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Online Aggregation of the Forwarding Information
Base: Accounting for Locality and Churn

Marcin Bienkowski Nadi Sarrar Stefan Schmid Steve Uhlig

Abstract—This paper studies the problem of compressing the
Forwarding Information Base (FIB), but taking a wider perspec-
tive. Indeed, FIB compression goes beyond sheer compression,
as the gain in memory use obtained from the compression has
consequences on the updates that will have to be applied to the
compressed FIB.

We are interested in the situation where forwarding rules can
change over time, e.g., due to BGP route updates. Accordingly,
we frame FIB compression as an online problem, and design
competitive online algorithms to solve it. In contrast to prior
work which mostly focused on static optimizations, we study
an online variant of the problem where routes can change over
time, and where the number of updates to the FIB are taken
into account explicitly. The reason to consider this version of the
problem is that leveraging temporal locality while accounting
for the number of FIB updates helps to keep routers CPU load
low and reduces the number of FIB updates to be transferred,
e.g., from the network-attached Software-Defined Network (SDN)
controller to a remote switch.

This paper introduces a formal model which is an interesting
generalization of several classic online aggregation problems. Our
main contribution is an O(w)-competitive algorithm, where w is
the length of an IP address. We also derive a lower bound which
shows that our result is asymptotically optimal within a natural
class of algorithms, based on so-called sticks.

Keywords-Prefix Aggregation, Competitive Analysis, Software-
Defined Networking

I. INTRODUCTION

At the heart of any router (and switch) lies a so-called
Forwarding Information Base (FIB) containing the router’s
forwarding rules. A routing decision for a given packet is made
on the basis of these rules and the destination IP address of
a packet. A fast rule lookup requires the FIB to be stored in
a fast (and expensive) memory on the line cards.

For quite some time now, the number of FIB rules at the
Internet core routers has been growing. In 2017, the FIB
size exceeds 700k.1 New forwarding rules emerge primar-
ily because of the growth of the Internet itself, trends for
advertising more specific routes [20] (e.g., for traffic engi-
neering purposes [29]), or the increasing demand for virtual
networks [6], [16]. The migration to IPv6 is not expected to
mitigate the address space disaggregation problem [7]. The
increasing memory requirement comes at a significant cost for
ISPs [31], as this memory is expensive and power-hungry [21].
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An interesting solution to alleviate the problem — before
possible long-term solutions are deployed — is the aggre-
gation/compression of the FIB, i.e., the replacement of the
existing set of rules by an equivalent but smaller set. The
aggregation of FIB rules has the appealing property that it
is a purely local solution in the sense that it does not affect
neighboring routers and it can be done by a simple software
update [30].

While the compression of the FIB is beneficial in terms of
memory, it also entails a potential overhead: As the FIB of
a router changes dynamically over time — typically several
thousands rules are modified each second on a BGP core
router [9] — the rule compression may lead to a situation
where already aggregated FIB entries need to be disaggregated
again, resulting in a larger number of rule updates. There is
a certain cost associated with each such update: First, each
update entails some changes in the local data structure, which
needs to be rebuilt. Moreover, transmissions of control mes-
sages is problematic as the communication channel between
route processor and line card (resp. between the controller
and the switch) can become a bottleneck [19]. In the worst-
case, the updates even have to be transmitted over a network
featuring varying latencies: in the context of Software-Defined
Networks (SDN), the SDN controller [18] needs to send
updates to a remote OpenFlow switch.

Accordingly, we in this paper make the case for, and initiate
the study of, FIB aggregation algorithms which simultaneously
try to maximize the compression ratio and minimize the
number of updates to the compressed FIB. In particular, we
are interested in the practically relevant dynamic setting, where
forwarding rules can change over time, e.g., due to BGP route
updates. Accordingly, we aim to design competitive online
algorithms.

Next, and before discussing our contributions and related
work, we introduce our model in more detail.

A. The Model

An (IP) address is a binary string of length w (e.g., w = 32
for IPv4 and w = 128 for IPv6) or equivalently an integer
from [0, 2w − 1]. An (IP) prefix is a binary string of length at
most w; we denote the empty prefix by ε. A prefix contains
all addresses that start with it, i.e., it corresponds to a range
of addresses of the form [k · 2i, (k+ 1) · 2i − 1], where w− i
is the prefix length and k ≥ 0 is an integer.

Forwarding Information Base (FIB). We consider a packet
forwarding router (or a switch) with a set of ports (also known
as the next-hops). A Forwarding Information Base (FIB) is
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a set of forwarding rules used by the router; each rule is
a (prefix,port) pair (p, c). For the presentation, we will refer to
the ports by colors, i.e., assume a unique color for each port.
For any packet processed by the router, a decision is made
on the basis of its destination IP address x using the longest
prefix match policy [19]: among the FIB rules {(pi, ci)}i, the
router chooses the longest pi being a prefix of x, and forwards
the packet to port ci. We assume that there are no two rules
with the same prefixes and different ports. If no rule matches,
the packet is dropped.

For instance, consider a FIB containing four rules {(ε, a),
(00, b), (1, c), (11, a)}, where a, b, and c are ports. It could
be replaced by an equivalent FIB containing the rules
{(ε, a), (00, b), (10, c)}. In this compression process, we re-
quire strong forwarding correctness [30], i.e., we require that
the forwarding and dropping behavior remain the same.

Finally, we call two (different) rules dependent if the ranges
represented by them overlap (i.e., one of these ranges is
contained in the other) and independent otherwise.

Costs and Competitive Analysis. We consider a simple
router which consists of two parts: the controller (typically
implemented on the route processor) and the (compressed)
FIB (stored in a fast and expensive memory), cf. Figure 1.
The controller keeps a copy of the uncompressed FIB (U-
FIB) and receives dynamic updates to this structure, e.g.,
due to various events from the Border Gateway Protocol,
BGP. More precisely, we assume continuous time; at any
time t, a single forwarding rule may change its color (port).
In particular, we do not allow new rules to be inserted to U-
FIB nor old rules to be deleted from it. Thus, the input is
a sequence of such color changes called events. Right after
a change occurs, the controller must ensure that the U-FIB
and the FIB are equivalent. To this end, the controller may
insert, delete or update (change color) individual rules in the
FIB. The controller can also issue these commands at any
point of time, e.g., for a delayed compression of the FIB. We
associate a fixed cost α to any such change of a single rule.
We emphasize that α is a fixed parameter but not necessarily
a constant.

Note that we use a fixed parameter α independently of
the change type issued by the controller (insert, delete, color
update) to keep the model simple and general: α is not specific
to any particular FIB data structure (e.g., trie or cache), but
may also be used to model the cost of transmitting a control
packet between an SDN controller and the OpenFlow switch.
(See also [14], [25].) We will refer to the total cost paid this
way as update cost, and the amount paid by an algorithm
ALG in a time interval I is denoted by U-COSTI(ALG). More
generally, we ignore IP lookup cost in our model, as it depends
on both the choice of data structure and the hardware support
(e.g., TCAM) provided by the target forwarding engine, and
are often negligible in practice [19, chapter 15].

The second type of cost we want to optimize is the size of
the FIB, which — following [8] — is defined as the number
of FIB forwarding rules. This modeling is justified by state-
of-the-art approaches (see, e.g., [19, chapter 15]), where the
size of such a structure is usually proportional to the number
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Fig. 1. Controller and FIB: the controller updates the rules in the FIB. This
paper focuses on online algorithms for the controller.

of entries in the FIB. For an algorithm ALG and time t, we
denote the number of FIB rules at time t by SIZEt(ALG).
The total memory cost in a time interval I is then defined as
M-COSTI(ALG) =

∫
I

SIZEt(ALG) dt.
In both objective functions (U-COST and M-COST), we

drop time interval subscripts when referring to the total cost
during the runtime of an algorithm. This paper focuses on
minimizing the sum of these two costs, i.e., COST(ALG) =
U-COST(ALG) + M-COST(ALG). Note that the parameter α
can be used to put more emphasis on either of the two costs.

