. To depict this pattern in Figure 9e we extend the UML notation by a pseudo
state called discriminator. Arbitrary cycles pattern (Figure 9f) means that one
or more activities are repeated without any structural restrict, i.e. a cycle might
have multiple entries and exists. Some arbitrary cycles are constructed by the com-
bination of multiple decisions, xor-typed forks and transitions. In this case UMM
and BPSS are able to realize the arbitrary cycle. However, arbitrary cycles might
involve forks and joins as well. Since each fork has a corresponding join, transitions
can not cross the boundary of the fork-join-block, UMM does not fully support
the arbitrary cycle pattern. Since BPSS does not include a similar well-formedness
rule it fully supports the arbitrary cycle. Implicit termination pattern (Figure
9g) means that no activity is performed anymore, although no deadlock exists and
no end state is reached. In UMM a business collaboration protocol usually results
in a final state. However, UMM supports a special kind of implicit termination. A
business collaboration protocol has a tagged value time to perform. This means the
business collaboration protocol is terminated by this time even if no final state is
reached. BPSS uses a time to perform attribute for binary collaborations as well.

Patterns involving multiple instances are multiple instances without syn-
chronization, multiple instances with a priori design time knowledge, mul-
tiple instances with a priori run time knowledge, and multiple instances
without a priori run time knowledge. Multiple instances with a priori design
time knowledge and multiple instances with a priori run time knowledge restrict the
number of instances at design time and run time, respectively. In contrary, multiple
instances without synchronization and multiple instances without a priori run time
knowledge have no limitation on the number of instances. Multiple instances without
a priori run time knowledge can manage the relationship among instances such as
synchronization differently from multiple instances without synchronization. BPSS
supports only the multiple instances without synchronization by assigning true to
a business transaction activity’s attribute is concurrent. Since the activity diagram
of UMM does not directly support this pattern, is concurrent is expressed as a tag
value of an activity.

20 Birgit Hofreiter et al.

If the execution of one activity depends on the state of another activity, the
pattern is categorized into the class of state-based patterns. State-based patterns
include deferred choice, interleaved parallel routing and milestone. Deferred choice
pattern (Figure 9h) selects only one continuing activity from several candidates like
exclusive choice, but the decision is implicit. In UMM this pattern is not directly
supported. However, it is possible to specify XOR-dependencies among the tran-
sitions to the alternatives. In BPSS, a corresponding pseudo state element for the
deferred choice exists. BPSS realizes this pattern using the element fork whose type
attribute is XOR. Interleaved parallel routing pattern defines the execution of
a set of activities in an arbitrary order. Each activity of the set is executed once. At
a given point in time only one activity is executed. The execution order is fixed at
run time. Neither UMM nor BPSS support the interleaved parallel routing pattern.
In the Milestone pattern the start of an activity depends on the state of other
activities. In UMM activities usually result in certain post-conditions, i.e. business
objects change to a certain state. Furthermore, activities might have pre-conditions
that require business objects to be in a certain state. Thus, the milestone pattern is
realized in UMM by a combination of the tagged values for pre- and post-condition.
BPSS also uses attributes for pre- and post-condition.

A Cancel activity pattern cancels an enabled activity. UML supports through
transition with triggers. However, UMM does not use this feature and BPSS does
not support this pattern directly, either. A cancel case pattern terminates a binary
collaboration. In UMM (BPSS), as soon as a final state (a success or a failure
element) is reached, the binary collaboration is terminated. Even if other business
transaction activities remain, they do not open any more. In this case, a timeout
exception can be generated. Therefore, although a binary collaboration has several
final states, they should be mutually exclusive.

5 Summary

This paper presented an introduction into the choreography of ebXML business
collaborations. ebXML has delivered a modular set of specifications for conducting
e-business between companies. Inasmuch ebXML looks after business processes in a
B2B environment. It does not consider the internal processes of the business part-
ners. It concentrates on the business processes crossing the borders of the involved
business partners. This type of collaborative business process is called business col-
laboration. ebXML business collaborations should be modeled by the UN/CEFACT’
modeling methodology (UMM) and are expressed as instances of the ebXML busi-
ness process specification schema (BPSS). Thus, an analysis of the expressive power
of these two standards builds the core of this paper.

The BPSS specification states that its goal is to provide the bridge between
e-business process modeling and specification of e-business software components.
BPSS does not require any particular e-business process modeling methodology.
Nevertheless, main concepts of BPSS are based on UMM, or better the UMM meta
model. Thus, it is close at hand to model e-business collaborations with UMM and
to map these models to XML-based BPSS. The gap between UMM and BPSS is
quite close. This approach enables e-business software to interpret the choreography
specified by UMM models.

We did not go into all the details of UMM. Rather we concentrated on those
UMM artifacts that BPSS is based upon: business transactions and their choreog-
raphy into business collaborations. We presented the underlying UMM meta model
and the resulting BPSS schema definition for both artifacts. An example of a over-
simplified purchase order management collaboration was used to express the same
business semantics in UMM and BPSS. It became obvious that UMM and BPSS

Choreography of ebXML business collaborations 21

usually use the same terms and structures. Only very few UMM concepts are not
supported by BPSS. Additional concepts available in BPSS but not supported in
UMM are rare exceptions.

