Extending the Open Community Runtime with External
Application Support

Jiri Dokulil
University of Vienna
Vienna, Austria
jiri.dokulil@univie.ac.at

ABSTRACT

The Open Community Runtime specification prescribes the way
a task-parallel application has to be written, in order to give the
runtime system the ability to automatically migrate work and data,
provide fault tolerance, improve portability, etc. These constraints
prevent an application from efficiently starting a new process to
run another external program. We have designed an extension of
the specification which provides exactly this functionality in a way
that fits the task-based model. The bulk of our work is devoted to
exploring the way the task-parallel application can interact with
an external application without having to resort to using files on
a physical drive for data exchange. To eliminate the need to make
changes to the external application, the data is exposed via a virtual
file system using the filesystem-in-userspace architecture.

1 INTRODUCTION

The Open Community Runtime (OCR) [8] is a task-based runtime
system for parallel applications on extreme scale/distributed mem-
ory systems. In OCR, all work is performed inside tasks, which
are serial pieces of code that can be executed independently of
other tasks. The tasks can only be synchronized using dependences,
which define when a task may start. At runtime, an OCR program is
represented as a dynamically generated directed acyclic task graph
(DAG), which is processed by a scheduler in order to decide when
and on which execution unit (worker) a task should be executed. All
data in an OCR application that needs to persist outside a task has
to be stored in a data block. To access a data block, it must either
be created by a task or passed to the task as dependence before the
start of the task.

Tasks decouple work from compute resources (threads, CPU
cores) and data blocks decouple data from storage (memory), in
order to better deal with performance variability and to improve
portability. The complete control over tasks and data blocks gives
the runtime interesting opportunities, like applying sophisticated
scheduling mechanisms, or providing resilience. The runtime may
restart failed tasks or maintain redundant copies of data, allowing
it to recover from node failures. However, these extra capabilities
come at a price. The whole application needs to be written using
OCR. There is no conventional main function. In OCR, even the
main is a task. It’s not possible to write an application in the tradi-
tional way and only use the OCR for certain performance critical
parts.

Another limitation is the requirement that the tasks are non-
blocking. This means that once a task starts, it should run to com-
pletion without waiting for other tasks. Furthermore, blocking
operations like long-running I/O should be avoided. In the existing
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OCR implementations [4, 9], if a task blocks, it effectively elim-
inates one thread from a fixed pool of worker threads, possibly
resulting in under-utilization of CPU cores. One example of such
operation is running an external program using the system call. As
reimplementing all parts of the application in OCR may be difficult,
it would be helpful if some code could be left outside, compiled
independently into an executable, and then invoked from the OCR
application.

Such extension to the OCR API is quite natural, since the external
application can be viewed as a special kind of task — it has clearly
defined inputs, outputs, and once started, it is expected to run till
completion on its own. The inputs and outputs may be passed as
files, without any involvement of the OCR runtime. However, it
might be more efficient to directly use OCR data blocks for this
purpose. As we expect the external application to be outside OCR
and not modified for this purpose (the source codes may not even
be available), the only way to make the data available is to expose
it as files. Since the original motivation was to avoid writing the
data out as files, we have used the File System in Userspace (FUSE)
library available in Linux, which allows easy implementation of
custom file systems, without having to write any code running in
the kernel space.

The result of this design might not necessarily be increased per-
formance. If a file is written by an application and immediately read
by another one, there is a very high chance that the data will still
be cached by the operating system, making the read operation very
fast. What our approach does is keep the data in resources man-
aged directly by the OCR runtime, rather than relying on automatic
caching done by the operating system. This opens up new possibil-
ities for improved scheduling strategies and novel optimizations.

Still, as performance is an important concern, we have executed
several experiments, evaluating the performance of the proposed
solution in comparison to using traditional files for input and output.
As expected, the performance of reading a cached file is better
than our solution, especially as it does not yet include most of
the available low-level optimizations. However, the performance is
more predictable and stable, as was demonstrated in one scenario,
where the traditional file-based solution was much slower. Also, if
we also consider the time needed to write the file, the file-based
solution is slower.