We assume a conservative standpoint and consider algo-
rithms that do not have any knowledge of future prefix
changes, and need to decide online on where and when to
aggregate. Not relying on predictions is reasonable as it makes
our approach robust to the often unpredictable behavior of
the route updates in the modern Internet [13]. We use the
standard yard-stick of online analysis [5], i.e., we compare
the cost of the online algorithm to the cost of an optimal
offline algorithm OPT that knows the whole input sequence
in advance. We call an online algorithm ALG ρ-competitive
if there exists a constant ξ, such that for any input sequence
the following holds: COST(ALG) ≤ ρ · COST(OPT) + ξ. The
competitive ratio of an algorithm is the minimum ρ, for which
the algorithm is ρ-competitive.

Trie Representation. Throughout this paper, we represent
both the U-FIB and the FIB as one-bit tries containing all
the prefixes from the forwarding rules. This affects merely
the description: we do not assume anything about the actual
implementation of the U-FIB/FIB structures.

A Note about IP Lookup. In our model, we do not take
into account the impact a FIB compression may have on
IP lookup times, because they are affected only to a very
limited extent. The state-of-the-art data structures used for
IP lookup (see, [19, chapter 15] and the references therein)
use a variety of tree-like constructs augmented with additional
information. This allows for lookup times of order O(logw),
with practical implementations using 2-3 memory lookups on
average. Unfortunately, little is known about proprietary data
structures actually used in the routers of different vendors.

B. Related Work

The increasing FIB size problem has received much at-
tention recently, and many approaches have been explored
to represent FIBs more efficiently [11], [12] or cache FIB
entries on cheaper memory [2], leveraging Zipf’s law [25].
FIB aggregation is a well-known technique to mitigate router
memory consumption, and accordingly, it has been studied
intensively and in different contexts. In particular, there are
known fast algorithms for optimal FIB aggregation of table
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snapshots, e.g., the seminal Optimal Routing Table Construc-
tor (ORTC) [8] as well as others [22], [27]. However, these
algorithms are static and do not support the efficient handling
of incremental updates. Therefore, a re-computation of the
optimally aggregated FIB is needed on each forwarding rule
change. This is computationally expensive and can lead to high
churn.

Several papers deal with this problem by proposing heuris-
tics that simultaneously try to limit the number of updates to
the FIB while maintaining a good compression rate, including
SMALTA [28], FIFA [14], and others [10], [15], [17], [30].
However, none of these works give a formal bound on the
achievable performance over time, neither with respect to the
number of updates to the aggregated FIB nor to the aggregation
gain. They also do not consider the temporal and spatial
locality of churn for their benefit.

In this light, the paper closest to ours is [4], which studies
online algorithms for FIB compression under the assumption
of independent prefixes (both in U-FIB and in FIB). Without
prefix dependencies, the nature of the problem is more related
to online ski rental and technically different: achieving a con-
stant competitive ratio is simple, but what the optimal constant
is remains an open question. The authors present a 3.603-
competitive solution.

On the practical side, we envision our algorithms to be
operated in architectures such as [23], [24], [25]. For details
on these architectures and prototype implementations, we refer
the reader to [24].

Bibliographic Note. Earlier versions of this paper were pre-
sented at the IEEE ICDCS 2014 [3] and the IEEE Globecom
2014 [26] conferences.

C. Our Contribution

Forwarding Information Bases (FIB) in Internet routers
can be compressed (or aggregated) to at least half of their
original size, as shown by previous studies [8]. However, the
permanent stream of updates to the FIB due to routing updates
complicates FIB aggregation in practice: keeping an optimally
or near-optimally aggregated FIB in face of these routing
updates is algorithmically challenging. Thus, a sensible trade-
off has to be found between the aggregation gain and the
complexity of handling routing updates.

This paper presents the first formal study of the tradeoff
between FIB compression and update churn under dependent
prefixes. After providing some empirical insights on the spatial
and temporal locality of routing updates, revealing opportu-
nities for improving this trade-off in online FIB aggregation,
we present the online algorithm HIMS (HIDE INVISIBLE AND
MERGE SIBLING). HIMS achieves an asymptotically optimal
competitive ratio for a natural class of algorithms based on
sticks. Sticks capture the subset of prefixes that are subject to
optimization without violating forwarding correctness. HIMS
(1) removes unnecessary and “invisible” prefixes from the FIB,
and (2) merges FIB prefixes that are forwarded to the same
port and describe adjacent IP address spaces.

We prove that HIMS achieves a competitive ratio of O(w);
the performance is hence independent of the update cost α

(which need not to be a constant). Furthermore, we derive
a tight lower bound of Ω(w) on the competitive (resp. approx-
imation) ratio of stick-based online (resp. offline) algorithms.

D. Organization

The remainder of this paper is organized as follows. In
Section II, we present an empirical study of FIB locality and
churn, motivating our work. Our competitive algorithm is de-
scribed in Section III and analyzed in Section IV. We describe
how to implement our algorithm in Section V. Section VI
concludes our contribution and discusses future work.

II. LOCALITY AND CHURN: AN EMPIRICAL MOTIVATION

Before presenting our algorithmic approach, we take
a closer look at the locality properties of FIB churn. These
properties are the empirical motivation for our dynamic FIB
aggregation algorithms.

A. Spatial and Temporal Locality of FIB Aggregation

In order to study FIB locality properties, also over time,
we use the following simple methodology. First, we split
the FIB in its usual trie representation into subtrees, which
are aggregated only when they are considered stable. When
a subtree has not been affected by updates for a pre-defined
time period (β seconds), we use ORTC [8] to optimally
aggregate the subtree. Then, on routing updates, the subtree
is reverted to its original (disaggregated) representation before
the update is applied. We consider real BGP update streams
and identify the trade-offs associated with the parameters γ
(spatial locality) and β (temporal locality). In all of our
simulations, we verify that FIB and U-FIB are equivalent.

Concretely, in our methodology, the tree is split horizontally
into two parts. The upper part, which we call TOP, contains
the less specific prefixes and remains untouched. Hence, as the
TOP is not subject to aggregation, routing updates to the TOP
can be applied immediately as they come (one update to the
TOP results in one update to the FIB). The lower part contains
the more specific prefixes and is aggregated selectively. The
parameter γ defines at which depth (prefix length) to draw the
line that separates the TOP from the more specific part of the
tree. All prefixes with a prefix length ≥ γ belong to the more
specific part.

The more specific part of the tree is split vertically into
subtrees, called BOTTOMS. All the nodes with prefix length =
γ represent root nodes of individual BOTTOMS. A BOTTOM
which has not seen any updates for a predefined time period
is aggregated using the ORTC algorithm. We aggregate BOT-
TOMS independently from the TOP: no next-hop information,
which can change over time, is being inherited from the
TOP when aggregating a BOTTOM. When forwarding packets,
however, BOTTOMS do depend on next-hop information from
the TOP in case of holes in a BOTTOMS address space. To
handle this correctly, we rely on a variant of ORTC that
ensures full congruency between U-FIB and FIB, meaning
that all holes in a BOTTOM’s address space are retained to
allow the TOP’s entries to determine the next-hop for a packet.
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Fig. 2. Locality-aware FIB Aggregation (LFA) Methodology.

The parameter β specifies the time in number of seconds
after which a BOTTOM is aggregated in the absence of updates.
For each BOTTOM, a timestamp is maintained that indicates
the time of its most recent update. Upon incoming updates to
a BOTTOM, we distinguish two cases:

1) BOTTOM aggregated: In case the affected BOTTOM
is aggregated, the BOTTOM is reverted to its non-
aggregated (untouched) version prior to applying the
update.

2) BOTTOM untouched: Updates are applied as-is to non-
aggregated BOTTOMS.

In both cases, the BOTTOM’s update timestamp is set to
the time of the update. A priority queue maintains pointers
to each untouched BOTTOM, ordered by the time of the most
recent update. A timer keeps track of the tail of the queue and
aggregation is applied to those BOTTOMS that have an update
timestamp ≤ current time - β.

