
Synergies of System-of-Systems and Microservices
Architectures

Carlos E. Cuesta
Vortic3 Research Group

Rey Juan Carlos University
Madrid, Spain

carlos.cuesta@urjc.es

Elena Navarro
Dept. of Computing Systems
Univ. of Castilla-La Mancha

Albacete, Spain
elena.navarro@uclm.es

Uwe Zdun
Software Architecture Group

University of Vienna
Vienna, Austria

uwe.zdun@univie.ac.at

ABSTRACT
Systems-of-Systems (SoS) are being widely embraced by
both practitioners and researchers. They share proper-
ties such as distribution, evolutionary development (i.e.,
openness), operational and managerial independence, and
emergent behavior. Those properties imply that any
element (system) in an SoS is able to operate indepen-
dently. Similarly, microservices are suggested as a system
architecture with a strong emphasis on independence, as
containers provide the required degree of isolation, and their
infrastructure automation frameworks provide the means
to deploy them as needed. In a microservices architecture,
even data is independently managed; every service main-
tains its own datastore, and transaction-less interaction
is emphasized. Our hypothesis in this work is that while
the two approaches have been treated separately in the
literature so far, they share many common characteristics,
and it would be fruitful to investigate their synergies. In
this paper, we analyze to what extent microservices archi-
tectures can be understood as a kind of system-of-systems,
explaining some of the success of the microservices approach
a consequence of their SoS properties. In addition, the best
practices proposed for microservices can enable a conscious,
controlled, and manageable introduction of SoS concepts
into system architectures, if they are needed.

CCS Concepts
•Software and its engineering → Software architec-
tures; Ultra-large-scale systems; Abstraction, modeling
and modularity; System description languages;

Keywords
System-of-Systems; Microservices Architecture; Scalability;
Self-Adaptation; Emergent Behavior; Container; IoT

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSoS 2016 Copenhagen, Denmark
© 2017 ACM. ISBN XXX-XXXX-XX-XXX/XX/XX.

DOI: XX.XXX/XXX X

The complexity of software systems is growing con-
stantly, due to both the evolution in the users’ demand
and the advances in technologies, processes, and their
applications. This leads to an increasing number of
System-of-Systems (SoS): systems that are defined by
assembling other systems which are themselves operated
and managed independently. This independence facilitates
the appearance of emergent behavior in the SoS, which is
not supported by any of its assembled systems on its own.

These features have caused a wide interest in such SoSs,
leading to the application of their concepts in different do-
mains, namely smart grids [5], national transportation sys-
tems [2], healthcare systems [7], national defense systems [6],
and many more. For instance, in these domains the SoS ap-
proach can be followed with the goal to achieve a higher over-
all resilience and reliability, among other properties. Every
constituent system would operate independently, no matter
whether the other systems, e.g., crash (or are down) period-
ically, or are attacked, or even destroyed.

Systems-of-systems are no silver bullet. They have many
unwanted properties, as already noted in the literature [3].
For instance, there can be dependent and cascading failures
that propagate from a constituent system to different sys-
tems of the SoS. They can manifest non-linear correlations,
a.k.a. copulas [17], which could make dealing with violations,
errors, or unwanted system properties more difficult. Also,
the sheer number, complexity, and heterogeneity of events in
the SoS makes (centralized) event processing not only more
challenging, but even unattainable in some scenarios [15].
Moreover, chaotic behavior might emerge, induced not only
because of their nonlinear dynamics, but also because of the
potentially chaotic human behavior [10]. And these are just
a few of the possible unwanted properties.

However, our systems are evolving, willingly or unwill-
ingly, into SoSs, because monoliths are broken down into
SoS structures in order to deal better with their growth and
complexity. Mergers and acquisitions force companies to
interconnect their formerly independent systems. Indepen-
dent systems need to be integrated, in order to cope with
the continuously growing inter-connectivity of systems. And
these are only a few of the potential reasons for SoS emer-
gence.

