The Many Faces of Graph Dynamics

The Many Faces of Graph Dynamics

Abstract

The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a “one fits it all” model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (nonanonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.

Grafik Top
Authors
  • Pignolet, Yvonne-Anne
  • Roy, Matthieu
  • Schmid, Stefan
  • Tredan, Gilles
Grafik Top
Supplemental Material
Shortfacts
Category
Journal Paper
Divisions
Communication Technologies
Subjects
Informatik Allgemeines
Journal or Publication Title
Journal of Statistical Mechanics: Theory and Experiment
ISSN
1742-5468
Date
2017
Export
Grafik Top