Figure 2 illustrates the components of our methodology for
γ = 2. The trie represents a FIB, trie levels represent prefix
lengths starting at zero, and letters represent ports. Empty
nodes do not have a corresponding entry in the FIB. The
leftmost figure (Figure 2 (1)) highlights how γ is used to
separate the TOP from the BOTTOMS S1 to S3. Initially (see
Figure 2 (2)), all BOTTOMS are aggregated using ORTC while
reducing the total number of prefixes from 8 to 5. In the
figures, we append a prime symbol to the BOTTOM identifiers
when they are aggregated, hence we now have the BOTTOMS
S1’ to S3’.

Next, in Figure 2 (3), we consider an update affecting
S2’. Prior to applying the update, S2’ is reverted to its
disaggregated form S2. Then, the update can be applied. In
this example the update reflects a prefix announcement which
is handled by the insert procedure. Algorithm 1 provides
pseudo-code for the insert procedure used in our methodology.
We omit the delete procedure as it is similar to the insert
one, except for Lines 2 and 10 where TrieInsert() should be
replaced with TrieDelete(). After S2 remains unchanged for β
seconds, S2 is aggregated again in Step (4).

We note, that this approach introduces a certain amount of
memory overhead (e.g., the priority queues) and additional
computations for performing the aggregation. However, this
affects only the route controller (an embedded system in a
router or a separate route server), where memory and CPU
resources are abundant. The goal of this work (and several
related FIB aggregation papers) is to reduce the memory

Algorithm 1 Methodology: Insert(p: prefix, o: next-hop)
1: if p < γ then
2: TrieInsert(p, o)
3: else
4: S ← Stick(p)
5: if IsAggregated(S) then
6: RevertToOriginal(S)
7: else
8: Dequeue(S)
9: end if

10: TrieInsert(p, o)
11: SetT imestamp(S)
12: Enqueue(S)
13: end if

needed on line-cards and to pay for it as little as possible
in terms of additional churn, i.e., the amount of updates to
the FIBs on the line-cards. This is particularly relevant in the
context of Software Defined Networks (SDN), where the la-
tency and capacity of the communication channel between the
forwarding device and the route controller can be limited [23].

B. Analysis of Churn Locality

We have designed our methodology specifically to facilitate
studies of the locality of churn in the FIB. More specifically,
our methodology allows to (1) quantify the aggregatability
of dependency-free2 regions of the FIB, (2) monitor the
locality of churn over time, and (3) study the trade-offs of
the parameters γ and β.

Aggregability of BOTTOMS. We rely on snapshots of real
routing tables to study the general aggregability of BOTTOMS
and the dependency on γ. We obtained the routing table
dumps from RouteViews3 [1]. Due to space limitations and
because the results are similar4, we present results based on a
single routing table snapshot from a large US Internet service
provider. This routing table contains almost 400, 000 entries
with more than 900 unique next-hop ASes. The high number
of next hops can be considered as an upper bound on true
number of next hops in FIBs.

At first, in Figure 3(a), we show the number of BOTTOMS
as a function of γ. The figure compares the maximum possible

2A dependency-free region of a FIB is a group of prefixes that does not
have more specifics, but less specifics may (and typically do) exist.

3Due to limitations in the data we approximate ports with next-hop ASes.
4We ran our analysis on about 30 routing table dumps from each year

between 2009 to 2012 and observed similar results.
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Fig. 3. A first look at the impact of γ.

number of BOTTOMS for a given γ with the number of
existing BOTTOMS in our snapshot. Figure 3(a) shows that
the number of existing BOTTOMS is substantially smaller
than the maximum possible. This means that despite the near
exhaustion of the current IPv4 address space, IPv4 FIBs are
sparsely populated in terms of their filling of the tree data
structure.

Figure 3(b) shows the impact of γ on the distribution
of U-FIB BOTTOM sizes, i.e., the numbers of prefixes in
non-aggregated BOTTOMS. We observe that both the average
and the maximum BOTTOM size decreases as γ increases.
For values of γ larger than 7, the minimum BOTTOM size
goes to 1, indicating that at least one BOTTOM contains no
more than a single prefix. Figure 3(c) shows the per-BOTTOM
aggregation factor as a function of γ. For γ ≤ 15, BOTTOMS
can be aggregated to half their original size, while larger
values of γ result in worse aggregation factors. We observe
a non-monotonic behavior in Figure 3(c) for γ ≥ 16. This is
a result of the strong dependency of ORTC on the structure
of a BOTTOM for the efficiency of its aggregation.

We conclude that values of γ ≤ 15 will lead to good
aggregation factors without incurring a high overhead for
tracking and keeping the state of large numbers of BOTTOMS,
while at the same time achieving median BOTTOM sizes of
more than one.

With Figure 4, we complete our routing table snapshot
analysis. Figure 4 shows, as a function of γ, the total number
of prefixes in the FIB. We further decompose the FIB size
into its TOP and BOTTOM components. For γ ≤ 15, the TOP
contributes only limited numbers of prefixes while the prefixes
from the BOTTOM components dominate the total size of the
FIB, which is more than 60% off of the size of the U-FIB.
This is consistent with our results in Figure 3(c), in which
we show that the aggregation gain suffers when γ grows
beyond 15. Furthermore, we observe a steep increase in the
size of TOP for γ ≥ 20. At the same time, we see limited
aggregation possibilities of BOTTOMS. As a result, the total
size of the FIB grows until it reaches the size of the U-FIB,
see the dashed line on Figure 4.
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Fig. 4. Size of aggregated BOTTOMS and TOP as a function of γ.

In summary, based on our analysis, a sensible region of γ
in current IPv4 routing tables appears to lie below 16. The
results in Figure 4 are particularly encouraging as they show
that even for γ up to 18 the total size of the FIB can be reduced
by at least 50%. This supports the approach of aggregating
BOTTOMS individually, as the achieved aggregation factors are
close to those from optimal aggregation of the entire FIB [28],
[8].

Trade-offs Over Time. Now that we have expectations from
our analysis about the impact of γ on the achieved aggregation
factors, we analyze the sensitivity for various γ and β. For
that, we take a single dataset retrieved from a Canadian ISP
router that contains more than 400,000 routing table entries.
We obtain the routing table snapshot along with a stream of
more than 400,000 BGP updates which covers a period of
seven hours. This router has almost 200 unique next-hop ASes.
We verified that the results presented are similar to those from
different routers on different days. In the following results, we
consider values of γ ranging from 10 to 20, and values of β
of 1, 10, 30, 60, and 600 seconds. We chose these values of β
because they capture the scales at which BGP routing events
take place [9].

In Figure 5(a), we show the fraction of BOTTOMS that
are non-aggregated over time. This is a particularly important



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 6

10 12 14 16 18 20

 0
 2

 4
 6

 8
10

12
14

1
10

30
60

600

Gamma
B

et
a

M
ea

n 
%

 o
f n

on
−

ag
gr

eg
at

ed
 B

O
T

TO
M

S

●●●●●
●

●

●

●

●

●

●●●●●●●●
●

●

●

●●●●●●●●
●

●

●

●●●●●●●●●●
●

●●●●●●●●●●●

(a) Percentage of non-aggregated BOTTOMS.

10 12 14 16 18 20

0.
0

0.
5

1.
0

1.
5

2.
0

600

60

30

10

1

Gamma

B
et

a

# 
of

 B
O

T
TO

M
 (

de
)a

gg
re

ga
tio

ns
 p

er
 s

ec
on

d

●
●●

●
●●●●●●● ●

●●
●

●●●●●●● ●
●●

●
●●●●●●●

●●●
●

●●●●●●●

●●●●●●●●●●●

(b) Number of BOTTOM (dis)aggregations.

10 12 14 16 18 20

 7
5

 8
0

 8
5

 9
0

 9
5

10
0

1

10

30

60

600

Gamma

B
et

a

%
 o

f u
pd

at
es

 a
pp

lie
d 

as
−

is

●
●●●●●●●●●●

●

●
●

●
●●●●●●

●

●

●
●

●
●

●●●
●

●
●

●

●
●

●
●

●●●
●

●
●

●

●●
●

●
●

●●
●

●
●

(c) Percentage of routing updates that are applied
as-is.

