
In-Band Synchronization for
Distributed SDN Control Planes∗

Liron Schiff1 Stefan Schmid2 Petr Kuznetsov3

1 Tel Aviv University, Israel 2 Aalborg University, Denmark 3 Télécom ParisTech, France

ABSTRACT
Control planes of forthcoming Software-Defined Networks
(SDNs) will be distributed : to ensure availability and fault-
tolerance, to improve load-balancing, and to reduce over-
heads, modules of the control plane should be physically
distributed. However, in order to guarantee consistency of
network operation, actions performed on the data plane by
different controllers may need to be synchronized, which is a
nontrivial task. In this paper, we propose a synchronization
framework for control planes based on atomic transactions,
implemented in-band, on the data-plane switches. We argue
that this in-band approach is attractive as it keeps the fail-
ure scope local and does not require additional out-of-band
coordination mechanisms. It allows us to realize fundamen-
tal consensus primitives in the presence of controller failures,
and we discuss their applications for consistent policy com-
position and fault-tolerant control-planes. Interestingly, by
using part of the data plane configuration space as a shared
memory and leveraging the match-action paradigm, we can
implement our synchronization framework in today’s stan-
dard OpenFlow protocol, and we report on our proof-of-
concept implementation.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Management

1. INTRODUCTION
By consolidating and outsourcing the control over the

data-plane switches to a logically centralized controller,
Software-Defined Networks (SDNs) simplify network man-
agement and facilitate faster innovations: the (software)
control plane can evolve independently from the (hardware)
data plane. While the perspective of a logically central-
ized control plane offered by SDN is intuitive and attractive,
there is a wide consensus that the control plane should be
physically distributed. First, in order to provide high avail-
ability, controllers should be redundant [1,5,11]: a failure of
one controller can be masked by other controllers. Second,
it has also been proposed to distribute controllers spatially,
in order to handle latency-sensitive and communication-
intensive data plane events close to their origin [3,9]. Third,
larger SDNs are likely to be operated by multiple adminis-
trators [2] or may even offer participatory interfaces where

∗Supported by the European Research Council (ERC) Start-
ing Grant no. 259085, the European Institute of Innovation
& Technology (EIT) project 13153 (Software Defined Net-
working) and the FP7 EU project UNIFY.

different users can install and trigger policy changes concur-
rently [6].

Today, we do not have a good understanding yet of how
to realize such distributed control planes. The problem is
essentially a distributed-systems one: multiple controllers
may simultaneously try to install conflicting updates and
we want to resolve these conflicts consistently (no undesired
behavior is observed on the data plane) and efficiently (no
undesired delays are imposed on the control application).
Synchronizing the distributed controllers and manipulating
the network state consistently are non-trivial tasks [19].

Consider, for example, the problem of consistent instal-
lation of new forwarding policies, stipulating routes that
packets of different header spaces should follow across the
network [14, 16, 20]. Installing conflicting forwarding rules,
e.g., rules of the same priority defined over non-disjoint flow
spaces may lead to pathological network behavior (loops,
blackholes, routes bypassing a firewall, etc.) [15, 16]. Simi-
larly, installing diverging load-balancing policies may, when
combined, increase the load. To render things more dif-
ficult, controllers may also fail, even before their updates
have been completed.

The concurrent computing literature offers a wide range
of synchronization abstractions to realize consistent dis-
tributed systems. In particular, the popular transactional
memory abstraction (cf. the survey in [8]) provides a collec-
tion of concurrent processes with the ability of aggregating
sequences of shared-memory operations in atomic transac-
tions with all-or-nothing semantics.

Contributions.
This paper applies the principle of atomicity in concurrent

computing to distributed SDN control planes. In particular,
we propose synchronization constructs which allow a con-
troller to represent multiple configuration commands on the
data plane as an atomic transaction. If none of the trans-
action’s commands conflicts with the current configuration,
where a conflict can be defined in a general, application-
specific manner, the transaction appears to be executed
atomically. Otherwise, the transaction is aborted in its en-
tirety and affects neither traffic nor other controllers.

We propose to implement our synchronization constructs
in-band, on the data-plane switch. An in-band implemen-
tation allows us to efficiently alleviate the problems related
to coordinating controllers via a control-plane out-of-band
network, in the presence of asynchrony and failures. Indeed,
the inherent costs of such conventional out-of-band protocols
are often considered too high, both in terms of the necessary

computability assumptions about the underlying system [7],
and the high communication complexity [13]. In contrast,
our in-band solution allows the controllers to solve funda-
mental agreement tasks in just one message exchange with
the data plane, tolerating asynchrony and failures of any
number of controllers.