The rest of the text is organized as follows. First, relevant con-
cepts of the OCR specification are described in Section 2. Then,
the OCR API extension that allows external applications to be exe-
cuted as tasks is described in Section 3. Sections 4 and 5 describe
the design of our solution in detail. An experimental evaluation
is presented in Section 6, followed by related work in Section 7.
Section 8 concludes the paper and discusses future work.



2 OPEN COMMUNITY RUNTIME

The OCR specification defines the API and expected behavior of
an OCR runtime. At the moment, there are three implementations:
the reference OCR implementation created by Intel and Rice [9],
an implementation (derived from the reference implementation)
created at PNNL [7], and our implementation, which is called OCR-
Vx [3]. Our work is done on OCR-Vx, although it could be also
applied to the Intel/Rice implementation. This is probably also the
case for the PNNL implementation, but unlike the other two, it is
not publicly available.

To provide proper background for our work, we need to explain
some components of OCR in greater detail. Beside tasks, an essential
part of the OCR design are data blocks. A data block is an OCR object
used to hold data. The contents of a data block (the actual data) are
a contiguous array of bytes with a fixed size. The runtime does not
interpret the contents of a data block in any way. Any structure is
defined only inside the application. To access a data block inside
a task, the data block needs to be passed to the task as an input
dependence before the tasks starts, or it needs to be created by the
task itself during its execution. When the task dependence is set,
an access mode also needs to be specified. The access mode defines
how the data block can be accessed concurrently from multiple
tasks. There are four access modes:

e CONST - constant mode, where the contents of the data block
is guaranteed not to change while the task is executing.
Naturally, the task itself also cannot change the data.

e EW - exclusive write, where the task may change the data
and it is guaranteed that no other task may be changing the
data while the task is running.

e RO - read-only, non-coherent, where the task cannot change
the data, but the data might be changed by other tasks.

o RW — read-write, non-coherent, where the task may change
the data and the data may also be changed by other tasks.
The other tasks need RW access (not EW).

The runtime is allowed to keep multiple copies of a data block and
relocate the data, as long as the consistency model! is maintained
and the running tasks are not affected. When a task starts, it is
provided with pointers to all data blocks it has been given access to
(via dependences) and these pointers need to remain valid as long
as the task is running or until a data block is explicitly released
by the task. So, for example, if there are two concurrent tasks (i.e.,
no particular order is enforced by their dependences), one with EW
access and the other with CONST access to the same data block, the
runtime may create a copy of the data block’s data, give the copy
to the second task and let the first task modify the original data
block. The copies may even be distributed across several nodes in a
cluster.

The design of data blocks makes programming OCR applications
more complicated. The two main reasons are the necessity to pro-
vide all necessary data as dependences to a task and the fact that
pointers are only valid within a single task. As soon as the task
finishes, the data block may be relocated, invalidating the pointers.

LOCR uses a relaxed consistency models. In a nutshell, to ensure that a task can see
changes made by another task, they need to be properly synchronized. There has to
be a path in the task graph from the writer to the reader.

On the other hand, this gives the runtime greater flexibility, allow-
ing it to migrate tasks and data automatically, but also making fully
transparent fault tolerance possible. The runtime may make backup
copies of data blocks and restart failed tasks from older copies in
case of failure.

Another OCR concept that we should briefly mention are events.
OCR tasks and dependences form a task graph, which is a DAG. To
extend the type of synchronization patterns that can be expressed by
the DAG, a new kind of object was introduced - an event. Events are
nodes in the task graph that do no computation and only influence
the synchronization of the application. There are several types of
events, each with a straightforward set of rules that define their
behavior. The simplest example is a once event, which waits for
a satisfaction signal on its single input, forwards it to all outputs,
and is automatically deleted. The other types are not used in our
examples, so we would like to refer the kind reader to the OCR
specification.