Fig. 5. Locality trade-offs with γ and β.

metric to consider as it provides intuition about the locality
of routing table updates. Non-aggregated BOTTOMS represent
those that have seen updates within the last β seconds. The
results indicate, that for γ ≥ 14 and β ≤ 60s the fraction of
non-aggregated BOTTOMS is very low. On average, less than
0.4% of the BOTTOMS are not aggregated (inferred by further
data inspections).

Another metric to consider is the number of
(dis)aggregations of BOTTOMS over time. This metric
tells us how often updates hit aggregated BOTTOMS, requiring
to disaggregate them before applying the update, and how
often BOTTOMS are aggregated after a stable period of β
seconds. In Figure 5(b) we show the average number of
BOTTOM (dis)aggregations per second as a function of γ
and β. For improved visual presentation we reverted the
ordering of values on the y-axis. The results show that even
for a value of β as small as 1s, the average number of
BOTTOM (dis)aggregations per second does not exceed 3. We
also observe that this metric strongly depends on β as the
results show a steep increase when considering β from 600s
to 1s.

Finally, we study the impact of γ and β on the fraction
of routing table updates which can be applied as they come.
This includes all routing table updates that affect either the
TOP, or non-aggregated BOTTOMS. Figure 5(c) shows the
fraction of such routing table updates as a function of the
parameters γ and β. We observe that as β decreases, this
fraction also decreases. This is expected since smaller values
of β limit the ability to leverage update locality over time. On
the other hand, the behavior of γ is non-trivial. As γ increases,
the TOP increases, while non-aggregated BOTTOMS decrease
(Figure 5(a)). The net effect we observe is a decrease of the
number of updates that can be applied as-is. This happens
because the number of updates to the TOP increases very
slowly with γ, while the fraction of non-aggregated BOTTOMS
decreases much faster with γ. The reason for this behavior
is that smaller BOTTOMS have a higher likelihood of being
aggregated, as they are less likely to be affected by routing
updates.

A Sensible Trade-Off. We now combine the insights from
our earlier results and extract the most sensible trade-off in the
selection of γ and β. Our results suggest that γ should not be
larger than 15 to achieve good aggregation gains. The results
from our online experiments suggest that γ should be ≥ 14
to maintain a low number of non-aggregated BOTTOMS for
β ≤ 60s. For γ = 14, Figure 5(a) suggests that β should be no
larger than 60s, while Figures 5(b) and 5(c) show benefits in
choosing a large value of β. In summary, our analyses indicate
that the most appropriate values are γ = 15 and β = 60s,
under the churn in the studied Internet routing tables.

While our results, which we verified using routing table data
from multiple vantage points and years, provide a surprisingly
clear suggestion for the choice of values for γ and β, this
work poses the question of how to algorithmically adapt these
parameters over time.

Performance Over Time. To better understand the properties
over time, with γ = 15 and β = 60s, we now perform
experiments based on more than one week worth of routing
table updates. The results are shown in Figure 6 for two ISP
routers, one from Canada and one from the USA. We plot the
workload in Figure 6(a) as the time-series of the number of
BGP updates per second. We show the maximum value for ev-
ery 10 minute time interval to stress how bursty BGP updates
can be. We notice several routing events which cause more
than 2,000 routing table updates per second. In Figure 6(b), we
plot the corresponding fraction of non-aggregated BOTTOMS
over time. Again, to give importance to the high values, we
show the maximum out of every 10 minute time bin. The
auto-correlation (not shown) between the original time-series
used in Figures 6(a) and 6(b) shows the impact of β: We
observe a strong correlation within time lags of 60, while
larger time lags show a much smaller correlation. Finally,
we show in Figure 6(c) the CDF of the fractions of non-
aggregated BOTTOMS in one second time intervals. Contrary
to Figures 6(a) and 6(b) that show maximum values over 10
minute bins, Figure 6(c) provides a representative perspective
on the ability of keeping most of the FIB compressed over
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Fig. 6. Performance over time.

time. In more than 99% of the one second time intervals,
for both routers, less than 1% of the BOTTOMS are non-
aggregated. We are therefore able to leverage the locality in
how the updates affect the FIB structure, by keeping most of
it compressed.

Putting it all together. Our results show that there is strong
locality in the routing table updates with respect to their spatial
and temporal properties. This locality should be exploited by
FIB aggregation algorithms, even under the bursts of BGP
routing updates.

III. AGGREGATION ALGORITHM HIMS
With the empirical motivation in mind, and given our

insights into the locality and churn of FIB aggregation, we
now introduce the formal model and present a competitive
algorithm. In particular, our algorithm will revolve around
the concept of sticks, as introduced in the following. In
particular, sticks can be seen as a natural generalization of the
bottom and top concepts used in our empirical study, allowing
us to naturally leverage locality. We start with some basic
definitions.

A. Basic Concepts

Recall that we we represent both the U-FIB and the FIB
as one-bit tries containing all the prefixes from the forwarding
rules. Each node of the tree (corresponding to some prefix p)
has an associated color c if there is a forwarding rule (p, c);
a node without any associated color is called blank. We
identify nodes with the prefixes they represent and with the
address ranges their prefix implies. In particular, we call two
nodes adjacent if the address ranges they cover are adjacent.

We call a node v a U-FIB (FIB) rule if it is colored in the
U-FIB (in the FIB). For any node v (also a blank one), we
denote its least colored ancestor (the ancestor farthest from
the root) in the U-FIB and in the FIB by lcaU(v) and lcaF(v),
respectively.

We assume that each non-leaf node has exactly two children.
We call a non-root node left (right) if it is a left (resp. right) son

of its parent. For U-FIB, we assume minimal tries, i.e., tries
without blank sibling leaves (they may contain blank leaves,
though). In the trie representation of the FIB, minimality is
not assumed.

Color Determination and Superfluous Nodes. Observe that
the coloring of the U-FIB (FIB) implies the coloring of the
whole address space [0, 2w−1]: each address has the color of
the prefix that would be applied as a forwarding rule. We say
that such a node v determines the color of address j in the
U-FIB (FIB). Unlike in the U-FIB, the node that determines
the color of a given address in the FIB may change with time.
For succinctness of the description, we slightly extend the
address space, incorporating two blank addresses −1 and 2w.

We call a U-FIB rule that does not determine the color of
any address superfluous. As the color changes of superfluous
nodes can be ignored, without loss of generality, we may
assume that the U-FIB does not contain any such nodes: they
can be removed from the FIB by an algorithm at the very
beginning and at constant cost. We hence have the following
property.

Observation III.1. Any input event (i.e., a color change)
changes the coloring of the address space, and hence any
algorithm has to react by modifying the FIB and paying at
least α.

Taking Dependencies into Account. Keeping dependent
prefixes in the FIB is crucial to achieve a good competitive
ratio. It is tempting to consider a simple online algorithm that
just observes the coloring of the address space induced by
the current U-FIB rules, and tries to reflect that state using
independent prefixes in the FIB. Unfortunately, it appears that
no such algorithm can achieve a non-trivial competitive ratio.

Lemma III.2. Let ALG be a (possibly offline) algorithm that
never keeps any dependent prefixes in its FIB. Then, there
exists an input sequence, for which COST(ALG) = Ω(2w) ·
COST(OPT).

Proof: Consider a U-FIB that is represented by a full
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U-FIB:

Fig. 7. Partition of the U-FIB into sticks. Superfluous nodes are already
removed. Stick boundaries are marked with dashed lines.

binary tree of height w, with root colored initially green and
each second leaf colored black. All other nodes are blank.
Now the input sequence contains changes of the root color
from green to red and back to green. By simply copying the
state of the U-FIB to its FIB, OPT pays α for each change
to the U-FIB. On the other hand, each change of the U-FIB
induces Ω(2w) changes to the coloring of the address space.
To reflect these changes in its FIB, each time ALG has to pay
Ω(2w) · α. Hence, U-COST(ALG) = Ω(2w) · U-COST(OPT).
This relation implies the desired bound, since by frequently
changing the U-FIB the adversary renders the memory costs
negligible.