The key idea of our approach is to use the data-plane
switch configuration space as a transactional shared mem-
ory. In addition to the actual data-plane configuration,
the memory can store information about contention and
conflicts between the controllers. A transaction can then
contain standard control and update operations as well as
synchronization primitives operating on this shared mem-
ory. The synchronization primitives allow the controllers
to define general notions of conflicts between configuration
updates, covering simple routing conflicts as well as more
sophisticated multi-flow dependencies appearing in load-
balancing applications.

As a case study, and to demostrate the feasibility of
our conceptual approach, we consider the standard Open-
Flow protocol (version 1.4 [17]). We show that OpenFlow’s
match-action paradigm can be instrumented to realize a
simple transactional abstraction that allows the controllers
to solve several important synchronization problems. For
example, we describe an OpenFlow implementation of the
fundamental compare-and-set (CAS) primitive. The atomic
CAS operation is known to provide an infinite consensus
number, and can, for instance, be used to implement a
generic consistent and fault-tolerant replicated service [10],
a mainstream building block in modern distributed systems
(Chubby, Google Spanner, Amazon Webservices, etc.). We
discuss a simple CAS-based concurrent policy-update mech-
anism, and present a generic template to implement concur-
rent policy compositions of a user-specific update functions.
Our synchronization abstraction also provides the missing
link for the read-modify-write object postulated in STN [2].

Motivation and Example.
A transactional distributed system offers all-or-nothing se-

mantics, and aborts transactions in case of conflicts. For in-
stance, in the context of SDNs, a transaction trying to add
a forwarding rule whose domain overlaps with an existing
rule of the same priority can constitute a conflict. However,
as we will argue, there exist many applications with less
obvious conflicts, which go beyond simple range overlaps.
Moreover, sometimes it is desirable to react to conflicts in
smarter ways than by simply aborting an operation, e.g., by
supporting conditional modifications.

Let us consider an example. Imagine two controllers in
charge of load-balancing, see Figure 1. In such a scenario,
seemingly independent actions, defined over completely in-
dependent logical flow spaces (say, two different TCP micro-
flows), may actually be dependent: the flows share the un-
derlying physical network. Accordingly, if multiple con-
trollers concurrently and independently update forwarding
rules according to a näıve load-balancing algorithm, they
may involuntarily unbalance the flow allocation. Simple flow
space overlap checks cannot be used to detect such conflicts.

This paper proposes mechanisms to solve these and more
general synchronization problems.

2. IN-BAND SYNCHRONIZATION
In order to synchronize controllers, we propose to use a

time

Controller 1

1 left, 2 right

read read

Controller 2

install 2

on left

install 2

on left

3 left, 2 right 5 left, 2 right

time

Controller 1

1 left, 2 right

read read

Controller 2

3 left, 2 right

Failure! install with

CAS(pid,1,2)

3 left, 2 right

Figure 1: Left: Without synchronization, the two con-

trollers naturally choose to install their flows on the left

link, which results in an undesirable unbalanced state.

Right: With synchronization, i.e., by bundling the flow

installation with a Compare-and-Set (CAS) primitive de-

pending on the policy id (pol-id), this problem is avoided.

part of the configuration space of the data-plane switch for
storing a “meta-data”, containing information on contention
and conflicts between concurrently installed policy updates.
Controllers can read and modify this meta-data by apply-
ing synchronization primitives. In the following section, we
describe how this space can be organized and consistently
maintained by multiple controllers despite of concurrency
and conflicts.

Configuration space. We distinguish between two parts
of the configuration space of a switch: the “normal” config-
uration which determines the network policy and is used to
process the data-plane traffic (e.g., forwarding rules), and
the meta-configuration that contains information used by
the controllers to synchronize their actions. Flow entries in
the meta-configuration can be referred to as shared memory
locations, each provided with a distinct address.

The meta-configuration is implemented as a set of flow
entries designed in a way that it does not affect the process-
ing of data plane traffic. We will discuss later how this can
be achieved, for example, in today’s OpenFlow.