The fact that many software systems have been developed
as monoliths is also of much interest to software develop-
ment and architecture related communities. In this context,
a monolith is a system that is developed and tested as a
unit, implemented by a single team, and run as a single log-
ical executable. This often leads to problems in the long

XX.XXX/XXX_X


run. For instance, when the system must be scaled up, it is
not considered which functionality is actually demanded by
users: the whole system is just replicated and deployed. If
the system needs to be updated, even for small changes, the
whole system must be deployed again. As a result, system
parts cannot easily be independently developed, tested, or
evolved. In order to face such problems, microservices [13]
have been proposed as an approach to develop a single appli-
cation as a suite of services, each one running in its own pro-
cess and communicating with others by means of lightweight
mechanisms [11].

While the two approaches have been treated quite sep-
arately in the literature so far, it is remarkable that they
share many common characteristics. Moreover, many SoSs
and microservice-based systems share the common origin of
a monolithic architecture being broken down into smaller
systems (i.e., parts). Therefore, studying the emergence of
SoSs (e.g., by studying small-scale SoS or emerging SoS), as
well as “good” migration paths to SoS structures is impor-
tant, in order to be able to better deal with their aforemen-
tioned unwanted properties.

As microservices are largely seen as best practices for cer-
tain kinds of distributed systems, on the one hand, this pa-
per explores common characteristics of the two approaches,
with the goal to study microservice-based systems as a “con-
trolled” or “well-designed” migration path towards an SoS,
as opposed to an unwilling or uncontrolled migration into an
SoS structure. On the other hand, established results on SoS
properties can be used as a theoretical framework to explain
many successful aspects of microservice architectures.

2. FEATURING SYSTEMS-OF-SYSTEMS
Although there is no standard definition for System-of-

Systems (SoS), perhaps the most commonly used one is that
by Maier [12], which can be summarized in the sentence as:
“A system-of-systems is an assemblage of components which
individually may be regarded as systems”. It is often assumed
that a System-of-Systems has the implicit property of (a
very big) size. This is probably due to its nature beyond
composition, and also to its origins in Systems Engineering.
Many of the better known examples describe systems which
are actually large. Consider the well-known cases of airports,
smart cities, or smart power grids.

Certainly there is a relationship to the notion of Ultra-
Large-Scale Systems [14], where “size” is explicitly and
clearly emphasized, and which can be considered similar to
SoS to some extent. However, where the qualifier ultra-large
must focus on scale, the post-compositional structure of a
system-of-systems rather focuses on complexity. Its features
derive from the complexity of its inner flow of information,
defining the feedback loops that cause its adaptive behavior.

In fact, the assumption about size often makes it difficult
to experiment with, and even to reason about, systems-of-
systems. The details about many systems-of-systems, such
as today’s a smart grid are not easily accessible; and even
when they are, the volume of data makes it complex to per-
form any detailed analysis. This is true even in software-
intensive systems-of-systems, as they are often physically
linked to those large infrastructures.

However, neither size nor complexity are the defining cri-
teria for systems-of-systems. Maier [12] established that a
system made up of subsystems is a System-of-Systems if and
only if it fulfills the following two criteria:

1. Operational independence. Considering an SoS as an
assemblage of Systems, this feature establishes that
every one of its constituent systems must be able to
operate independently, supporting specific customers’
needs on its own.

2. Managerial independence. Every system assembled as
part of an SoS is able to operate, no matter whether the
whole SoS exists or not. In fact, usually the systems in
an SoS are even acquired and integrated independently
of other systems of that SoS.

These two criteria have been accepted by both researchers
and practitioners as mandatory to distinguish an SoS from
other systems. However, there are four additional crite-
ria, also present to some extent in Maier’s work, but which
were stated in their original form by Sage and Cuppan [16],
and which have attracted much attention by the community.
These criteria are:

3. Geographical distribution. A System-of-Systems is
made up of geographically distributed subsystems.
Maier does not claim this is a defining criterion, and
he even provides examples of systems-of-systems that
do not fulfill this specific requirement. However, such
geographically distributed subsystems will usually
be operated and managed independently even when
assembled, facilitating the fulfillment of the two
defining criteria by Maier.

4. Emergent behavior. A System-of-Systems has behav-
iors that emerge from the collaboration of its assem-
bled subsystems, and which are not supported by any
of them in an isolated way. Sage and Cuppan even
claim this is the most desirable criterion, as it provides
new and unexpected uses for an SoS.