B. Sticks and Active Nodes

Sticks emerge after removing superfluous nodes, and natu-
rally decompose the U-FIB into multiple node groups. The
stick decomposition remains invariant throughout the runtime
of the algorithm. Each stick is a maximal subtree (where leaves
of this subtree may be U-FIB internal nodes), such that all
subtree leaves are colored and all its internal nodes are blank,
cf. Figure 7.

To this end, we first group all rules of the U-FIB into sets
L1, L2, L3, . . .. Each Li is a maximal (in terms of cardinality)
set of colored nodes corresponding to adjacent address ranges,
whose union is a range that can be represented by a single
node vi. In other words, if all these nodes were of the same
color c, they could be compressed into a single node vi of
color c. Note that this partitioning does not depend on the
order in which we gather nodes into sets Li.

A stick Si is then defined to contain all nodes “between vi
and Li inclusively”: all nodes in the tree rooted at vi that are
either in Li or are ancestors of Li. Li, Si \ Li, and vi are
called the leaves, the internal nodes and the root of stick Si,
respectively. Note that the stick leaves are not necessarily tree
leaves. When Li is a singleton, Si is also a singleton and is
called a trivial stick. As U-FIB does not contain superfluous
nodes, all sticks are disjoint and all internal nodes of a stick
are blank in the U-FIB. We call nodes that belong to any stick
active.

Stick Optimizations. Our algorithm will leverage the stick
concept to perform locality-aware optimizations. In a nutshell,
our algorithm tries to merge nodes of the same color within
a single stick. That is, if all the leaves of a single non-trivial
stick have the same color (in the U-FIB) for some period
of time, then in the FIB they should become blank and the
root of the stick should have that color assigned. Furthermore,

we perform intra-stick optimizations when possible, e.g., if
some adjacent nodes of a single stick are of the same color
and can be replaced by a single colored node. However,
optimizing the sticks alone may still yield a poor performance.
Consider, for example, a U-FIB containing a non-superfluous
red root (being a trivial stick) and many non-adjacent red
leaves, all being trivial sticks. In this example, the red nodes
below the root are “invisible”, i.e., they could be deleted
without changing the correctness of the forwarding table. The
optimally compressed FIB contains only the root.

C. The Algorithm

For our algorithm, we need to define, for any active node,
two counters that depend on time and the coloring of the
U-FIB. Consider any (active) node u belonging to some
stick S. If u is a leaf of S, then let L(u) = {u}, otherwise
let L(u) contain all leaves of S that are descendants of u.
Furthermore, if u is not a root of a stick, p(u) denotes its
parent in the trie, otherwise p(u) is undefined.

1) For any node u, the counter Cu(t) measures for how
long, until time t (uninterruptedly), all nodes of L(u)
were of the same color. Hence, for a stick leaf u, Cu(t)
simply measures the time since the last change of u’s
color.

2) The second counter is used to hide invisible nodes.
Assume that lcaU(u) exists. The counter Hu(t) measures
how long, until time t (without interruption), all nodes of
L(u)∪{lcaU(u)} were of the same color. When lcaU(u)
does not exist, Hu(t) = 0 for any time t.

Since multiple nodes cannot change colors simultaneously, any
color change of a stick leaf u causes the resetting of the C and
H counters on the path from u to the root of a stick containing
u. Similarly, the color change of lcaU(u) resets all H counters
from the stick containing u. Note that Cu(t) ≥ Hu(t) and, if
p(u) is defined, Cp(u)(t) ≤ Cu(t) and Hp(u)(t) ≤ Hu(t).

Algorithm Definition. We now present our algorithm HIMS
(HIDE INVISIBLE AND MERGE SIBLING). In the FIB of
HIMS, the inactive nodes are always blank. For any active
node u, HIMS decides whether it should be colored and, if
so, with which color.

An active node u is a FIB rule at time t if and only if
all the following three conditions hold:

1) Hu(t) < α,
2) Cu(t) ≥ α or u is a stick leaf,
3) Cp(u)(t) < α or u is a stick root.

If u is decided to be FIB rule, then its color is the
color of the nodes in L(u). Note that this color is well
defined (either u is a leaf and then L(u) is a singleton,
or Cu(t) > 0).

Example HIMS Execution. To get some understanding of
the behavior of HIMS, let us take a look at two extreme cases.
For a trivial stick consisting of a single node u, the second
and the third condition always hold as u is both a stick leaf
and a stick root. Therefore, once u and lcaU(u) are of the
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same color, the algorithm simply waits until Hu(t) reaches α
and then removes (the invisible) u from the FIB. On the other
hand, for a stick S that has no colored ancestors in the U-FIB,
Hu(t) = 0 for any u ∈ S. Thus, the actions of HIMS on S
depend only on the C counters inside S. For example, if all
the stick leaves in the U-FIB are unicolor for time α, then
only the root of S remains present in the FIB of HIMS.

IV. ANALYSIS OF HIMS
We start by presenting the framework of our analysis, while

most of the technical details are given in the subsequent
sections. To explain the idea behind bounding the memory cost
of HIMS, let us consider a specific adversarial strategy: given
the state of the U-FIB at time t, the adversary does not change
anything for a certain time period. Then, in the time interval
(t, t + α], HIMS may perform some optimizations, but after
time t + α, HIMS will not introduce any further changes to
the FIB. Furthermore, it is possible to show that at time t+α,
the size of the algorithm’s FIB is an O(w)-approximation of
the optimal FIB size.

Clearly, we cannot expect an adversary to behave as de-
scribed above, as it has many more options. Nevertheless, we
can show that if we take the U-FIB and FIB snapshots at any
particular time t, then either some compressions were already
performed by HIMS or the changes to the U-FIB are quite
recent, i.e., they occurred during time interval (t − α, t]. In
either case, we are able to construct a lower bound on OPT’s
cost, and hence relate M-COST(HIMS) to COST(OPT).

For a formal proof, we introduce a concept of rainbow
points. A rainbow point is an address-time pair (a, t), denoting
that at time t address a ∈ [−1, 2w − 1] has a different color
than address a + 1 (where blank is treated as an additional
color). We call two rainbow points different if their addresses
are different. Rainbow points measure the spatio-temporal
complexity of the coloring of the address space: even OPT
has to represent this coloring by its own FIB and pay for
them.

Lemma IV.1. If k pairwise different rainbow points exist in
some time interval I of length α, then COSTI(OPT) ≥ dk/2e ·
α.

Proof: A rainbow point (a, t) is a witness for a rule that
had to be present at time t in the OPT’s FIB and whose range
either ended with address a (at the right) or a+1 (at the left).
Therefore, k different rainbow points are the witnesses of at
least dk/2e distinct rules that were present in the FIB at some
times from I . Any such rule was either present in the FIB
throughout the whole interval I or it was inserted or deleted
at some time of I . In either case, such a rule contributes α to
COSTI(OPT).

It remains to show how to find sufficiently many rainbow
points: We just need to consider the snapshots of HIMS’s FIB
at certain times. In Section IV-A, we will show the following
result.

Lemma IV.2. Set any time t at which the FIB of HIMS does
not change. There are Ω(SIZEt(HIMS)/w) pairwise different
rainbow points in interval (t− α, t].

Finally, we need to bound the number of updates HIMS
performs in the FIB. Using a potential function argument, we
map each FIB update either to a change of the U-FIB or to
a time period of length at least α this rule spent in the FIB.
By ensuring that a single U-FIB update is not mapped to
more than O(w) times, we obtain the following result (proven
formally in Section IV-B).

Lemma IV.3. For any input sequence with m color changes,
U-COST(HIMS) = O(M-COST(HIMS)) + O(w) · m · α +
O(α) · SIZE(U-FIB).

Theorem IV.4. HIMS is O(w)-competitive.

Proof: First, we bound M-COST(HIMS). We partition
the entire runtime of the algorithm into disjoint intervals
I1, I2, . . . , I` of length α. At any such interval Ij , we identify
a time tj ∈ Ij at which there is no change in the FIB
and the size of the FIB of HIMS is the largest; let kj =
SIZEtj (HIMS). Clearly, M-COSTIj (HIMS) ≤ kj · α.