The interaction between the OCR application and the OCR run-
time is defined by the OCR API - a set of C functions that the
application may call to create and delete data blocks, tasks, and
events, set dependences, query the number of workers etc. To allow
OCR applications to also invoke external applications, we need to
extend the APL

3 API

Conceptually, it’s easy to integrate external applications into the
OCR execution model. They are self-contained units of work with
clearly defined inputs and outputs. On the actual API level, some
care needs to be taken, due to the differences between normal OCR
tasks and the tasks that represent external applications. Dealing
with inputs is easy, as OCR tasks already assume they have a number
of inputs, which are satisfied with data blocks, giving the tasks
access to these data blocks. However, an OCR task only has one
output - there is an output event associated with the task and if
the task code returns an identifier of a data block, the data block is
passed to the event and any task connected to the event receives
the data block. In practice, these output events are mostly just
used for synchronization, as tasks often need to output several data
blocks. In this case, the task uses the OCR API directly (within
the task code) to assign data blocks to the respective receiving
tasks as dependences. The external application has no such option.
Therefore, it is not possible to use exactly the same interface to
create normal OCR tasks and tasks that correspond to invocation
of external applications.

To create a task in OCR, the application first needs to create a task
template using ocrEdtTemplateCreate. The template contains the
pointer to the C function that implements the task, the number of
input dependences and the number of parameters (simple numeric
parameters passed to the task). Then, the template (via its identifier)
is used to create a task with ocrEdtCreate. We've decided to follow
this pattern, defining a way of creating an external task template
and then the external tasks themselves.

A new function ocrExternalTemplateCreate has been intro-
duced to create the template, expecting an identifier of the applica-
tion, the number of inputs, and the number of outputs. To identify
the applications, we have decided to use string identifiers, which



are then used to look up the configuration details for the applica-
tion in a stand-alone configuration file. The file defines how the
application is started, the way data is passed to it, and how the
results are obtained. For example, the following configuration file
defines an external task convert, which has two inputs and one
output. The first input is passed as a file, providing the file path as
the --in argument. The second input is interpreted as an integer
and the value is passed to the command line. A file name for the
output is generated and passed via the command line. The data
written to a file with that name will be returned as a data block.
[convert]
command=./convert --in=[in:0] --out=[out:0]
--size=[arg:int:1]x[arg:int:1] --fast --level=3

Upon execution, this would be transformed to a command that
looks like this:

./convert --in=/mount/ocr/db/523 --out=/mount/ocr/db/641
--size=128x128 --fast --level=3

This assumes that the data block passed as the first input depen-
dence is exposed as the file /mount/ocr/db/523, the data blocked
passed as the second input contains the integer 128, and the external
application is expected to write the result to /mount/ocr/db/641,
which will then be available to the OCR application as the first
output.

The configuration file may contain any number of entries with
unique names. Once a template has been created, it can be used mul-
tiple times to create external tasks using ocrExternalTaskCreate.
There are several differences compared to the ocrEdtCreate call,
but the main one is an additional input argument that contains an
array of event identifiers. There have to be as many events as there
are outputs of the external task and each event will be satisfied
with the data block from the corresponding output of the external
application. Consider the following code example:

//create template for the external convert task

ocrExternalTemplateCreate (&convert_template, "convert",
2, 1);

//array 01 output events, just one in this case

ocrGuid_t outs[] = { NULL_GUID };

//create the output event

ocrEventCreate (&outs[0], OCR_EVENT_ONCE_T,
EVT_PROP_TAKES_ARG);

//connect the output event

ocrAddDependence (outs[@], sink, @, DB_MODE_RO);

//create a task - an instance of the convert template

ocrExternalTaskCreate (&convert_task, 2, 1, outs);

//add inputs to the new task
ocrAddDependence (data, convert_task,0,DB_MODE_RO);

convert_task | /mount/ocr/db/641 out[0] sink
(external task) (event) (task)

data /mount/ocr/db/523
(data block)

size
(data block)

Figure 1: An example with a single external task with two
inputs and a single output, which is forwarded by an event
to anormal OCR task. A new data block will be created from
the data written into the /mount/ocr/db/641 file and passed
to the out[0] event when the convert_task finishes.