Synchronization. We provide the controllers with the
ability to execute sequences of operations on the switch con-
figuration in an atomic or non-atomic mode. In the atomic
mode, either all operations in the sequence, henceforth sim-
ply called transaction, should be executed, or none (the
transaction is rejected). In the non-atomic mode, no atom-
icity guarantees are provided.

In particular, construct execute{op1, . . . opk} is used to
perform a sequence of commands op1, . . . , opk in a conven-
tional way. Construct execute-transaction{op1, . . . opk}
ensures that either all commands are successfully performed,
in which case it returns ack, or, if some of the commands
cannot be performed, aborts the whole sequence and returns
error(xid, error-code), providing the identifier of the first
command in the sequence that failed together with the cor-
responding error code.

Synchronization primitives. We aim to enforce a con-
sistent use of policy identifiers, an important notion in con-
sistent policy updates [2,20]. Intuitively, a controller should
equip each to-be-installed policy with a distinct identifier,
and the installation should succeed only if the identifier of
the currently installed policy has not changed since the last
time the controller read it.

Therefore, we provide the following transactional opera-

tions. A write(addr, k) operation sets the content at memory
location addr to k. A compare(addr, k) operation aborts the
transaction if and only if the content at addr is not k. Intu-
itively, by combining compare and write with a set of regular
switch update commands (e.g., FlowMod in OpenFlow) in
a transaction we can make sure that the configuration is
changed and the current policy identifier is updated only if
the check operation succeeds (i.e., does not abort).

To make sure that policy identifiers do not grow without
bound [2], we also provide an id-claimer object. The object
implements a weak type of locking by allowing a controller
to claim a resource identifier in a given set, release an iden-
tifier, and check if a given identifier is currently claimed by
any controller. More precisely, the id-claimer object exports
three operations claim, unclaim and check with the follow-
ing sequential semantics:

• With claim(k), a controller claims identifier k.

• With unclaim(k), the controller unclaims identifier k.
An identifier k is called claimed at a given point of an
execution if there is a controller that has performed
claim(k) but has not yet performed unclaim(k).

• With check(k), the controller checks if k is currently
claimed by any controller, and if so, the current trans-
action is aborted.

3. CASE STUDY: OPENFLOW
Before discussing applications in more detail, as a case

study and in order to introduce some notation, we in this
section show how to implement our transactional approach
using today’s standard SDN protocol, OpenFlow (version
1.4 [17]).1

Background.
The configuration of an OpenFlow switch is a set of rules.

A rule is essentially a match-action pair: the match part of
a rule identifies the space of packet headers that are sub-
ject to the rule (e.g., all packets to a specific destination)
and the action part identifies how the switch should process
the matched packets (e.g., forward them to a specific port).
More precisely, the match part of a rule is a ternary pat-
tern over packet header fields. The pattern is represented
as a value and a mask. In the mask, certain header fields,
e.g., TCP or UDP port numbers or destination and source
addresses, can be wildcarded, stipulating that their content
does not affect the match. Certain fields, such as ipv4 src,
ipv4 dst, metadata, can be arbitrarily bitmasked. In our im-
plementations, we are going to use bitmasking of the meta-
data field for performing conditional operations based on its
content. For example, ipv4 src=10.1.14.0/ff.ff.ff.f0

matches all packets with source IP addresses in the range
10.1.14.0–10.1.14.15.

A configuration of an OpenFlow switch is represented as
a collection of flow tables. A flow table is a set of flow
entries, each containing a rule, with a match, an action, and
a priority level, and flow entries are ordered according to
their priorities. In the simplest setting, a switch maintains
one flow table (table 0). A data-plane packet arriving at

1We note however that hardware OpenFlow switches do not
always follow the spec as they should [12], and will report
on a prototype implementation later in this paper.

a switch is first checked against the rule with the highest
priority and in table 0. If the header of the packet fits the
match fields of that rule, a default instruction associates the
packet with the corresponding action. Otherwise, the packet
is checked against flow entries with lower priorities, and if
no matching rule is found, the packet is dropped.

Interaction between the planes: FlowMod com-
mands. The flow tables installed on the switches across
the data plane determine the network policy. Controllers
can change the policy by sending control messages contain-
ing FlowMod commands. In a nutshell, a FlowMod com-
mand either specifies a new flow entry or a modification to
an existing flow entry. A FlowMod command can either add
a flow entry or delete a flow entry. The standard process-
ing of a FlowMod add command received by a switch is as
follows. If the switch already maintains a flow entry with
exactly the same match and priority level, then the new flow
entry will simply replace it. Otherwise, the flow entry will
be installed in addition to existing ones. A delete command
simply removes an existing flow entry with the same match
and priority, or does nothing if such an entry is not present.