5. Evolutionary development. A System-of-Systems
is continuously modifying its structure, function,
and purposes as it is used; that is, it continuously
evolves over time. A system-of-systems may even
seem not to be fully integrated and functional at
first. This evolving nature of systems-of-systems also
facilitates complying with the previous criterion, that
of emergent behaviour.

Finally, there is another criterion identified by DeLauren-
tis [2]. Some authors have also recognized this requirement,
but it is not always claimed as necessary:

6. Heterogeneity of constituent systems. The assembled
subsystems in an SoS should have a significantly dif-
ferent nature that leads them to operate on different
time scales and dynamics. Sage and Cuppan also ap-
preciate this and define it as an interesting criterion to
be expected in a Federation of Systems (FoS), but not
in a System-of-Systems. These authors assume that
a system-of-systems can have centralized control and
authority, to some extent. However, this is almost non-
existent in a FoS, as the goals of the federation are only
achieved by the collaboration and cooperation among
the constituent partners. However, DeLaurentis rules
out this distinction, as he does emphasize the impor-
tance of this criterion for the development of an SoS.



Figure 1: Scaling up a Monolith Architecture

3. SYNERGIES BETWEEN SYSTEMS-OF-
SYSTEMS AND MICROSERVICES AR-
CHITECTURES

Traditionally, many of the applications deployed during
the last decades have been developed as monoliths; that
is, pieces of code that are managed as a single unit. Just
consider, e.g., the layered style, one of the most widely
used styles for the development of information systems. In
many layered architectures, by applying this style, layers for
the User Interface, the Business Logic and Persistence are
designed, developed, and deployed as a single process. Even
when these layers are distributed in an n-tier architecture,
they are often tightly coupled, i.e., not fully independent
systems or services.

In a monolith, the whole system is run as a single logical
executable that is deployed as a whole. Therefore, when
the system has to be changed, the changes affect the whole
monolith, making it necessary to re-deploy a new version of
the whole system. Moreover, whenever scalability becomes
a requirement of the system, this is satisfied by replicating
the whole monolith, as depicted in Fig. 1, instead of just
instantiating those resources that are really needed.

Both, support for change and scalability, have been two
of the main reasons which also led to the definition of Mi-
croservice Architectures (MSA) as an architectural style.
Lewis’ and Fowler’s [11] describe this style as “an approach
to developing a single application as a suite of small ser-
vices, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API.
These services are built around business capabilities and in-
dependently deployable by fully automated deployment ma-
chinery.” As illustrated in Fig 2, when applying this style,
the monolith is broken down into different independent and
highly cohesive pieces, that can be developed using differ-
ent programming languages, database managers, middle-
ware technologies, and so on, each satisfying different func-
tionality parts. This greatly simplifies the way in which
change can be managed, as every piece can be modified,
tested, and deployed independently. Moreover, scalability
can also be more easily achieved, as different instances of
these pieces can be created and deployed on different vir-
tual machines and/or servers.

Figure 2: Scaling up a Microservices Architecture

Therefore, the MSA style describes architectures in terms
of independently, automatically deployable, and highly co-
hesive microservices, which use decentralized control of lan-
guage and data. Indeed, both microservices architectures
and systems-of-systems share similar characteristics, includ-
ing the separation of a monolithic system [12] into a dis-
tributed network of independent elements. This claim sets
the foundations of our thesis in this paper, namely that
many Microservices Architectures can be understood as a
kind of System-of-Systems; and one of the factors leading
to the success of the microservices approach is that their
properties are close to the properties of an SoS.

That is, there are synergies between Microservices Ar-
chitectures and systems-of-systems that can and should be
exploited. In particular, as discussed in Section 1, systems-
of-systems have also many undesirable properties, and the
emergence of an SoS might unwillingly happen as a conse-
quence of external influences, such as mergers and acquisi-
tions or the intent to cope with the continuously growing
inter-connectivity of systems. Hence, the aforementioned
synergies can also be used to exploit the best practices pro-
posed for microservices to enable a conscious, controlled,
and manageable introduction of SoS concepts into system
and software architectures.