ocrAddDependence (size, convert_task,1,DB_MODE_RO);

In this example, a new external task convert_task is created,
provided with input data (stored in data blocks data and size)
and an event (stored in outs[@]) is used to pass the result to an
existing task sink. As is the usual practice in OCR, the output event
needs to be connected before the inputs are provided by satisfying
the dependences of convert_task, because the external task may
start as soon as the dependences are satisfied. If the output was
connected after the inputs are satisfied, the task could finish before
the output is connected, in which case the out[0] event would be
satisfied and destroyed automatically, which would make it illegal
to use the event as a source of a dependence. A graph that shows
these objects and their dependences is depicted in Figure 1.

To make the API complete, ocrExternalTemplateDestroy and
ocrExternalTaskDestroy are provided to delete templates and
(unstarted) tasks.

4 RUNTIME ARCHITECTURE

Each OCR application runs as one process, with an instance of
the OCR runtime present in each of the processes. Each external
task is also started as a standalone process. Another necessary
process is a FUSE module, which exposes data blocks as files to the
external application. Only one process is used to serve all external
applications. We will refer to the module as OCR-FUSE in the
following text. When the OCR-FUSE module is started, a path has
to be provided. This path defines where the newly started virtual
filesystem is to be mounted. In the example from the previous
section, this path would be /mount/ocr. When the OCR-FUSE
module is running, the FUSE kernel module (fuse . ko) ensures that
any I/O performed on the mounted directory is sent to the OCR-
FUSE module through the 1ibfuse library, which must to be linked
to the OCR-FUSE module.

The architecture is shown in Figure 2. The OCR runtime spawns
the application processes. Two different communication channels
are used to communicate between the OCR runtime: a control chan-
nel and a data channel. The control channel is used to define which
files should be used to expose the OCR data blocks to the applica-
tion and to further synchronize the two processes. The ZeroMQ
(PMQ) communication library is used for this purpose, but there
are many other viable alternatives, including raw sockets. The data
channel is used to move data between the data blocks managed by
the OCR runtime and the FUSE module.

When the external applications reads the file /mount/ocr/db
/523, the libfuse tells OCR-FUSE to read /db/523. Earlier, the
control channel was used as part of the invocation of the external
application to notify OCR-FUSE that a certain data block should
be made accessible as /db/523. As a result, OCR-FUSE knows to
use the data channel connected to the OCR runtime that registered
the /db/523 data block to read the data of the data block. A similar
process is used to write the results — the OCR runtime informs
OCR-FUSE that /db/641 will be used to write the output of the
application, so that OCR-FUSE can redirect writes made to the file to
the appropriate OCR runtime. Reading and writing of unregistered
files can be considered an error or treated as a temporary file and
redirected to /tmp.
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Figure 2: The architecture of the system, showing different components used to run two external applications from a single
OCR application. The dotted boxes represent processes. The FUSE kernel module runs in the kernel and it is not a process.

This setup makes reading and writing to the files backed by OCR
data blocks indistinguishable from reading and writing normal files
on a physical device. Therefore, no special support is needed from
the external application, as long as a path can be specified for the
input and output files. Any reasonably designed application should
support this. However, it would also be possible to use the FUSE file
system to duplicate the contents of an existing filesystem and only
redirect selected files to the OCR data blocks. We do not support
this at the moment, although FUSE would make this modification
quite easy. The remaining open question is how to exchange data
between the OCR runtime (which holds the data blocks) and OCR-
FUSE.

5 DATA BLOCKS AS FILES

The filesystem implementation in FUSE needs to provide several
functions. Most of them deal with managing the filesystem - listing
directories, creating and deleting files, opening files, etc. To read
and write the contents of a file, two functions need to be provided:
read and write. Aside from some identification of the file, these
get a pointer to the buffer with data to be written or where the read
data should be stored, the size of the requested read/write operation
and an offset into the file. What we need for the read call is to read
the part of the data block starting at the specified offset and store
the required number of bytes into the buffer provided. The write
call is more complicated, since it is also possible to write beyond
the end of the “file”, in which case the file is expected to grow to
accommodate the newly written data.

