
Smart Contracts: Security Patterns in the Ethereum
Ecosystem and Solidity

Maximilian Wöhrer and Uwe Zdun
University of Vienna

Faculty of Computer Science
Währingerstraße 29, 1090 Vienna, Austria

Email: {maximilian.woehrer,uwe.zdun}@univie.ac.at

Abstract—Smart contracts that build up on blockchain tech-
nologies are receiving great attention in new business applications
and the scientific community, because they allow untrusted
parties to manifest contract terms in program code and thus
eliminate the need for a trusted third party. The creation process
of writing well performing and secure contracts in Ethereum,
which is today’s most prominent smart contract platform, is a
difficult task. Research on this topic has only recently started
in industry and science. Based on an analysis of collected data
with Grounded Theory techniques, we have elaborated several
common security patterns, which we describe in detail on the
basis of Solidity, the dominating programming language for
Ethereum. The presented patterns describe solutions to typical
security issues and can be applied by Solidity developers to
mitigate typical attack scenarios.

I. INTRODUCTION

Ethereum is a major blockchain-based ecosystem that
provides an environment to code and run smart contracts.
Writing smart contracts in Solidity is so far a challenging
undertaking. It involves the application of unconventional
programming paradigms, due to the inherent characteristics
of blockchain based program execution. Furthermore, bugs in
deployed contracts can have serious consequences, because
of the immediate coupling of contract code and financial
values. Therefore, it is beneficial to have a solid foundation of
established and proven design and code patterns that ease the
process of writing functional and error free code.

With this paper we want to make the first steps in order
to create an extensive pattern language. Our research aims to
answer which code and design patterns commonly appear in
Solidity coded smart contracts and the problems they intent to
solve. In order to answer these questions we gathered data from
different sources and applied Grounded Theory techniques to
extract and identify the patterns.

This paper is structured as follows: First, we provide a
short background to blockchain technology in Section II and
the Ethereum platform in Section III. Then, we discuss some
platform related security aspects in Section IV-C, before we
present elaborated security patterns in Section V in detail.
Finally, we discuss related work in Section VI, and draw a
conclusion at the end in Section VII.

II. BACKGROUND

A. Blockchains, Cryptocurrencies, and Smart Contracts

Blockchains are a digital technology that build on a combina-
tion of cryptography, networking, and incentive mechanisms to
support the verification, execution and recording of transactions
between different parties. In simple terms, blockchain systems
can be seen as decentralized databases that offer very appealing
properties. These include the immutability of stored transactions
and the creation of trust between participants without a third
party. That makes blockchains suitable as an open distributed
ledger that can store transactions between parties in a verifiable
and permanent way. One prominent application is the exchange
of digital assets, so-called cryptocurrencies. Widely known
cryptocurrencies are Bitcoin, Ethereum and Litecoin. They offer,
beyond the transfer of digital assets, the execution of smart
contracts. Smart contracts are computer programs that facilitate,
verify, and enforce the negotiation and execution of legal
contracts. They are executed through blockchain transactions,
interact with crypto currencies, and have interfaces to handle
input from contract participants. When run on the blockchain, a
smart contract becomes an autonomous entity that automatically
executes specific actions when certain conditions are met.
Because smart contracts run on the blockchain, they run
exactly as programmed, without any possibility of censorship,
downtime, fraud or third party interference [1]. Today, the
most-used smart contract platform in this regard is Ethereum.

III. ETHEREUM PLATFORM

Ethereum is a public blockchain based distributed computing
platform, that offers smart contract functionality. It provides
a decentralised virtual machine as runtime environment to
execute smart contracts, known as Ethereum Virtual Machine
(EVM).