For any j ≥ 2, let rj = (tj − α, tj ]. The number of
rainbow points in interval rj is Ω(kj/w) by Lemma IV.2,
and thus, by Lemma IV.1, COSTrj (OPT) = Ω(kj ·α/w). The
intervals rj may overlap, however any time belongs to at most
two such intervals (as the distance between every second tj
is at least α). Thus,

∑`
j=2 M-COSTIj (HIMS) ≤

∑`
j=2 kj ·

α = O(w) ·
∑`

j=2 COSTrj (OPT) = O(w) · 12 · COST(OPT).
Finally, the memory cost in the first interval is at most
k1 · α ≤ α · SIZE(U-FIB), and hence M-COST(HIMS) =
O(w) · COST(OPT) + α · SIZE(U-FIB).

Now by Lemma IV.3 and Observation III.1,
U-COST(HIMS) = O(M-COST(HIMS)) + O(w) ·
COST(OPT) + O(α) · SIZE(U-FIB). Thus, in total,
COST(HIMS) = M-COST(HIMS) + U-COST(HIMS) =
O(w) · COST(OPT) + O(α) · SIZE(U-FIB). As the term
O(α) · SIZE(U-FIB) is a constant independent of the input
sequence, HIMS is O(w)-competitive.

A. Finding Rainbow Points (Proof of Lemma IV.2)

We start with some basic properties of the HIMS algorithm.
We call a node u that satisfies the second and the third
conditions given in the description of HIMS a (FIB) semi-
rule. If a semi-rule u satisfies also the first condition, it is
clearly a FIB rule, otherwise we call it (FIB) hidden rule.

Claim IV.5. Consider any stick S. For any stick leaf u, let Au

contain all the nodes on the path from u to the stick root. At
any time t, Au contains exactly one semi-rule. If Hu(t) < α,
then Au contains exactly one FIB rule.

Proof: Consider the sequence u1 = u, u2, . . . , us of all
nodes of Au sorted from the leaf u of S to the root of S. The
first part of the lemma follows in a straightforward manner by
observing that the values of Cui

(t) are non-increasing with i.
As the Hui

(t) values are also non-increasing with i, Hu(t) <
α implies that Hui

(t) < α for any i, and therefore the only
semi-rule in Au is in fact a rule.

Claim IV.6. Fix time t. Fix a stick leaf node u that changes
color in the U-FIB at time t′ ∈ (t − α, t). Fix an address a
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contained in the range of u. If at time t, in the FIB of HIMS,
the color of a is determined by u or its ancestor, then in the
U-FIB the color of a is determined by u.

Proof: For the sake of contradiction, assume that in the
U-FIB there are descendants u1, u2, . . . , us of u containing
a. Let S1 be the stick containing u1; clearly, u belongs to a
different stick than S1. As u changes color at t′, Hu1

(t′) = 0,
and therefore Hu1

(t) ≤ t−t′ < α. Then, by Claim IV.5, either
u1 or one of its ancestors from S1 is present as a colored node
in the FIB. As such a node lies below u in the FIB trie, neither
u nor any of its ancestors can determine the color of a in the
FIB at time t.

Relating pairs of FIB rules to rainbow points. The follow-
ing lemma captures the core properties of the optimizations
performed by HIMS. It states that if at some time the FIB
contains two “neighboring” nodes, then either they cannot be
aggregated by HIMS at all, or it was not possible to aggregate
them in the nearest past. In either case, we provide a witness
(a rainbow point).

Lemma IV.7. Fix any time t at which the FIB of HIMS does
not change and an address a. Assume that at time t the colors
of a and a + 1 are determined in the FIB by two distinct
rules u and v, respectively. Assume that one of the following
three cases occurs: (i) u and v are siblings; (ii) u is a left
node and v is its ancestor; (iii) v is a right node and u is its
ancestor. Then, there exists a rainbow point (a, t′), for some
t′ ∈ (t− α, t].

Proof: We assume that addresses a and a + 1 have the
same color c at time t, as otherwise they would immediately
constitute the rainbow point (a, t). We consider the three cases
listed in the lemma assumptions and show that in either case
U-FIB contains a stick leaf x that changes color at a time
tc ∈ (t−α, t), such that x is either u, or v, or their descendant,
and contains either a or a+ 1 (but not both).

1) If u and v are siblings, then — by the way we defined
sticks — they belong to the same stick. This implies that
their parent p also belongs to the same stick. Hence, by
the definition of HIMS, Cp(t) < α. This means that
(i) at time t, all nodes from L(p) = L(u) ∪ L(v) are
of the same color c, (ii) at time tc = t − Cp(t) one of
these nodes changed its color from c′; let x be this node.
Without loss of generality, assume that x ∈ L(u). This
implies that Cu(t) = Cp(t) < α. As u is a FIB rule at
time t, u has to be a stick leaf and hence x = u.

2) If v is an ancestor of u, then by Claim IV.5, they belong
to different sticks. Let v′ = lcaU(u). Node v′ is either
equal to v or is its descendant. Note that v′ is a stick
leaf. As u is a left node, v′ contains the address a+ 1.
As u is a FIB rule at time t, Hu(t) < α, i.e., there
is a node x ∈ L(u) ∪ {v′} that changed color at time
tc = t − Hu(t) ∈ (t − α, t). It remains to show that
x fulfills our requirements. It is clearly the case when
L(u) = {u}, because then x can be then either v′ or u.
Assume now that L(u) is not a singleton set, i.e., u is
not a stick leaf. As u is a FIB rule at time t, Cu(t) ≥ α,
which implies that no node from L(u) changed the color

during the time interval (t − α, t). Thus, in this case
x = v′.

3) If u is an ancestor of v, the argument is symmetric to
the previous case.

By Claim IV.6, x determines the color either of a or a +
1 in the U-FIB. Without loss of generality, assume that it
determines the color of a and that at time tc > t−α it changes
color from c′ to c. This means that there exists a sufficiently
small ε > 0, such that (tc− ε, tc + ε) ⊂ (t−α, t) where a has
color c′ in time interval (tc− ε, tc) and color c in (tc, tc + ε).
As the color of a+ 1 is not determined by node x and there
are no simultaneous changes of colors, there is a time t′ ∈
(tc − ε, t + ε) ⊂ (t − α, t) when addresses a and a + 1 have
different colors: (a, t′) is our desired rainbow point.

Relating global FIB state to rainbow points. To show
Lemma IV.2, we fix time t and perform the following grouping
of the leaves of the FIB of HIMS. We sweep the leaves from
left to right, partitioning them into groups G1, G2, G3, . . . In
the grouping process, we put two consecutive leaves u, v
(possibly representing non-adjacent address ranges) into the
same group Gi when either (i) both u and v are left nodes
and v is a descendant of the right sibling of u, or (ii) both u
and v are right nodes and u is a descendant of the left sibling
of v. In the former case, we call a group left, in the latter —
right. (Note that a group can consist of a single leaf only if
the orientation of leaves change, but can also have up to w
many members.)

Claim IV.8. If there are h groups of leaves in the FIB, then
the number of all FIB rules is O(h · w).

Proof: For any group Gi, we denote by Ki the set of all
leaves of Gi plus the union of their (not necessarily colored)
ancestors. As each FIB rule is in at least one set Ki, it is
sufficient to show that the number of elements of any set Ki

is at most O(w). Recall that, by the definition of Gi, Ki has
at most one leaf on each level; let ` be the maximal such
level. It suffices to show that there is exactly one ancestor
on each of the levels 0, 1, . . . , `− 1. Such a claim follows by
a simple backward induction on the levels. Level `−1 contains
exactly one ancestor being the parent of the `-th level leaf of
Ki. Now fix level j < ` − 1. Note that level j + 1 contains
a single ancestor (by the inductive assumption) and possibly
a leaf, and these nodes are siblings (by the construction of
the groups). Hence these nodes of Ki have a single parent at
level j, which concludes the proof of the claim.

We are now ready to prove Lemma IV.2, i.e., the relation
between the number of FIB entries at time t and the number
of different rainbow points in interval (t− α, t].