As the FUSE module is a separate process from the process that
hosts the OCR runtime and the OCR application, it does not have a
direct access to the data block that is to be exposed as a file. Several
ways (protocols) of providing this access are available:

(1) One of the standard Linux two-sided IPC mechanisms can
be used to send data between the two processes, for example
sockets, pipes, or message queues. However, moving the
data that is read and written by the external application this
way may cause significant overhead. In these cases, the data
is copied at least twice before it gets from the data block
into the FUSE-provided buffer. A fixed size shared memory

region could be used to exchange the data, ensuring that the
data is copied exactly twice.

(2) The data block could be exposed as shared memory, which
would then be mapped in the OCR-FUSE module. In this case,
the data is copied just once — from the mapped memory into
the buffer. The downside of this approach is the requirement
that the data block needs to be in a shared memory area. We
could make all data blocks this way or move exposed data
blocks into a newly allocated shared memory when needed,
but both options would increase overhead of the OCR run-
time. Alternatively, we could require the OCR application
to state that a data block needs to be in a shared memory
when it is being created. This moves the responsibility to
the application developer and it may be difficult to always
figure out which data blocks may eventually end up being
shared.

(3) As of Linux kernel 3.2, two new functions are available:
process_vm_readv and process_vm_writev. These allow
a process to read and write to the memory space of another
process, requiring just the identifier (PID) of the target pro-
cess, address, and size. This way, the OCR runtime only needs
to let the FUSE module know the addresses of the data blocks
and the OCR-FUSE module can then use the functions to
directly read the data block contents, requiring only a single
copy. This is exactly the kind of scenario for which the new
functions were introduced into Linux.

Options 2 and 3 should both provide good performance of data
exchange, with the option 3 being the better choice, as it avoids
the requirement of placing data blocks in shared memory regions.
On the other hand, it relies on functionality that may not yet be
universally available. Even though Linux 3.2 was released in 2012,
some Linux distributions being used today use an older version. For
example, RedHat Enterprise Linux 6 uses kernel version 2.6. Even
though RedHat Enterprise Linux 7 with kernel 3.10 has been avail-
able since 2014, some systems still run on the older release. Also, the
new functions are specific to Linux, they are not part of the POSIX
standard. It may be interesting to note that the Windows operating
system provides similar functionality via ReadProcessMemory and
WriteProcessMemory. With Dokan (Windows equivalent of FUSE),
a similar solution can be deployed on Windows.



These options only cover the case where the external application
reads data from an OCR data block. We also need to deal with two
other cases. First, the application may also modify data in the data
block, possibly attempting to enlarge it by writing beyond the end
of the file. Second, the application may create new files to store the
output. In both cases, the size of the file may be increased and the
final size is not known in advance. For simplicity, consider only the
case of a newly created file. Compared to the input data, even more
options are available:

(1) Allocate memory for the new file inside the OCR-FUSE mod-
ule and reallocate the buffer (using the exponential growth
strategy) when the file needs to grow. As it is not possi-
ble to reallocate shared memory, the data would have to be
copied to a data block inside the OCR runtime at the end.
This means copying the data in memory once or twice, as
discussed earlier regarding the input data. Even though the
reallocation could be done by moving data from one shared
memory block to a new (larger) memory block, this would
most likely be less efficient, as the system realloc call has
a chance to just grow the existing memory, with no copying
required, or the copying could be eliminated by the operat-
ing system through the use of virtual memory, by mapping
the physical memory pages with the old data to the virtual
addresses in the new memory block.

(2) Allocate memory for the new file inside the OCR-FUSE mod-
ule as shared memory and add new buffers (again, increasing
the size exponentially) if it needs to grow. This way, the data
is available to the OCR runtime directly. However, as data
blocks in OCR need to be contiguous, the result would either
have to be copied into a single data block or the result would
have to be returned to the OCR application in multiple data
blocks corresponding to the buffers.