A. Ethereum Virtual Machine (EVM)

The EVM handles the computation and state of contracts
and is build on a stack-based language with a predefined
set of instructions (opcodes) and corresponding arguments
[2]. So, in essence, a contract is simply a series of opcode
statements, which are sequentially executed by the EVM. The
EVM can be thought of as a global decentralized computer
on which all smart contracts run. Although it behaves like
one giant computer, it is rather a network of smaller discrete

978-1-5386-5986-1/18 c© 2018 IEEE IWBOSE 2018, Campobasso, Italy

Accepted for publication by IEEE. c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2



machines in constant communication. All transactions, handling
the execution of smart contracts, are local on each node of
the network and processed in relative synchrony. Each node
validates and groups the transactions sent from users into
blocks, and tries to append them to the blockchain in order to
collect an associated reward. This process is called mining and
the participating nodes are called miners. To ensure a proper
resource handling of the EVM, every instruction the EVM
executes has a cost associated with it, measured in units of
gas. Operations that require more computational resources cost
more gas, than operations that require fewer computational
resources. This ensures that the system is not jammed up by
denial-of-service attacks, where users try to overwhelm the
network with time-consuming computations. Therefore, the
purpose of gas is twofold. It encourages developers to write
quality applications by avoiding wasteful code, and ensures at
the same time that miners, executing the requested operations,
are compensated for their contributed resources. When it comes
to paying for gas, a transaction fee is charged in small amounts
of Ether, the built-in digital currency of the Ethereum network,
and the token with which miners are rewarded for executing
transactions and producing blocks. Ultimately, Ether is the fuel
for operating the Ethereum platform.

B. Ethereum Smart Contracts

Smart contracts are applications which are deployed on
the blockchain ledger and execute autonomously as part of
transaction validation. To deploy a smart contract in Ethereum,
a special creation transaction is executed, which introduces a
contract to the blockchain. During this procedure the contract
is assigned an unique address, in form of a 160-bit identifier,
and its code is uploaded to the blockchain. Once successfully
created, a smart contract consists of a contract address, a
contract balance, predefined executable code, and a state.
Different parties can then interact with a specific contract
by sending contract-invoking transactions to a known contract
address. These may trigger any number of actions as a result,
such as reading and updating the contract state, interacting and
executing other contracts, or transferring value to others. A
contract-invoking transaction must include the execution fee
and may also include a transfer of Ether from the caller to
the contract. Additionally, it may also define input data for
the invocation of a function. Once a transaction is accepted,
all network participants execute the contract code, taking into
account the current state of the blockchain and the transaction
data as input. The network then agrees on the output and the
next state of the contract by participating in the consensus
protocol. Thus, on a conceptual level, Ethereum can be viewed
as a transaction-based state machine, where its state is updated
after every transaction.

C. Ethereum Programming Languages

Smart contracts in Ethereum are usually written in higher
level languages and are then compiled to EVM bytecode. Such
higher level languages are LLL (Low-level Lisp-like Language)
[3], Serpent (a Python-like language) [4], Viper (a Python-like

language) [5], and Solidity (a Javascript-like language) [6].
LLL and Serpent were developed in the early stages of the
platform, while Viper is currently under development, and is
intended to replace Serpent. The most prominent and widely
adopted language is Solidity.

D. Solidity

Solidity is a high-level Turing-complete programming lan-
guage with a JavaScript similar syntax, being statically typed,
supporting inheritance and polymorphism, as well as libraries
and complex user-defined types.

When using Solidity for contract development, contracts are
structured similar to classes in object oriented programming
languages. Contract code consists of variables and functions
which read and modify these, like in traditional imperative
programming.

1pragma solidity ^0.4.17;
2contract SimpleDeposit {
3mapping (address => uint) balances;
4
5event LogDepositMade(address from, uint amount);
6
7modifier minAmount(uint amount) {
8require(msg.value >= amount);
9_;
10}
11
12function SimpleDeposit() public payable {
13balances[msg.sender] = msg.value;
14}
15
16function deposit() public payable minAmount(1 ether)

{
17balances[msg.sender] += msg.value;
18LogDepositMade(msg.sender, msg.value);
19}
20
21function getBalance() public view returns (uint

balance) {
22return balances[msg.sender];
23}
24
25function withdraw(uint amount) public {
26if (balances[msg.sender] >= amount) {
27balances[msg.sender] -= amount;
28msg.sender.transfer(amount);
29}
30}
31}

Listing 1. A simple contract where users can deposit some value and check
their balance.