In the following, the conceptual correspondences among
Microservices Architectures and Systems-of-Systems are de-
scribed in more detail by explaining how the defining fea-
tures of Microservices Architectures [11] can be understood
as the foundations to satisfy the features of an SoS:

1. Componentization via Services. This feature of Mi-
croservices Architectures defines that the components
that compose such a system are units of software devel-
oped as services implementing well-defined interfaces.
The utilization of services facilitates that each com-
ponent is managed as an independent process, which
can also be independently deployed. Microservices are
components with a strong emphasis on independence,
as containers provide the required degree of isolation,
and their automatic deployment frameworks provide
the means to deploy them as needed, even in terms of
scaling up the microservices. This feature of Microser-
vices Architectures has consequences on achieving a
number of SoS properties:



Operational and managerial
independence

Geographical
distribution

Emergent
behavior

Evolutionary
development

Heterogeneity of
constituent systems

Componentization
via Services

Helps to Helps to Eases Eases Enables

Organized around
Business Capabilities

Eases Helps to

Products not
Projects

Enables Eases

Smart Endpoints and
Dumb Pipes

Enables Eases Eases Eases Eases

Decentralized
Governance and
Data Management

Eases Eases Eases Enables Enables

Infrastructure
Automation

Enables Enables

Design for Failure Enables Helps to Helps to Enables Enables
Evolutionary Design Helps to Enables Enables

Table 1: Synergies between System-of-Systems and Microservices Architectures

(a) It helps to achieve managerial independence as
every service can be started or stopped indepen-
dently, using the provided infrastructure. More-
over, it also helps to achieve operational indepen-
dence as services have well defined interfaces and
are independently deployed.

(b) The conception of units of software as indepen-
dent services facilitates that not only different
technologies, but also different communication
protocols, can be used for the development of the
SoS. Therefore, the location of every constituent
system is not constrained, helping to satisfy the
geographical distribution property of SoSs.

(c) When services are used as a componentization
mechanism, they are expected to be highly co-
hesive units. This helps to manage composite
macro-architectures consistently, and thus to con-
trol emergence at the macro-level; hence, com-
ponentization via services eases dealing with the
emergent behavior property of SoSs.

(d) This feature also eases the evolutionary develop-
ment property of SoSs, because single changes are
usually confined to services that can be indepen-
dently evolved and deployed as required. More-
over, Microservices Architectures use evolution-
supporting mechanisms such as service contracts
or service-level agreements (SLA) to facilitate eas-
ier evolution. Finally, this feature also eases dif-
ferent versions of the same service to be indepen-
dently deployed, just like different versions of the
SoS can be managed.

(e) Finally, it enables the heterogeneity of constituent
systems because services, in contrast to other
componentization concepts and mechanisms, ease
the use of heterogeneous system implementations
and technologies per se. For instance, services
are used to deal with heterogeneous middleware
technologies and protocols; and, in addition,
microservices suggest heterogeneity of databases
and database technologies.

2. Organized around Business Capabilities. Many appli-
cations have been designed by focusing on the technol-
ogy instead of the business capabilities. Just consider
layered-style monoliths, as described above, which pre-
scribe UI, logic, and persistence layers. The develop-
ment of these layers is usually carried out by teams
specialized on the technology supporting such layers.
In consequence often, as stated by Conway’s Law [1],
the system’s design eventually mirrors the structure
of the organization that develops it. However, Mi-
croservices Architecture encourages the development
of systems around business capabilities. This means
that now full-stack developers are required, as they
must not only have the competences to use the differ-
ent technologies involved, but they have to focus on
a specific business line and perform different kinds of
software engineering activities in this context includ-
ing development, testing, evolution, deployment, and
operations. Functional teams are disbanded in favour
of cross-functional teams, composed of experts on, e.g.,
database, UI, deployment, testing, etc., who work co-
operatively towards some business capability. When
considering this feature from the SoS point of view, it
supports the following SoS properties:

(a) It enables the fully operational and managerial in-
dependence of an SoS, as the Microservices Archi-
tecture can be organized around SoS capabilities
that can be developed by independent teams and,
consequently, should be able to operate indepen-
dently of the SoS as a whole.

(b) It helps to deal with geographical distribution, as
the systems of the SoS can be distributed accord-
ing to business locations, or as demanded by the
scalability of the services. For example, services
for EU customers can be hosted closer to their
data hosted on a database in the EU.