(3) The previous option could be used, but with the data blocks
allocated as shared memory inside the OCR runtime and
mapped inside the OCR-FUSE module. This way, it would be
easier to manage the lifetime of the data, as the OCR-FUSE
module could unmap the block as soon as the file is closed.
On the other hand, a protocol needs to be established to
direct allocation of the data blocks in OCR from the FUSE
module. This is not a problem, as those two need some com-
munication channel anyway.

(4) It is also possible to allocate the file as a single buffer inside
the OCR runtime and then reallocate it when the file grows.
In that case, the block cannot be in shared memory, for the
same reasons as in the first option. Also, the data needs to
be copied to the buffer inside the OCR runtime. However,
it can be directly copied from the source, which is a buffer
provided by the FUSE library when it makes the write call.
Using process_vm_writev, it’s possible to copy the data
from the FUSE buffer to the final destination (the data block)
with just a single copy. If the function is not available, at least
two copies are needed, for example using a shared, fixed-size
shared memory area.

Overall, the best option for both input and output data is to store
all data inside the OCR runtime, in contiguous data blocks. Then,
use process_vm_readv and process_vm_writev to copy the data
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Figure 3: The read patterns used in the benchmark. The
black boxes correspond to the blocks being read.

into FUSE-provided read and write buffers, whenever a read or
write operation is performed. However, if the fact that a data block
will be used as input of an external application is known in advance,
shared memory should be just as efficient. Furthermore, if the size
of the output files can be determined in advance, shared memory
should also be an efficient solution for the output data. Or, if the
application can handle it, the outputs could be split into multiple
data blocks. However, as the tools, libraries, and programming
models for writing OCR applications are very limited at the moment,
we would expect this option to be mostly avoided.

6 IMPLEMENTATION AND EXPERIMENTS

The proposed solution was implemented in OCR-Vx [4]. However,
as the performance of the virtual filesystem is the interesting part,
we have isolated it as a separate application, so that we can run
experiments with minimal interference. The experimental setup
is the same as Figure 2, except the OCR application and OCR run-
time are replaced with a specialized application whose only job
is to provide the data. The external application is also specifically
designed to test the performance. It only works with the file sys-
tem, using the standard file functions (fopen, fread, etc.). To test
input performance, it reads a configurable fraction of the whole
file, reading blocks of a specified size evenly distributed across the
file. The blocks are read in sequence. For example, with a 1000k file,
100k blocks and 50% fraction read, it reads a 100k block at offset 0,
then a 100k block at offset 200k, and so on, until it reads the final
100k block at offset 800k. Examples of the read pattern with 50%
and 20% coverage are shown in Figure 3.

The experiments were performed on two very different systems.
The first machine is a Linux server with two Intel Xeon X5680
CPUs (6 cores and 12 MB cache per CPU), with 24 GB RAM. The
operating system is Red Hat Enterprise Linux Server 6.8, with kernel
2.6. Therefore, the process_vm_readv and process_vm_writev
functions are not available on the machine. The second system
has a single Intel Core i5-3210M CPU (2 cores, 3 MB cache), 8 GB
RAM, and it runs Windows 10 Pro 64bit. We have used the machine
directly, but also in a virtualized environment (Hyper-V) based on
Docker. In this setup, the experiments were executed in a Docker
container, with the Docker itself running in a Linux virtual machine
(kernel 4.4.20) with 2 CPUs and 2GB RAM. Although it would be
possible to run the experiments directly on the virtual machine
(without Docker), we have used Docker to simplify the setup of
the machine environment (compilers and libraries) and to obtain
a more diverse set of experiments. The library versions used in
the different setups were the following: FUSE 2.8.3, ZeroMQ 4.2.2
on the Linux server, FUSE 2.9.7-1 and ZeroMQ 4.2.2 in the virtual



10% 20% 50% 100% full

Linux, file 0.0035 | 0.0067 | 0.0154 | 0.0242 | 0.0413
Linux, shmem 0.0077 | 0.0174 | 0.0363 | 0.0619 | 0.0840
Linux, readv N/A