Listing 1 shows a simple contract written in Solidity in which
users can deposit some value and check their balance. Before
describing the code in more detail, it is helpful to give some
insights about Solidity features like global variables, modifiers,
and events.

Solidity defines special variables (msg, block, tx) that
always exist in the global namespace and contain properties
to access information about an invocation-transaction and the
blockchain. For example, these variables allow the retrieval
of the origin address, the amount of Ether, and the data sent
alongside an invocation-transaction.

Another particular convenient feature in Solidity are so-
called modifiers. Modifiers can be described as enclosed code
units that enrich functions in order to modify their flow of
code execution. This approach follows a condition-orientated

3



programming (COP) paradigm, with the main goal to remove
conditional paths in function bodies. Modifiers can be used
to easily change the behaviour of functions and are applied
by specifying them in a whitespace-separated list after the
function name. The new function body is the modifiers body
where ’_’ is replaced by the original function body. A typical
use case for modifiers is to check certain conditions prior to
executing the function.

An additionally important and neat feature of Solidity are
events. Events are dispatched signals that smart contracts can
fire. User interfaces and applications can listen for those events
on the blockchain without much cost and act accordingly. Other
than that, events may also serve logging purposes. When called,
they store their arguments in a transaction’s log, a special data
structure in the blockchain that maps all the way up to the
block level. These logs are associated with the address of
the contract and can be efficiently accessed from outside the
blockchain.

Given this short feature description, we can now return and
analyse the code example. First, the compiler version is defined
(line 1), then the contract is defined in which a state variable
is declared (line 3), followed by an event definition (line 5), a
modifier definition (line 7), the constructor (line 12), and the
actual contract functions (line 16 onwards). The state of the
contract is stored in a mapping called balances (which stores
an association between a users address and a balance). The
special function SimpleDeposit is the constructor, which is
run during the creation of the contract and cannot be called
afterwards. It sets the balance of the individual creating the
contract (msg.sender) to the amount of Ether sent along
the contract creation transaction (msg.value). The remaining
functions actually serve for interaction and are called by
users and contracts alike. The deposit() function (line 16)
manipulates the balances mapping by adding the amount sent
along the transaction-invocation to the senders balance, while
utilizing a modifier to preliminary ensure that at least 1 Ether
is sent. The withdraw() function (line 25) manipulates the
balances mapping by subtracting the requested amount to be
withdrawn from the senders balance and the getBalance()

function (line 21) returns the actual balance of the sender by
querying the balances mapping.

In summary, this simple example shows the basic concepts
of a smart contract coded in Solidity. Moreover, it illustrates the
most powerful feature of smart contracts, which is the ability
to manipulate a globally verifiable and universally consistent
contract state (the balances mapping).

IV. DEVELOPMENT ASPECTS

A. Limits of Blockchain Technology

First, it is important to state that not every application
is predestined to be run on a blockchain. There are many
applications that do not need a decentralized, immutable,
append-only data log with transaction validation. Due to
the inherent characteristics of blockchains, distributed ledger
systems are not suitable for a variety of use cases. For example,
computation-heavy applications are impractical to run on

blockchains, because of the accumulated computation fees
and the fact that many types of computations are impractical to
execute on a stack-based virtual machine. Another limitation
of blockchains is that they are not suitable for storing large
amounts of data. This implicit limitation results in the extensive
redundancy from the large number of network nodes, holding
a full copy of the distributed ledger. Nonetheless, this can be
overcome by not storing large data directly on the blockchain,
but only a hash or other meta-data on the chain. In the
context of data storage it is also important to realize that
the data on the blockchain is visible to all network participants.
This implies that keeping sensitive data confidential, requires
the obfuscation of plaintext data by some means. A further
limitation of blockchains is their performance. They are
currently not suitable for applications which demand a high-
frequency or low latency execution of transactions, because
of the additional work owed to the cryptography, consensus,
and redundancy apparatus of blockchain systems. Within these
limits smart contracts should be used for applications that
have something to gain from being distributed and publicly
verifiable and enforceable. In general, most applications that
handle the transfer or registration of resources in a traceable
way are suitable, e.g. land register, provenance documentation,
or electronic voting.