Another goal of this paper was to identify all the business semantics needed
to describe the choreography of a B2B process. Both UMM and BPSS have been
specifically developed for this purpose and cover best practice approaches from
industry. Both standards might not be the best choice for describing private business
processes, and, thus, BPSS might not serve as a general business process interchange
format. In contrary, any alternative business process interchange format used to
describe B2B collaborations must support the UMM and BPSS concepts introduced
in this paper.

References

Booch G, Jacobson I, Rumbaugh J (1998) The Unified Modeling Language User Guide.
Addison Wesley Object Technolgy Series

Dumas M, Ter Hofsteded AHM (2001) Uml activity diagrams as a workflow specification
language. In: Proceedings of the 4th International Conference on the Unified Modeling
Language (UML): Modeling Languages, Concepts, and Tools. Springer LNCS 2185.
pp. 76 – 90

Hammer M, Champy J (1993) Reengineering the Corporation: Manifesto for Business
Revolution. Harper Business

Hill NC, Ferguson DM (1989) Electronic data interchange: A definition and perspectivie.
EDI Forum: The Journal of Electronic Data Interchange 1(1): 5 – 12

Hofreiter B, Huemer C (2003) Modeling business collaborations in context. In: On The
Move to Meaningful Internet Systems 2003: OTM 2003 Workshops. Springer

Hofreiter B, Huemer C (2004) Transforming umm business collaboration models to bpel..
In: OTM Workshops. Springer LNCS 3292. Agia Napa, Cyprus. pp. 507–519

Hofreiter B, Huemer C, Klas W (2002) ebXML: Status, research issues and obstacles. In:
Proc. of 12th Int. Workshop on Research Issues on Data Engineering (RIDE02). San
Jose

Kindler E (2004) Using the Petri Net Markup Language for Exchanging Business
Processes? Potential and Limitations. In: Proceedings of the 1st GI Workshop
XML4BPM – XML Interchange Formats for Business Process Management at 7th
GI Conference Modellierung 2004, Marburg Germany, March 2004. pp. 43–60

Kotok A (2000) Even more extensible. http://webservices.xml.com/pub/a/ws/2000/08/02/ebiz/extensible.html

Leymann F, Roller D (2004) Modeling Business Processes with BPEL4WS. In: Proceedings
of the 1st GI Workshop XML4BPM – XML Interchange Formats for Business Process
Management at 7th GI Conference Modellierung 2004, Marburg Germany, March
2004. pp. 7–24

Li H (2000) XML and industrial standards for electronic commerce. Knowledge and
Information Systems 2(4): 487 – 497

Mendling J, Nüttgens M (2004) Exchanging EPC Business Process Models with EPML.
In: Proceedings of the 1st GI Workshop XML4BPM – XML Interchange Formats
for Business Process Management at 7th GI Conference Modellierung 2004, Marburg
Germany, March 2004. pp. 61–80

Schatz W (1988) EDI: putting the muscle in commerce and industry. Datamation 34(6): 56
– 64

ISO (1997) Open-edi Reference Model. ISO/IEC JTC 1/SC30 ISO Standard 14662. ISO

OASIS (2003) Business process execution language for web services.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

UN/CEFACT TMG (2003 a) Core components technical specification v2.01.
http://www.untmg.org/downloads/General/approved/CEFACT-CCTS-Version-
2pt01.zip

UN/CEFACT TMG (2003 b) ebXML business process specification version 1.10.
http://www.untmg.org

22 Birgit Hofreiter et al.

UN/CEFACT TMG (2003 c) UN/CEFACT modeling methodology meta model, revision
12. http://www.untmg.org/downloads/General/approved/UMM-MM-V20030117.zip

UN/CEFACT TMG (2003 d) UN/CEFACT modeling methodology user guide, revision
12. http://www.untmg.org/downloads/General/approved/UMM-UG-V20030922.zip

UN/CEFACT, OASIS (2001) ebXML techinical architecture specification, version 1.0.4.
http://www.ebxml.org/specs/ebTA.pdf

W3C (2002 a) Web service choreography interface 1.0. http://www.w3.org/TR/wsci/
W3C (2002 b) Web services conversation language 1.0. http://www.w3.org/TR/wscl10/
W3C (2004) Web services choreography description language 1.0.

http://www.w3.org/TR/ws-cdl-10/
WfMC (1999) Workflow management coalition terminology & glossary. Technical Report

WFMC-TC-1011. WfMC
Van der Aalst AMP, Ter Hofsteded AHM, Kiepuszewski B, Barros AP (2003) Workflow

patterns. Distributed and Parallel Databases 14: 5 – 51
Winter A, Simon C (2004) Exchanging Business Process Models with GXL. In: Proceedings

of the 1st GI Workshop XML4BPM – XML Interchange Formats for Business Process
Management at 7th GI Conference Modellierung 2004, Marburg Germany, March
2004. pp. 103–122