Windows, file 0.0058 | 0.0075 | 0.0217 | 0.0477 | 0.0664

Windows, shmem | 0.0151 | 0.0290 | 0.0850 | 0.1444 | 0.1714
Windows, readv 0.0171 | 0.0333 | 0.0850 | 0.1659 | 0.1788

Docker, file 0.0023 | 0.0050 | 0.0104 | 0.0484 | 0.0493
Docker, shmem 0.0092 | 0.0203 | 0.0402 | 0.0696 | 0.1226
Docker, readv 0.0101 | 0.0196 | 0.0409 | 0.0706 | 0.0884

Docker, host file 0.0565 | 0.1030 | 0.3881 | 0.4780 | 0.4328
Table 1: Performance results. The table shows execution
time in seconds for different configurations, reading 128 MB
file, using 1 MB chunks. The last column shows performance
if the whole file is read using a single fread call. We use
“file” to refer to the alternative where an actual file is used
to store the data, while “shmem” and “readv” both refer to
OCR-FUSE, with the two different options for moving data
from the OCR runtime to the OCR-FUSE module. The last
line shows performance if the file is stored on the host of the
virtual machine. Note that on Windows, ReadProcessMemory
is in fact used instead of process_vm_readv. We could not use
process_vm_readv on the Linux server, as the kernel on the
machine is too old and does not provide it.

Linux, and Dokan 1.0.4 and ZeroMQ 4.2.1 in the native Windows
setup.

To test and compare read performance, three different tests were
performed: reading a real file that has just been written to disk, read-
ing a data block (via FUSE) available as shared memory, and reading
a data block using process_vm_readv or ReadProcessMemory. All
results are averages of 10 executions.

The results for a 128 MB file, 1 MB chunks, and 10%/20%/50%/100%
file read are shown in Table 1. The table also shows the performance
if the whole file is read using a single fread call. On the Linux server,
writing the data to a file and reading it in the external application
is about 2x faster than OCR-FUSE. This shows there is definitely
room for further optimization. At the moment, we are using the
high-level FUSE interface. The low-level interface might be able to
perform faster. On Windows, the results are similar, with the plain
file being 2.6x to 4x faster. The difference could be a result of using
Dokan instead of FUSE. Shared memory and ReadProcessMemory
provide very similar performance. In the virtual environment, the
results are also similar, with plain files being 1.4x to 4x faster.

Interestingly, if we store the file not in the container’s temporary
filesystem, but in a directory on the physical host machine via the
Docker virtual file system, the results are very different, with OCR-
FUSE significantly outperforming the file-based solution by 5x to
9x (shown in the table as “Docker, host file”). Clearly, the reason
for this is not extremely good performance of OCR-FUSE (although
it is noticeably faster than the native Windows alternative), but
very bad performance of reading the normal file. The conclusion
to be made here is not that OCR-FUSE is superior, but that this
demonstrates the potential benefits of tighter control over resources
and data movement that it provides. The performance is more stable

and predictable, compared to the alternative that depends on the
caching done by the operating system. This allows better resource
management and more accurate scheduling decisions.

An important consideration in all the experiments is that we do
not count the time necessary to write the file and only consider
read performance. In the FUSE-based solution, there is no file to
write, but if a physical file is used, it has to be written at some point.
Using a single fwrite call, the time necessary to create the 128
MB file on different systems looks like this: Linux 0.0818s, Docker
0.0848s, Windows 0.7915. These times almost always exceed the
time needed to read data via OCR-FUSE and if we add together the
time to write and read the file, it is always slower than OCR-FUSE.
However, it may be possible to hide the time necessary to write the
file in the OCR runtime by overlapping it with other computation,
so we don’t consider it in Table 1.

We have focused on the input data which is read by the external
application. As for the other direction, the main difference is the
need to potentially increase the size of the memory used to store
the result in the OCR runtime. As reallocation can be handled by
current operating systems very efficiently, it is not a major concern.
For example, in the Docker environment, if we start with a 4 KB
buffer and grow it to 128 MB using realloc to double the size
in each step, the total time required is around 0.0002 s. Writing
the data either through shared memory or process_vm_writev is
the same as when the file is read, only the direction is reversed,
but as the two processes are equivalent, it requires the same effort
irrespective of the direction. The main difference would be the
baseline we compare against, because as we have just discussed,
writing a file to the physical filesystem is considerably slower.