B. Coding Smart Contracts in Ethereum

Contract development on the Ethereum blockchain requires
a different engineering approach than most web and mobile
developers are familiar with. Unlike modern programming
languages, which support a broad range of convenient data types
for storage and manipulation, the developer is responsible for
the internal organization and manipulation of data at a deeper
level. This implies that the developer has to address details he
may not be used to deal with. For example, a developer would
have to implement a method to concat or lowercase strings,
which are tasks developers usually do not have to think about
in other languages. Furthermore, the Ethereum platform and
Solidity are constantly evolving in a fast pace and the developer
is confronted with an ongoing transformation of platform
features and the security landscape, as new instructions are
added, and bugs and security risks are discovered. Developers
have to consider that code that is written today, will probably
not compile in a few months, or will at least have to be
refactored.

C. Smart Contract Security

An analysis of existing smart contracts by Bartoletti and
Pompianu [7] shows that the Bitcoin and Ethereum platform
mainly focus on financial contracts. In other words, most
smart contract program code defines how assets (money) move.
Therefore, it is crucial that contract execution is performed
correctly. The direct handling of assets means that flaws
are more likely to be security relevant and have greater
direct financial consequences than bugs in typical applications.
Incidents, like the value overflow incident in Bitcoin [8], or the
DAO hack [9] in Ethereum, caused a hard fork of the blockchain

4



to nullify the malicious transactions. These incidents show
that security issues have been used for fraudulent purposes
ruthlessly in the past. A survey of possible attacks on Ethereum
contracts was published by Atzei et al. [10] and lists 12
vulnerabilities that are assigned by context to Solidity, the EVM,
and blockchain peculiarities itself. Many of these vulnerabilities
can be addressed by following best practices for writing secure
smart contracts, which are scattered throughout the Ethereum
community [11, 12] and different Ethereum blogs. Most best
practices mainly contain information about typical pitfalls to
avoid and the description of favourable design and problem
approaches. The latter being the focus of this paper in order
to collate smart contract security design patterns.

V. SMART CONTRACT DESIGN PATTERNS

A software pattern describes an abstraction or conceptual-
ization of a concrete, complex, and reoccurring problem that
software designers have faced in the context of real software
development projects and a successful solution they have
implemented multiple times to resolve this problem [13].

So far, only few efforts have been made to collect and
categorize patterns in a structured manner [14, 15]. This section
gives an overview of typical security design patterns that are
inherently frequent or practical in the context of smart contract
coding. The presented patterns address typical problems and
vulnerabilities related to smart contract execution. The patterns
are based on multiple sources, such as review of Solidity
development documentation, on studying Internet blogs and
discussion forums about Ethereum, and the the examination
of existing smart contracts. The source code of the presented
patterns is available on github [16]. To illustrate the patterns in
practice, Table I at the end of this section lists for each pattern
an example contract with published source code deployed on
the Ethereum mainnet.

A. Security Patterns

Security is a group of patterns that introduce safety measures
to mitigate damage and assure a reliable contract execution.

1) Checks-Effects-Interaction:

CHECKS-EFFECTS-INTERACTION PATTERN
Problem When a contract calls another contract, it hands over control
to that other contract. The called contract can then, in turn, re-enter the
contract by which it was called and try to manipulate its state or hijack
the control flow through malicious code.

Solution Follow a recommended functional code order, in which calls to
external contracts are always the last step, to reduce the attack surface of
a contract being manipulated by its own externally called contracts.