Proof of Lemma IV.2: Let I = (t−α, t]. We group all the
leaves as described above into h groups G1, G2, . . . , Gh. For
any group Gi, we denote the leftmost address covered by a leaf
from Gi by ai and its rightmost one by bi. By Claim IV.8, it is
sufficient to show that the number of rainbow points is Ω(h).
If h < 4, then we simply consider the last colored address, bh:
as bh + 1 is blank, (bh, t) is a rainbow point and the lemma
follows.
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In the following, we thus assume that h ≥ 4. We focus on a
consecutive pair of groups Gi and Gi+1, such that at least one
of the conditions hold: (i) Gi is a left group, (ii) Gi+1 is a right
group. Note that among all h− 1 pairs of consecutive groups,
at least every second pair (i.e., at least (h − 2)/2 = Ω(h)
pairs) has this property. Thus, it remains to show that for such
a pair of groups, we may find a unique rainbow point in I .

We denote the rightmost leaf of Gi by vi and the leftmost
leaf of Gi+1 by vi+1. Without loss of generality, we can
assume that Gi is a left group, which means that vi is a left
node. (The case when Gi+1 is a right group is symmetric, i.e.,
we start our construction with vi+1 and we reverse the roles
of left and right nodes). If bi + 1 is blank, then (bi, t) is our
rainbow point; otherwise let ui be the node that determines the
color of the address bi +1. We consider three cases depending
on the relation between the levels (i.e., depth in the trie)
of ui and vi, henceforth referred to by lev(ui) and lev(vi),
respectively.

1) lev(ui) < lev(vi). As vi is a left node, the address ranges
of vi and ui cannot be adjacent, and therefore ui is an
ancestor of vi. By Lemma IV.7, there exists a rainbow
point (bi, ti), where ti ∈ I .

2) lev(ui) = lev(vi). Then, ui is the right sibling of vi. By
Lemma IV.7, there exists a rainbow point (bi, ti), where
ti ∈ I .

3) lev(ui) > lev(vi). Then, ui is a left node, whose
leftmost address is bi + 1. Note that ui cannot be a FIB
leaf as then it would belong to Gi. Furthermore, vi+1

is the leftmost leaf of the subtree rooted at ui, i.e.,
lev(vi+1) > lev(ui) > lev(vi). This implies that vi+1

has to be a right node as otherwise it would belong to
Gi. Furthermore, vi+1 has an ancestor (node ui) in the
FIB. Let ui+1 = lcaF(vi+1) (it can be either ui or some
of its descendants). As vi+1 is a right node and is the
leftmost leaf of ui+1, node ui+1 determines the color of
ai+1−1. Hence, by Lemma IV.7, there exists a rainbow
point (ai+1 − 1, ti), where ti ∈ I .

B. Bounding the Update Cost (Proof of Lemma IV.3)
We bound the update cost over an input sequence using

amortized analysis. For any node u, we define its potential at
time t as

Fu(t) =


5α+ 2 ·min{Hu(t), α} if u is a FIB rule
6α if u is a FIB hidden rule
0 otherwise

Let the total potential at time t be defined as Φ(t) =∑
u Fu(t), where we sum over all (active) nodes from the

FIB trie.
In this section, we abuse the notation, and use

U-COST(HIMS) to denote the amortized cost of its updates,
defined as the actual cost plus the change in the potential. We
show how to bound this amount in all possible cases.

Lemma IV.9. For any time interval I = (t0, t1) with no
updates to the FIB, it holds that U-COSTI(HIMS) ≤ 2 ·
M-COSTI(HIMS).

Proof: There is no actual update cost. The increase of
the total potential is ∆Φ = Φ(t1)− Φ(t0) ≤ 2 · (t1 − t0) · k,
where k is the number of FIB rules kept within I . Finally,
M-COSTI(HIMS) = (t1 − t0) · k, and therefore the lemma
follows.

Now, we analyze the amortized update cost at any time t
when the FIB is updated by HIMS. Such update is caused
either by some counters reaching α or by a color change in
the U-FIB that resets some counters. For the analysis, we
assume that these events occur separately. Namely, we split
time t into three stages:

1) In the first stage, HIMS behaves as if there was no
U-FIB color update, and processes only the changes
caused by some H counters that reached α.

2) In the second stage, HIMS processes the changes in-
duced by some C counters that reached α.

3) In the third stage, HIMS processes a (single) event of
a color change in the U-FIB.

We bound U-COST(HIMS) in all stages separately (see the
three lemmas below). Note that it is possible that some stages
are missing, and furthermore, if more than one stage is present,
we possibly overestimate the cost of HIMS (for example, we
may charge it for inserting a rule because of a change in C
counters and then for its removal because of the U-FIB color
change, while in reality HIMS would do nothing with this
rule).

Lemma IV.10. The first stage: Assume that some H counters
reach value α. Then, U-COST(HIMS) ≤ 0.

Proof: If a counter Hu of a node u reaches α then if this
node was a rule it becomes a hidden rule. (If it was not a rule,
its status remains unchanged.) HIMS removes u from the FIB
paying α and the change in the potential is 6α − (5α + 2 ·
min{Hu, α}) = −α, i.e., the amortized update cost associated
with u is zero. The lemma follows by summing the amortized
cost over all affected nodes u.

Lemma IV.11. The second stage: Assume that C counters
reach value α. Then, U-COST(HIMS) ≤ 0.

Proof: By the definition of HIMS, growing C counters
can only create a semi-rule that is an ancestor of a previously
existing semi-rule. Thus, if a new semi-rule u is created, then
` ≥ 2 semi-rules (lying in the subtree rooted at u) are removed.
These actions costs at most (`+1) ·α (the cost might be lower
than (` + 1) · α, because there is no actual cost involved in
creating and removing hidden rules). On the other hand, as
potentials for semi-rules are always between 5α and 7α, the
change in the total potential is at most 7α−`·5α. Therefore, the
amortized cost is at most (`+1+7−5`) ·α = (8−4`) ·α ≤ 0.
By applying this reasoning to all newly created semi-rules, the
proof follows.

Lemma IV.12. The third stage: Assume a node u changes its
color in the U-FIB. Then, U-COST(HIMS) = O(w · α).

Proof: By the stick definition, u is a stick leaf. Its color
change affects two group of nodes.

First, pick any node v, such that lcaU(v) = u. Nodes v
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with this property are active nodes belonging to sticks that are
“immediately below” u, i.e., there are no sticks between u and
them. The H counter of any such node v is reset to zero. If v
was a hidden rule, then it becomes reinserted to the FIB (as
a FIB rule). Otherwise, v remains unchanged. In the former
case, the actual cost associated with v is α, while the potential
change is 5α+ 2 ·min{Hv, α}−6α = −α. Thus, in total, the
amortized cost is zero.

Second, the change of color of u also causes all the C and H
counters on the path from u to the root of the stick containing u
(inclusively) to be reset to zero. From the definition of HIMS,
only the nodes on this path and their children are affected,
i.e., only those nodes may be inserted, deleted and have their
potential changed. As there are O(w) such nodes and their
change in the potential is at most 7α, the total amortized cost
is O(w · α).

Now we combine the lemmas above to bound the amortized
cost of HIMS updates in the general case.

Proof of Lemma IV.3: Let m be the number of color
changes in the input. If we sum the guarantees of Lemma IV.9
to Lemma IV.12, we obtain that the total amortized cost is
bounded by O(M-COST(HIMS)) + O(w · α · m). Finally,
we observe that the initial potential is 5α · SIZE0(HIMS) =
5α · SIZE(U-FIB), which contributes a constant O(α) ·
SIZE(U-FIB) to the total cost.

C. Lower Bound

We can show that Theorem IV.4 is the best we can hope
for, at least for the natural class of so-called stick-based
algorithms: informally speaking, these algorithms do not create
dependent prefixes within a single stick. We will derive
an Ω(w) lower bound for such (online or offline) algorithms.