In order to avoid inconsistencies caused by different rules
with overlapping match fields, a FlowMod command can be
equipped with the check overlap flag which will be instru-
mental in implementing our synchronization abstractions: if
the switch maintains a flow entry with an overlapping but
not identical match part with the same priority, then the
FlowMod command will fail.

We will use the following notation to create a Flow-
Mod message: FlowMod(match, op, action,flags), where op
is add or delete, and flags are used, e.g., to activate the
check overlap feature. For simplicity, we omit other stan-
dard parameters, assuming them to carry default values.

To read the current configuration of a switch (the existing
flow entries), the controller should send the OpenFlow add
flow monitor command with the ofpt initial optional flag. In
this paper, we write read-state for sending this message,
receiving a response, and returning the received configura-
tion.

Bundling. Another important feature in OpenFlow is
bundling. A controller can send multiple FlowMod com-
mands equipped with the same bundle identifier. These
commands are buffered temporarily by the switch until a
bundle commit message is received from the controller. The
bundled commands are then performed with all-or-nothing
semantics: either all of them are performed, or none of them
is. In particular, if a configuration request contained in one
of the bundled commands cannot be applied (e.g., the com-
mand is rejected because of the set check overlap flag and a
conflicting flow entry), all other commands in the bundle are
rejected and an error message is sent to the controller that
issued them. The error message contains xid, the identifier
of the first failed command in the bundle, and error-code,
the identifier of the failure.

A bundle begins with a ofpt bundle control mes-
sage of type ofpbct open request (creating the bun-
dle), wraps each of its FlowMod command in a message
ofpt bundle add message equipped with the bundle identi-
fier, and ends with a ofpt bundle control message of type
ofpbct commit request (committing the bundle).

The bundle execution is controller-atomic in the sense
that all controllers can only observe switch configurations

before or after the bundle commands are executed. We set
the flag ofpbf atomic, making bundles packet-atomic, in the
sense that every data-plane packet is processed by a config-
uration before or after the bundle, and not by a configu-
ration resulting from an incomplete bundle execution. We
also set the flag ofpbf ordered, to make sure that the bun-
dle commands are executed in the order they were added to
the bundle, thereby respecting dependencies between bundle
commands.

Implementation.
At first sight, it may seem that bundling FlowMod com-

mands with the check overlap flag already provides a useful
synchronization mechanism. Indeed, its “mini-transaction”
nature allows a controller to install multiple flow entries in
an atomic way. However, as is, bundling has important lim-
itations.

First, except for some limited constraint types (such as
overlapping flow spaces or insufficient free space), the bun-
dle construct per se does not provide any means to modify
the switch configuration based on application-specific condi-
tions. But, as we have seen in our load-balancing example,
supporting such conditions might be essential. Second, it
is sometimes desirable to react to conflicts in smarter ways
than by simply aborting an operation, e.g., by providing
conditional modifications.

We now show that the OpenFlow match-action paradigm
can be used to realize a transactional synchronization
abstraction with the desired functionality. The meta-
configuration can be realized using low-priority rules. Al-
ternatively, we can leverage the possibility to maintain mul-
tiple flow tables at an OpenFlow switch, and use a separate
flow table for the meta-configuration, making sure that the
pipelining mechanism will never involve this flow table.

Recall that a transaction consists of a sequence of op-
erations, each of which can either be a regular FlowMod
command or a synchronization primitive, which, as we show
below, translates into a sequence of FlowMod commands
operating on the switch meta-configuration.

The implementation of execute{op1, . . . , opk} and
execute-transaction{op1, . . . , opk} constructs invoked by
a control application is simple. First we translate
op1, . . . , opk into a sequence of FlowMod commands. If
opi is already a FlowMod command, the translation is triv-
ial. If opi is a synchronization primitive, we employ Algo-
rithm 1 for claim, Algorithm 2 for checkclaim, Algorithm 3
for unclaim, Algorithm 4 for write and Algorithm 5 for
compare.