The Checks-Effects-Interaction pattern is fundamental for
coding functions and describes how function code should
be structured to avoid side effects and unwanted execution
behaviour. It defines a certain order of actions: First, check
all the preconditions, then make changes to the contract’s
state, and finally interact with other contracts. Hence its name
is “Checks-Effects-Interactions Pattern”. According to this
principle, interactions with other contracts should be, whenever
possible, the very last step in any function, as seen in Listing
2. The reason being, that as soon as a contract interacts with

another contract, including a transfer of Ether, it hands over the
control to that other contract. This allows the called contract to
execute potentially harmful actions. For example, a so-called
re-entrancy attack, where the called contract calls back the
current contract, before the first invocation of the function
containing the call, was finished. This can lead to an unwanted
execution behaviour of functions, modifying the state variables
to unexpected values or causing operations (e.g. sending of
funds) to be performed multiple times. An example for a
contract function, prone to the described attack scenario, is
shown in Listing 3. The re-entrancy attack is especially harmful
when using low level address.call, which forwards all
remaining gas by default, giving the called contract more room
for potentially malicious actions. Therefore, the use of low
level address.call should be avoided whenever possible. For
sending funds address.send() and address.transfer()

should be preferred, these functions minimize the risk of re-
entrancy through limited gas forwarding. While these methods
still trigger code execution, the called contract is only given a
stipend of 2,300 gas, which is currently only enough to log an
event.

function auctionEnd() public {
// 1. Checks
require(now >= auctionEnd);
require(!ended);
// 2. Effects
ended = true;
// 3. Interaction
beneficiary.transfer(highestBid);

}

Listing 2. Applying the Checks-Effects-Interaction pattern within a function.

mapping (address => uint) balances;

function withdrawBalance() public {
uint amount = balances[msg.sender];
require(msg.sender.call.value(amount)()); // caller’s

code is executed and can re-enter withdrawBalance
again

balances[msg.sender] = 0; // INSECURE - user’s balance
must be reset before the external call

}

Listing 3. An example of an insecure withdrawal function prone to a re-
entrancy attack.

2) Emergency Stop (Circuit Breaker):

EMERGENCY STOP (CIRCUIT BREAKER) PATTERN
Problem Since a deployed contract is executed autonomously on the
Ethereum network, there is no option to halt its execution in case of a
major bug or security issue.

Solution Incorporate an emergency stop functionality into the contract that
can be triggered by an authenticated party to disable sensitive functions.

Reliably working contracts may contain bugs that are
yet unknown, until revealed by an adversary attack. One
countermeasure and a quick response to such attacks are
emergency stops or circuit breakers. They stop the execution
of a contract or its parts when certain conditions are met. A
recommended scenario would be, that once a bug is detected, all
critical functions would be halted, leaving only the possibility
to withdraw funds. A contract implementing the described
strategy is shown in Listing 4. The ability to fire an emergency

5



stop could be either given to a certain party, or handled through
the implementation of a rule set.

pragma solidity ^0.4.17;
import "../authorization/Ownership.sol";
contract EmergencyStop is Owned {
bool public contractStopped = false;

modifier haltInEmergency {
if (!contractStopped) _;

}

modifier enableInEmergency {
if (contractStopped) _;

}

function toggleContractStopped() public onlyOwner {
contractStopped = !contractStopped;

}

function deposit() public payable haltInEmergency {
// some code

}

function withdraw() public view enableInEmergency {
// some code

}
}

Listing 4. An emergency stop allows to disable or enable specific functions
inside a contract in case of an emergency.

3) Speed Bump:

SPEED BUMP PATTERN
Problem The simultaneous execution of sensitive tasks by a huge number
of parties can bring about the downfall of a contract.

Solution Prolong the completion of sensitive tasks to take steps against
fraudulent activities.