More formally, we consider the U-FIB without superfluous
nodes. Recall that without loss of generality, we may assume
that an algorithm removes them at the very beginning. Then,
we call an algorithm stick-based if (i) it never keeps an inactive
node (a node outside of a stick) in the FIB, and (ii) for any
two active nodes from a single stick that are in a ancestor-
descendant relation, it keeps at most one of them in the FIB.
Clearly, HIMS fulfills these properties and is hence an instance
of a stick-based algorithm.

Theorem IV.13. The competitive ratio of any stick-based
algorithm ALG (even an offline one) is Ω(w).

Proof: It is sufficient to consider a U-FIB containing a
single stick S with w+1 leaves, corresponding to adjacent ad-
dress ranges of lengths 2w−1, 2w−2, 2w−3, . . . , 22, 21, 20, 20,
i.e. each length except for the last one occurs exactly once.
The root of S coincides with the root of the whole trie.
The coloring of S is constant: the first w leaves are always
black and the last one is red. In this case, ALG has to
use at least w + 1 entries in the FIB to represent such
a U-FIB. On the other hand, OPT could just keep two entries
in the FIB: the last red entry from U-FIB of length 20 and
the black root (of length 2w). Note that in the long run,
the initial update cost of OPT becomes negligible and thus
COST(ALG) ≥ M-COST(ALG) = Ω(w) · OPT.

V. IMPLEMENTING HIMS

In this section, we show that HIMS can be implemented
efficiently in the route processor. We will focus on the algo-
rithmic aspects, and refer the reader to existing work [23],
[24], [25] on details about possible architectures in which
we envision HIMS to execute as well as the performance
of prototype implementations (which depends more on the
specific hardware architecture).

Our approach consists of two stages. First, we show how to
maintain a data structure that keeps the set of all semi-rules
at all times. Additionally, for each semi-rule u, we store its
color, i.e., the color of leaves of L(u). Second, we show how
to augment this data structure, so that at any time we know
which of the semi-rules are rules and should be kept in the
FIB.

Lemma V.1. It is possible to maintain the set of semi-
rules (in the route processor) using a data structure of size
O(SIZE(U-FIB)), so that any sequence of events to U-FIB
can be processed in time O(w) on average.

Proof: For maintaining the set of all semi-rules, we need
to track two types of events: (i) a U-FIB color change may
force some C counters to be reset to zero and (ii) some
counters may reach the value of α. (Note that H counters
are irrelevant for computing semi-rules.) Any such change in
the counter of a node v affects the state (i.e., being or not
being a semi-rule) of at most three nodes: v itself, and if v is
not a stick leaf then also its two children. Thus, for a single
event, we may update our semi-rules set in constant time.

We first observe that the number of active nodes (for which
we want to track the C counters) is at most twice the number
of U-FIB rules. Second, instead of storing counters Cu, we
just keep the timestamps of the last reset of Cu to zero. These
values are sorted in non-increasing order, kept in a linked
queue Q with additional references from and to the nodes
of the U-FIB trie. Finally, we store a pointer q to the place in
Q that splits Q into two parts: the left one keeping counters
strictly smaller than α and the right one with counters that are
at least α.

When a counter is reset to zero, it is moved to the front
of the list with its timestamp updated to the current time. To
track the second type of events, we set an alarm to the time
when the first counter would reach α. (This is the counter
immediately to the left of q.) When the alarm goes off, we
shift q to the left accordingly and set the alarm for the next
element. It is possible that many counters, say k, reach α
simultaneously, in which case we shift q by k positions.
By using a standard amortization argument, we may assign
a constant cost to counter resets and zero cost to the event
where a counter reaches α.

Finally, we observe that the resetting of counters can only
occur when there is a color change (of a stick leaf u) in the
U-FIB. Such a change affects at most w + 1 counters of the
nodes on a path from u to the root of the stick u belongs
to. Thus, the total cost of maintaining the structure is at most
O(w) times larger than the number of color changes in the
input sequence.
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To compute the set of rules instead of semi-rules, one could
try to keep H counters in a similar data structure. However,
the color change of a single node may affect H counters of
virtually all possible nodes. (Consider the U-FIB described
in Lemma III.2, where the root frequently changes color from
red to black, and back.) Below, we show that while sometimes
we indeed need to make a lot of updates, their number can be
asymptotically bounded by the number of updates to the FIB.

Theorem V.2. HIMS can be implemented in the route pro-
cessor using a data structure of size O(SIZE(U-FIB)), so
that any sequence of m1 events to the U-FIB that entails
m2 updates to the FIB can be processed in expected time
O(m1 · w +m2).

Proof: We want to augment the data structure described
in Lemma V.1. From the definition of HIMS, we know that
a semi-rule is not a FIB rule if and only if Hu ≥ α, which is
equivalent to C(lcaU(u)) ≥ α and the color of lcaU(u) being
the same as the color of u. These conditions can be checked in
constant time when the semi-rule is created. When a semi-rule
is deleted (and was a rule), it is also removed from the FIB.
Below, we show that we may also keep track when a node,
which is uninterruptedly a semi-rule, starts or ceases to be
a FIB rule.

To this end, for any node v and color c, we keep the set of
all semi-rules u of color c, such that lcaU(u) = v. We denote
such a set by P (v, c), and we denote the union of these sets
over possible colors by P (v). To maintain these sets, for each
semi-rule u we keep a bidirectional pointer to lcaU(u). To
keep the memory requirement asymptotically the same as for
storing semi-rules only, we just store those sets P (v, c) that
are non-empty. This can be achieved by keeping a hashing
table for each node v, whose keys are colors c and values are
non-empty sets P (v, c).

Now, whenever the counter of v is reset to zero or reaches α,
we may easily enumerate those semi-rules (and only them) that
need to be added to or removed from the FIB. Namely, when
Cv ≥ α and v has color b, all semi-rules from P (v, b) are
hidden rules and all semi-rules from P (v) \ P (v, b) are FIB
rules. When Cv < α, all semi-rules from P (v) are FIB rules.
Therefore, the additional time overhead for modifying the data
structure is proportional to the number of FIB updates.

VI. SUMMARY AND OPEN QUESTIONS

This paper studied the classical problem of FIB compres-
sion, but taking a wider perspective than the state-of-the-art.
We considered the situation where forwarding rules can change
over time, e.g., due to BGP route updates. Accordingly, we
framed FIB compression as an online problem, and designed
competitive online algorithms to solve it.

We introduced a formal model, by generalizing several
classic online aggregation problems. We designed a O(w)-
competitive algorithm, where w is the length of an IP address.
We also derived a lower bound, showing that our result is
asymptotically optimal within a natural class of algorithms,
based on so-called sticks. Finally, we showed that our algo-
rithm can be implemented efficiently in the route processor.

Our work opens several interesting directions for future
research. In particular, the optimality of our competitive ratio
only holds for a restricted class of algorithms. Generalizing
our lower bound or proving that this is not possible would
help better understand the nature of the problem. Finally,
regarding the design of offline algorithms: while it is quite
easy to see that under certain circumstances, optimal solutions
can be computed in time f(α) · nO(1) where n denotes the
number of prefixes and f is a function of α, it remains an open
question whether a polynomial time algorithm exists. Another
interesting direction for future research regards the extension
to more general packet classifications, in multiple dimensions:
this is a non-trivial generalization of our work.

On the practical front, the field is currently missing a rig-
orous methodology and benchmark to compare different algo-
rithms, on different hardware platforms. As the time to install
FIB rules depends on the forwarding hardware and the soft-
ware managing it (i.e., the firmware of the routers/switches),
the results will be tied to the specific hardware that is used.
An example for a methodology that evaluates SDN-enabled
switches and real hardware forwarding platforms and that
would be comparable to our situation can be found in [23]: as
would be the case with our solution in this paper, we found
in [23] that features supported by different hardware platforms
widely differ, and the FIB management software has very
different behavior.

Having that said, our algorithms as discussed in the paper
are quite efficient, and come with low time and memory
requirements. Moreover, if performance becomes an issue, the
algorithms may be scaled to a certain extent, which however
depends on the granularity at which FIB updates can be flushed
to the hardware. A rigorous study of these aspects constitutes
another interesting subject for future research.
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