3. Products not Projects. The Microservices Architec-
ture approach suggests a clear disruption in the soft-
ware lifecycle, as developers do not initiate a transition
phase to maintenance whenever the software is built,



but the team keeps handling the product during all its
lifetime. This is also obviously related to a continu-
ous deployment approach and should facilitate a closer
relationship between developers and users throughout
the product lifetime. This Microservices Architecture
feature supports some SoS properties, namely:

(a) It enables operational independence, as the re-
sponsibilities are clearly defined and maintained
across the lifecycle of the systems of the SoS.

(b) It eases evolutionary development, as the develop-
ment teams do not focus on building a complete
functionality for the SoS, but on establishing an
ongoing relationship with the business to facili-
tate that evolution.

4. Smart endpoints and dumb pipes. Microservices Archi-
tecture aims to move the “intelligence” from complex
communication mechanisms to the endpoints, that is,
to the microservices themselves. These endpoints use
simple communication protocols, such as HTTP, keep-
ing the microservices architecture as close to Web’s
own mechanisms as possible. This feature strengthens
the synergies between Microservices Architecture and
SoS because:

(a) Microservices are developed as highly decoupled
and cohesive components that rely on simple pro-
tocols for their orchestration, and therefore a mi-
croservices architecture enables operational inde-
pendence as described for SoS.

(b) It also eases geographical distribution as intelli-
gence resides in the services, and thus they, as
the systems of the SoS, can be distributed more
easily and independently.

(c) As the intelligence is located in the endpoints, the
systems of the SoS become more independent. In-
dependence of constituent components raises the
chances that emergent behavior can appear at all.

(d) The high decoupling and cohesion of the microser-
vices eases the evolutionary development of the
SoS; that is, a major change should not affect the
whole SoS but it is likely to affect only one of the
constituent systems.

(e) The use of dumb pipes eases the heterogeneity
of the constituent systems of the SoS because
systems of the SoS just produce and consume
messages, not requiring any knowledge about the
technologies and functionality used by the other
microservices.

5. Decentralized Governance and Data Management.
This feature of Microservices Architectures is related
to the aforementioned organization around business
capabilities, as it leads naturally to decentralized
governance. Nowadays, teams are self-directed, able
to make decisions about the design, instead of stan-
dardizing on single technology platforms, chosen and
imposed by a centralized team. The use of services as
components also facilitates this decentralization, as
different technologies can be deployed as required, ac-
cording to the needs of the specific business capability
being developed. In a microservices architecture, even

data are decentralized and independently managed;
every service maintains its own datastore, emphasizing
non-transactional interaction to overcome temporal
coupling. From a SoS perspective, this feature relates
to the following properties:

(a) Decentralization eases operational and manage-
rial independence, as every cross-functional team
can make decisions about the functionality and
operation of the constituent systems of the SoS
which it is responsible for.

(b) Decentralized governance implies that the sys-
tems of the SoS can be geographically distributed
more easily. Teams responsible for their develop-
ment, operations, and management do not need
to be collocated because they act independently,
facilitating a faster reaction to problems and
urgent needs. Moreover, as every system of the
SoS maintain its own datastore, the location of
that datastore does not impose any geographical
constraint on the location of the services which
are independent of those data.

(c) Therefore, the more decentralized the systems of
an SoS are, the more independent they become.
As already noted, the independence of constituent
components raises the chances that emergent be-
havior eventually appears.

(d) As data and governance aspects can evolve inde-
pendently, this feature also enables the indepen-
dent evolution of the systems of the SoS, facili-
tating its evolutionary development.

(e) Decentralized governance and data management
also enable the heterogeneity of the technologies
and concepts used for the constituent systems,
as there is not a “standard” technology used all
throughout the SoS. On the contrary, each cross-
functional team will make decisions according to
the specific needs of the system.

6. Infrastructure Automation. Development teams make
extensive use of tools and techniques that facilitate the
automation of Continuous Integration (CI) and Con-
tinuous Delivery (CD) while building, deploying, and
operating microservices. In fact, Microservices Archi-
tecture is recognized as the de facto standard archi-
tecture style for DevOps [4, 9]. DevOps encourages a
higher collaboration between developers and IT teams
to achieve a faster software delivery. This feature fa-
cilitates the support of the following SoS properties:

(a) Infrastructure automation, as used for DevOps,
CD or CI, enables the operational independence
of the systems of the SoS, because it enables that
these systems are built, tested, and deployed in-
dependently.