Contract sensitive tasks are slowed down on purpose, so
when malicious actions occur, the damage is restricted and
more time to counteract is available. An analogous real
world example would be a bank run, where a large number
of customers withdraw their deposits simultaneously due to
concerns about the bank’s solvency. Banks typically counteract
by delaying, stopping, or limiting the amount of withdrawals.
An example contract implementing a withdrawal delay is shown
in Listing 5.

pragma solidity ^0.4.17;
contract SpeedBump {
struct Withdrawal {
uint amount;
uint requestedAt;

}
mapping (address => uint) private balances;
mapping (address => Withdrawal) private withdrawals;
uint constant WAIT_PERIOD = 7 days;

function deposit() public payable {
if(!(withdrawals[msg.sender].amount > 0))
balances[msg.sender] += msg.value;

}

function requestWithdrawal() public {
if (balances[msg.sender] > 0) {
uint amountToWithdraw = balances[msg.sender];
balances[msg.sender] = 0;
withdrawals[msg.sender] = Withdrawal({
amount: amountToWithdraw,
requestedAt: now

});
}

}

function withdraw() public {

if(withdrawals[msg.sender].amount > 0 && now >
withdrawals[msg.sender].requestedAt + WAIT_PERIOD)
{

uint amount = withdrawals[msg.sender].amount;
withdrawals[msg.sender].amount = 0;
msg.sender.transfer(amount);

}
}

}

Listing 5. A contract that delays the withdrawal of funds deliberately.

4) Rate Limit:

RATE LIMIT PATTERN
Problem A request rush on a certain task is not desired and can hinder
the correct operational performance of a contract.

Solution Regulate how often a task can be executed within a period of
time.

A rate limit regulates how often a function can be called
consecutively within a specified time interval. This approach
may be used for different reasons. A usage scenario for smart
contracts may be founded on operative considerations, in order
to control the impact of (collective) user behaviour. As an
example one might limit the withdrawal execution rate of
a contract to prevent a rapid drainage of funds. Listing 6
exemplifies the application of this pattern.
pragma solidity ^0.4.17;
contract RateLimit {
uint enabledAt = now;

modifier enabledEvery(uint t) {
if (now >= enabledAt) {
enabledAt = now + t;
_;

}
}

function f() public enabledEvery(1 minutes) {
// some code

}
}

Listing 6. An example of a rate limit that avoids excessively repetitive function
execution.

5) Mutex:

MUTEX PATTERN
Problem Re-entrancy attacks can manipulate the state of a contract and
hijack the control flow.

Solution Utilize a mutex to hinder an external call from re-entering its
caller function again.

A mutex (from mutual exclusion) is known as a synchro-
nization mechanism in computer science to restrict concurrent
access to a resource. After re-entrancy attack scenarios emerged,
this pattern found its application in smart contracts to protect
against recursive function calls from external contracts. An
example contract is depicted below in Listing 7.
pragma solidity ^0.4.17;
contract Mutex {
bool locked;

modifier noReentrancy() {
require(!locked);
locked = true;
_;
locked = false;

}

6



// f is protected by a mutex, thus reentrant calls
// from within msg.sender.call cannot call f again
function f() noReentrancy public returns (uint) {
require(msg.sender.call());
return 1;

}
}

Listing 7. The application of a mutex pattern to avoid re-entrancy.

6) Balance Limit:
BALANCE LIMIT PATTERN
Problem There is always a risk that a contract gets compromised due
to bugs in the code or yet unknown security issues within the contract
platform.

Solution Limit the maximum amount of funds at risk held within a contract.

It is generally a good idea to manage the amount of money
at risk when coding smart contracts. This can be achieved by
limiting the total balance held within a contract. The pattern
monitors the contract balance and rejects payments sent along a
function invocation after exceeding a predefined quota, as seen
in Listing 8. It should be noted that this approach cannot prevent
the admission of forcibly sent Ether, e.g. as beneficiary of a
selfdestruct(address) call, or as recipient of a mining
reward.
pragma solidity ^0.4.17;
contract LimitBalance {
uint256 public limit;

function LimitBalance(uint256 value) public {
limit = value;

}

modifier limitedPayable() {
require(this.balance <= limit);
_;

}

function deposit() public payable limitedPayable {
// some code

}
}

Listing 8. A contract limiting the total balance acquirable through payable
function invocation.