7 RELATED WORK

Most programming environments provide a way to run an external
application. In task-based runtime system, there is often the issue
of wasting a thread from the thread pool to wait for the application
to finish. It may be possible to work around this. For example, in
the Intel Threading Building Blocks [6], it would be possible to start
a new thread to wait for the external application to finish and once
that happens, it’s possible to manually start a task which depends
on the result of the execution. This is not possible in OCR, as the
application is not supposed to start new threads.

In the .NET environment, process execution is not directly pro-
vided as an asynchronous task (the native task-parallel model of
.NET), however it is possible to implement it with the existing
library functions. For example, RunProcessAsTask is provided
here: https://github.com/jamesmanning/RunProcessAsTask. How-
ever, this only deals with the execution of the task, not providing a
way to pass data to and from the task without using files. Techni-
cally, it would also be possible to expose memory as files in .NET,
in a similar way that we do, although it would not be possible to
expose the managed memory directly using shared memory or
ReadProcessMemory.

StarPU [1], another task-based runtime system, could be ex-
tended to provide external tasks, in a very similar way that we did
in OCR. In StarPU, the data (the buffers) is also managed by the
runtime, so it could be exposed the same way that we do with OCR.
Similar modifications could be made to other task-based runtimes,
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like OmpSs [2] or HPX [5]. However, unlike in OCR, with less strict
constraints placed on the application, it would also be also possible
to implement the functionality directly in the application and not
in the runtime.

In general, it’s possible to expose the memory of any process as
files with FUSE using the same techniques that we use. Furthermore,
on Linux, memory of a process $pid is exposed by the pseudo-file
/proc/$pid/mem. However, to be able to read memory of another
process, the reader (in our case the FUSE module) would have
to attach to the process like a debugger would (using ptrace),
stop the process, and detach after reading the data to restart the
stopped process. This might be acceptable in some cases, especially
as the process to be stopped is probably waiting for the external
application to finish. However, it would not be possible to allocate
and reallocate memory for the output this way.

8 CONCLUSION AND FUTURE WORK

Our proposal shows that OCR can be extended with the ability to
invoke external applications in a way that fits well with the existing
OCR design philosophy. The FUSE library can be used to expose
data of the OCR application to the external application in an efficient
way that requires no changes to the external application. This
gives the OCR runtime grater control of the resources used by the
applications. Our experiments have shown that the performance of
such design is roughly 2x to 4x slower compared to using a normal
file. This assumes ideal circumstances for the file storage, where it
is fully cached by the operating system and the time necessary to
write the files is not considered. In some scenarios, OCR-FUSE can
already provide better performance.

In the future, we plan to further optimize the system, both on
the OCR level and in the FUSE module. Once the optimizations
are done, we will run a much larger set of experiments, assessing
the performance under realistic application scenarios, using a com-
bination of file reads and writes, also including memory mapped
files. Also, it would be interesting to see how the file-based solution
works if a ramdisk is used as storage, rather than relying on caches.

We plan to integrate the external application execution into
the task scheduler of the OCR runtime. At the moment, an eager
execution strategy is used, running the external applications as
soon as the data blocks used by them can be acquired. We would
also like to further investigate the option of running the external
applications inside Docker containers. External applications that
use accelerators (like GPUs) also pose an interesting challenge.

Another interesting possibility created by OCR-FUSE is the fact
that even while a data block is being accessed by the external
application via OCR-FUSE, the data block can still be available to
tasks running inside OCR. This access can fully observe the access
modes that the external and normal tasks use for the data blocks.
For example, a data block may be concurrently read by multiple
external applications and OCR tasks in RO mode, while it is being
modified by external applications or tasks that acquire the data
block in RW mode. The OCR memory model and the OCR-FUSE
design make this possible.
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