(b) Infrastructure automation also enables a new
level of evolutionary development, as it facilitates
that each system of the SoS can be incrementally
and independently developed, possibly with
significantly shorter evolution (and release)
intervals.



7. Design for Failure. Microservices Architectures rely on
the introduction of different mechanisms for monitor-
ing and logging, which are able to detect and to react
to failures as soon as possible. These systems are built
upon the assumption that failures eventually emerge;
their design intends to keep the system operational
in those situations, not affecting the user experience.
This feature is important for supporting the following
SoS properties:

(a) It enables operational independence, because the
systems of the SoS are able to perform their op-
erations even when some of them are failing.

(b) It helps to achieve a reasonable degree of availabil-
ity even in the context of geographical distribution,
as the systems of the SoS are able to exploit par-
tial failure features of distributed systems.

(c) As Microservices Architectures often rely on
event-based collaboration, or other loosely
coupled interconnections which foster system in-
dependence, the chances that emergent behavior
appears are again raised. More importantly, the
design for failure of microservices architectures,
in the context of SoS, helps to manage the
already described unwanted emergent behavior,
thanks to the introduction of their monitoring
and logging mechanisms.

(d) Humble and Farley [8] point out that there are
some problems that may arise when Continuous
Deployment techniques are not properly under-
stood and applied by the team, such as infrequent
or buggy deployments, or poor application qual-
ity. As Microservices Architecture prescribes the
introduction of monitoring mechanisms to check
architectural elements, failures can be detected
early in the process, enabling the evolutionary de-
velopment property of SoSs.

(e) Apart from being mandatory for microservices ar-
chitectures, design for failure also enables cop-
ing with problems like temporal unavailability,
which might occur due to the heterogeneity of
the constituent systems. Also, finding bugs across
these heterogeneous constituent systems is sim-
pler thanks to presence of the monitoring and log-
ging mechanisms.

8. Evolutionary Design. In order to break down the
monolith into components, the design of the Microser-
vices Architecture usually considers two important
properties, replaceability and upgradeability, which
must be satisfied by the final system. That is, com-
ponents can evolve without hindering the evolution
of any other components, or even their testability.
When considering these properties in the context of
SoS features, they provide the following synergies:

(a) Considering that systems of the SoS are designed
to be evolved independently, following the Mi-
croservices Architecture approach, evolutionary
design (together with infrastructure automation)
leads to continuous upgrades and releases that
are independently made by independent teams.
Again, this kind of independence raises the

chances that emergent behavior appears. Po-
tentially faster and more independent evolution
cycles also help to cope with unwanted emergent
behavior more easily, as different teams and
microservices can independently adapt to such
emerging situations.

(b) The design for evolution facilitates that the sys-
tems of the SoS can be independently replaced
and upgraded, thus enabling an evolutionary de-
velopment. In summary, these two features are
obviously related.

(c) Evolutionary design of the systems of an SoS fa-
cilitates their independent evolution and replace-
ability. This does not only enables, but in the long
run might even multiply, the heterogeneity of the
constituent systems, as their nature –without a
centralized governance structure– becomes more
divergent as they independently evolve.

Table 1 summarizes our discussion on the synergies be-
tween Microservices Architectures and SoS.

4. CONCLUSIONS
After the discussion presented in the previous section, it
can be argued that every microservices-related feature, ei-
ther leads to multiple system-of-systems features, or directly
supports them, as summarized in Table 1. However, it must
also be clarified that there is not a bidirectional relationship
among them; that is, not every SoS is a microservices archi-
tecture. For example, many SoSs might have certain cen-
tralized structures for governance or communication, such
as an Enterprise Service Bus. Others do not support in-
frastructure automation in any of their systems, or do not
provide service-based componentization, etc.

Similarly, not every system starting as a microservices
architecture would eventually lead to an SoS. For instance, if
the microservices of a microservices architecture are neither
managed nor operated independently, a defining property of
SoSs would not be fulfilled.

However, our analysis of the potential synergies shows
that Microservices Architectures can enable a conscious,
controlled, and manageable introduction of SoS concepts
into system architectures. Their features, such as design
for evolution, componentization via services and infras-
tructure automation, can lay the foundation to define a
reengineering process that replaces a monolith applying
a SoS approach, which is better distributed and more
independently operated. It can also lead to an alignment of
development processes and team structures as suggested by
the Microservices Architecture approach.