To implement execute{op1, . . . , opk}, we simply send the
commands in the resulting sequence, one by one, to the
switch. To implement execute-transaction{op1, . . . , opk},
we additionally create a bundle, wrap each of the resulting
commands in a bundle message with the corresponding bun-
dle identifier, and complete it with a bundle commit mes-
sage. Then we wait until the corresponding responses are
received. If an error message is returned, it is forwarded to
the control application, otherwise it is acked.

We now describe Algorithms 1-5 in more detail. Each of
the operations generates one or two FlowMod commands.
The match part in these commands specifies only the 64bit
meta-data field in the header space. In defining the value
and the mask, we use the notation a · b to represent a con-
catenation of two integers a and b: a · b := (a << s) + b,

Algorithm 1 claim(x)

Require: self as the calling controller id.
1: value← 016 · self · x
2: mask← 016 · 116 · 132

3: match← (value,mask)
4: action← CLAIM MAGIC
5: cmd← FlowMod(match, op = add, action)
6: return cmd

Algorithm 2 check(x)

Require: self as the calling controller identifier.
1: value← self · 116 · x
2: mask← 116 · 016 · 132

3: match← (value,mask)
4: action← CLAIM MAGIC
5: flag← ofpff check overlap

6: cmd1← FlowMod(match, op = add,flag, action)
7: cmd2← FlowMod(match, op = delete)
8: return cmd1,cmd2

where s is the size of b in bits. We also write 1s (0s) for a s
bit string of 1’s (0’s). The action part in these commands is
defined as an integer, which in practice can be implemented
by a set meta-data instruction where the written value is
that integer.

The id-claimer. In Algorithms 1-3, the match part of
the constructed commands represents a concatenation of
claimed identifier with a distinct 16bit controller identi-
fier. This allows multiple controllers to claim the same
identifier without overriding existing flow entries (Algo-
rithm 1). For example, for any two resource identifiers x1

and x2 and controller identifiers c1 6= c2, the match patterns
m1 = (∗16 · c1 · x1) and m2 = (∗16 · c2 · x2) are distinct, even
if x1 = x2. Therefore, they can both be used to claim and
unclaim identifiers without affecting each other. In order to
distinguish between claim entries and other policy entries,
we set the action part of the entries storing claimed ids to
be a unique designated value, CLAIM MAGIC.

In order to check if an identifier x is claimed (Algo-
rithm 2), a controller c tries to add a “tester” entry, where
the match value field is (c·∗16 ·x) and the flag check overlap

is set. Note that the controller identifier is shifted 16 bits
to the left in the match field, which allows us to ensure that
the entry is uniquely identified, while not conflicting with
other entries. This attempt inflicts a failure in case another
entry with claimed value x exists. If the check succeeds, i.e.,
no entry with claimed value x is present, the tester entry is
deleted.

Note that the tester rule has no effect on claims and checks
of other controllers. Hence the add and delete commands
do not have to be executed atomically (e.g., within a bun-
dle): the check operation “takes effect” at the moment it
attempts to add the tester entry.

By employing the read-state command, we may easily
implement an additional operation that returns all currently
claimed ids: it is sufficient to go over the rules matching
every controller identifier carrying action CLAIM MAGIC.

Write and compare. The memory write and compare
operations are implemented using similar techniques. To
write a value k in a memory address addr (Algorithm 4), a

Algorithm 3 unclaim(x)

Require: self as the calling controller id.
1: value← 016 · self · x
2: mask← 016 · 116 · 132

3: match← (value,mask)
4: cmd← FlowMod(match, op = delete)
5: return cmd

Algorithm 4 write(addr, k)

1: value← 132 · addr
2: mask ← 032 · 132

3: match← (value,mask)
4: cmd1← FlowMod(match, op = delete)
5: value← 132 · addr
6: mask ← k · 132

7: match← (value,mask)
8: action←WRITE MAGIC
9: cmd2← FlowMod(match, op = add, action)

10: return cmd1,cmd2

new flow entry is added, in which the value part of the match
field contains addr and the mask part contains k. Therefore,
the effective match string of the entry is k′ · addr, where k′

is result of replacing every zero bit in k with a wildcard (∗).
In order to rewrite a memory location, the old entry needs
to be deleted and a new one need to be added atomically.
Similarly to claim entries, we set the action to a magic value,
WRITE MAGIC, in order to distinguish them from policy
entries.