TABLE I
PATTERN USAGE EXAMPLES IN PUBLISHED SOURCE CODE CONTRACTS ON

THE ETHEREUM MAINNET.

Category Pattern Example Contract

Security

Checks-Effects-Interaction CryptoKitties

Emergency Stop Augur/REP

Speed Bump TheDAO

Rate Limit etherep

Mutex Ventana Token

Balance Limit CATToken

VI. RELATED WORK

According to Alharby and van Moorsel [17] current research
on smart contracts is mainly focused on identifying and tackling
smart contract issues and can be divided into four categories,
namely coding, security, privacy and performance issues. The
technology behind writing smart contracts in Ethereum is still
in its infancy stage, therefore coding and security are among

the most discussed issues. Unfortunately, a lot of research
and practical knowledge is scattered throughout blog articles
and grey literature, therefore information is often not very
structured. Only relatively few papers focus on software patterns
in blockchain technology respectively on design patterns in the
Solidity language for the Ethereum ecosystem. Bartoletti and
Pompianu [7] conducted an empirical analysis of Solidity smart
contracts and identified a list of nine common design patterns
that are shared by studied contracts. These patterns broadly
summarize the most frequent solutions to handle common
usage scenarios. A paper by Zhang et al. [18] describes how
the application of familiar software patterns can help to resolve
design specific challenges. In particular, commonly known
design patterns such as the Abstract Factory, Flyweight, Proxy,
and Publisher-Subscriber pattern are applied to implement a
blockchain-based healthcare application. The above mentioned
papers do not contain security related design patterns, but show
that design patterns are an interesting topic in smart contract
coding.

VII. CONCLUSION

We have given a brief introduction to Ethereum and Solidity
and outlined six design patterns that address security issues
when coding smart contracts in Solidity. In general, the main
problem that these patterns solve is the lack of execution
control once a contract has been deployed, resulting form
the distributed execution environment provided by Ethereum.
This one-of-a-kind characteristic of Ethereum allows programs
on the blockchain to be executed autonomously, but also has
drawbacks. These drawbacks appear in different forms, either
as harmful callbacks, adverse circumstances on how and when
functions are executed, or uncontrollably high financial risks
at stake. By applying the presented patterns, developers can
address these security problems and mitigate typical attack
scenarios.

In future work, we plan to extend the already collated patterns
to create a structured and informative design pattern language
for Solidity, that can be used as guidance for developers or
find its application in automatic code generating frameworks.

REFERENCES

[1] Ethereum project. [Online]. Available: https://www.
ethereum.org/

[2] G. Wood, “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum Project Yellow Paper, vol.
151, 2014.

[3] Lll poc 6. [Online]. Available: https:
//github.com/ethereum/cpp-ethereum/wiki/LLL-PoC-6/
7a575cf91c4572734a83f95e970e9e7ed64849ce

[4] Serpent. [Online]. Available: https://github.com/ethereum/
wiki/wiki/Serpent

[5] ethereum/viper: New experimental programming language.
[Online]. Available: https://github.com/ethereum/viper

[6] Solidity — solidity 0.4.18 documentation. [Online]. Avail-
able: https://media.readthedocs.org/pdf/solidity/develop/
solidity.pdf