Finally, SoS properties can help to explain and better un-
derstand some of the success factors of the microservices
approach. The overall consequence of this conceptual cor-
respondence between the properties of both architectural
styles is the emergent behavior, which also might imply de-
centralized governance: usually there is no central control in
either of the approaches.

5. ACKNOWLEDGEMENTS
This work has partially been funded by the Spanish Min-
istry of Economy and Competitiveness and by FEDER funds
from the EU under the Grants CoMobility (TIN2012-31104),



insPIre (TIN2012-34003), Multiply@City (TIN2016-78103-
C2-1-R), and Vi-SMARt (TIN2016-79100-R).

6. REFERENCES
[1] M. E. Conway. How Do Committees Invent?

Datamation, 14(4):28–31, 1968.

[2] D. DeLaurentis. Understanding Transportation as a
System-of-Systems Design Problem. In 43rd AIAA
Aerospace Sciences Meeting and Exhibit, Reston,
Virigina, Jan. 2005. American Institute of Aeronautics
and Astronautics.

[3] P. Dersin. Systems of Systems. IEEE-RS-TC-SoS
White Paper, IEEE Reliability Society. Technical
Committee on Systems of Systems, Oct. 2014.
http://rs.ieee.org/component/content/article/9/
77-system-of-systems.html.

[4] V. Farcic. The DevOps 2.0 Toolkit. Automating the
Continuous Deployment Pipeline with Containerized
Microservices. Leanpub, Feb. 2016.

[5] J. Gao, Y. Xiao, J. Liu, W. Liang, and C. P. Chen. A
survey of communication/networking in smart grids.
Future Generation Computer Systems, 28(2):391–404,
2012.

[6] R. K. Garrett, S. Anderson, N. T. Baron, and J. D.
Moreland. Managing the interstitials. A system of
systems framework suited for the ballistic missile
defense system. Systems Engineering, 14(1):87–109,
2011.

[7] Y. Hata, S. Kobashi, and H. Nakajima. Human health
care system of systems. IEEE Systems Journal,
3(2):231–238, 2009.

[8] J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases through Build, Test, and
Deployment Automation. Addison-Wesley, 2011.

[9] M. Hütterman. DevOps for developers. Apress, 2012.

[10] W. Karwowski. A review of human factors challenges
of complex adaptive systems: Discovering and
understanding chaos in human performance. Human
factors, 54(6):983–995, 2012.

[11] J. Lewis and M. Fowler. Microservices: a definition of
this new architectural term.
http://martinfowler.com/articles/microservices.html,
Mar. 2004.

[12] M. W. Maier. Architecting Principles for System of
Systems. Systems Engineering, 1(4):267–284, 1998.

[13] I. Nadareishvili, R. Mitra, M. McLarty, and
M. Amundsen. Microservice Architecture. Aligning
Principles, Practices and Culture. O’Reilly, June 2016.

[14] L. Northrop, editor. Ultra-Large-Scale Systems. The
Software Challenge of the Future. Software
Engineering Institute, Carnegie Mellon, June 2006.

[15] F. Paraiso, G. Hermosillo, R. Rouvoy, P. Merle, and
L. Seinturier. A middleware platform to federate
complex event processing. In Enterprise Distributed
Object Computing Conference (EDOC), 2012 IEEE
16th International, pages 113–122. IEEE, 2012.

[16] A. P. Sage and C. D. Cuppan. On the Systems
Engineering and Management of Systems of Systems
and Federations of Systems. Information Knowledge
Systems Management Journal, 4(2):325–345, Dec.
2001.

[17] P. Shah, N. Davendralingam, and D. A. DeLaurentis.
A conditional value-at-risk approach to risk
management in system-of-systems architectures. In
System of Systems Engineering Conference (SoSE),
2015 10th, pages 457–462. IEEE, 2015.

http://rs.ieee.org/component/content/article/9/77-system-of-systems.html
http://rs.ieee.org/component/content/article/9/77-system-of-systems.html
http://martinfowler.com/articles/microservices.html

	Introduction
	Featuring Systems-of-Systems
	Synergies between Systems-of-Systems and Microservices Architectures
	Conclusions
	Acknowledgements
	References