7

https://etherscan.io/address/0x06012c8cf97BEaD5deAe237070F9587f8E7A266d#code
https://etherscan.io/address/0xE94327D07Fc17907b4DB788E5aDf2ed424adDff6#code
https://etherscan.io/address/0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413#code
https://etherscan.io/address/0xfBCA29854B821ff37E504578312459286082010d#code
https://etherscan.io/address/0x30CefBcb5C26A5B19a019092Ab8d09F8739c904F#code
https://etherscan.io/address/0x56ba2Ee7890461f463F7be02aAC3099f6d5811A8#code
https://www.ethereum.org/
https://www.ethereum.org/
https://github.com/ethereum/cpp-ethereum/wiki/LLL-PoC-6/7a575cf91c4572734a83f95e970e9e7ed64849ce
https://github.com/ethereum/cpp-ethereum/wiki/LLL-PoC-6/7a575cf91c4572734a83f95e970e9e7ed64849ce
https://github.com/ethereum/cpp-ethereum/wiki/LLL-PoC-6/7a575cf91c4572734a83f95e970e9e7ed64849ce
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/ethereum/viper
https://media.readthedocs.org/pdf/solidity/develop/solidity.pdf
https://media.readthedocs.org/pdf/solidity/develop/solidity.pdf


[7] M. Bartoletti and L. Pompianu, “An empirical analysis
of smart contracts: platforms, applications, and design
patterns,” arXiv preprint arXiv:1703.06322, 2017.

[8] Value overflow incident - bitcoin wiki. [Online]. Available:
https://en.bitcoin.it/wiki/Value_overflow_incident

[9] P. Daian, “Analysis of the dao exploit,”
2016, [Online; accessed 6-September-2017 ].
[Online]. Available: http://hackingdistributed.com/2016/
06/18/analysis-of-the-dao-exploit/

[10] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks
on ethereum smart contracts (sok),” in International
Conference on Principles of Security and Trust. Springer,
2017, pp. 164–186.

[11] Security considerations — solidity 0.4.18 documentation.
[Online]. Available: http://solidity.readthedocs.io/en/
develop/security-considerations.html

[12] “Ethereum contract security techniques and tips,”
2017, [Online; accessed 6-September-2017 ].
[Online]. Available: https://github.com/ConsenSys/

smart-contract-best-practices
[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design

patterns: elements of,” 1994.
[14] J. Bontje. (2015) Dapp design patterns. [On-

line]. Available: https://www.slideshare.net/mids106/
dapp-design-patterns

[15] cjgdev. (2016) Smart-contract patterns written in solidity,
collated for community good. [Online]. Available:
https://github.com/cjgdev/smart-contract-patterns

[16] “maxwoe/solidity_patterns.” [Online]. Available: https:
//github.com/maxwoe/solidity_patterns

[17] M. Alharby and A. van Moorsel, “Blockchain-based smart
contracts: A systematic mapping study,” arXiv preprint
arXiv:1710.06372, 2017.

[18] P. Zhang, J. White, D. C. Schmidt, and G. Lenz, “Applying
software patterns to address interoperability in blockchain-
based healthcare apps,” arXiv preprint arXiv:1706.03700,
2017.

8

https://en.bitcoin.it/wiki/Value_overflow_incident
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://solidity.readthedocs.io/en/develop/security-considerations.html
http://solidity.readthedocs.io/en/develop/security-considerations.html
https://github.com/ConsenSys/smart-contract-best-practices
https://github.com/ConsenSys/smart-contract-best-practices
https://www.slideshare.net/mids106/dapp-design-patterns
https://www.slideshare.net/mids106/dapp-design-patterns
https://github.com/cjgdev/smart-contract-patterns
https://github.com/maxwoe/solidity_patterns
https://github.com/maxwoe/solidity_patterns

	Introduction
	Background
	Blockchains, Cryptocurrencies, and Smart Contracts

	Ethereum Platform
	Ethereum Virtual Machine (EVM)
	Ethereum Smart Contracts
	Ethereum Programming Languages
	Solidity

	Development Aspects
	Limits of Blockchain Technology
	Coding Smart Contracts in Ethereum
	Smart Contract Security

	Smart Contract Design Patterns
	Security Patterns
	Checks-Effects-Interaction
	Emergency Stop (Circuit Breaker)
	Speed Bump
	Rate Limit
	Mutex
	Balance Limit


	Related Work
	Conclusion