To check whether a value k is written at a given address
addr (Algorithm 5), a controller tries to add a new entry
the same way as in the write operation, but additionally
setting the check overlap flag. If a different value k′ is
currently written, the entry inflicts a failure, as it overlaps
but does not coincide with the existing entry. Indeed, the
value parts of the two entries are identical, but the masks
differ. In case the currently written value is k, the existing
flow entry is replaced with an identical one. Before using an
address addr, it is advised that a controller safely initializes
it with a special initial value 0 by calling compare(addr, 0):
the first such command succeeds, and subsequent ones will
do no harm.

4. APPLICATIONS
Our synchronization primitives can be used to imple-

ment powerful synchronization primitives such at compare-
and-set (CAS). When executed within a transaction, a
CAS(addr, old,new) operation on a memory location addr
checks if the content of addr is old and if so, replaces
it with new (the CAS succeeds), otherwise it causes an
abort of the invoking transaction (the CAS fails). It is
straightforward to implement the CAS operation by execut-
ing compare(addr, old) followed by write(addr, new) within
the execute-transaction construct.

Let us now revisit our load-balancing application dis-
cussed in Figure 1. A simple strategy to balance load in our
2-link example (Figure 1) fails in the presence of multiple
controllers, even if bundling and check overlap features are
used: the flows are defined over “independent” flow spaces.

Using CAS, we can implement a generic template for

Algorithm 5 compare(addr, k)

1: value← 132 · addr
2: mask ← k · 132

3: match← (value,mask)
4: action←WRITE MAGIC
5: flag ← ofpff check overlap

6: cmd← FlowMod(match, op = add, f lag, action)
7: return cmd

Algorithm 6 Policy update with only CAS

Require: policy update function update, policy id address
paddr

Ensure: installed policy is consistent with previous one
1: repeat
2: pol-id, policy← read-state
3: update cmds← update(policy)
4: execute-transaction{
5: CAS(paddr, pol-id, pol-id + 1),
6: update cmds
7: } → res
8: until res = ack
9: return res

concurrent policy composition via a user-specific update()
function [2]. This can be, for example, a specific load-
balancing function lb update, which, when applied atom-
ically, excludes the pathological scenario described in Fig-
ure 1. We use CAS to exactly achieve this atomicity.

Let us consider a simple policy update protocol that al-
lows a set of controllers to concurrently update switch poli-
cies, i.e., sets of effective flow entries, under the condition
that these rules can be composed with the currently installed
policy. Algorithm 6 uses the bundle feature to update the
switch configuration, where the configuration contains both
the policy and a meta-configuration memory address paddr
that holds the policy identifier (pol-id). In the algorithm, the
controller first reads the currently installed policy together
with its pol-id , applies the update() function to the current
policy which results in a set of update FlowMod commands
and then tries to apply them atomically together with a CAS
operation on paddr replacing pol-id with pol-id+1. The CAS
operation ensures that if, concurrently, a new policy (with a
different identifier) has been installed, the update fails and
takes no effect. Note that, since all policy modifications
are executed within a bundle providing controller-atomicity,
the read-state command in Line 2 appears atomic. Algo-
rithm 6 can therefore also be used to render a näıve, single-
controller load-balancing algorithm consistent, without any
modifications in the update function.

Algorithm 6 is correct assuming that policy identifiers
may grow without bound. In practice, we can use a modulo
scheme on the 32-bit field of a flow entry used for storing the
policy identifiers, which, in principle, may lead to inconsis-
tencies if controllers proceed in different speeds. Algorithm 7
adresses this issue by using our id-claimer abstraction. Here,
the controller first reads the current policy id and claims
it, which prevents another controller from using the id for
a different policy (Lines 2-4). Then the controller chooses
any unused id and computes the update commands to be
executed (Line 10). Finally, within an atomic transaction
(execute-transaction), it verifies whether the chosen pol-

Algorithm 7 Advanced policy update

Require: policy update function update, policy id address
paddr, id space C.

Ensure: installed policy is consistent with previous one
1: repeat
2: pol-id, claims, policy ← read-state
3: execute{claim(pol-id)}
4: pol-id2, claims, policy← read-state
5: if pol-id 6= pol-id2 then
6: execute{unclaim(pol-id)}
7: continue (restart loop)
8: end if
9: my id← choose a number from {C \ claims}

10: update cmds← update(policy)
11: execute-transaction{
12: check(my id),
13: CAS(paddr, pol-id,my id),
14: update cmds
15: } → res
16: execute{unclaim(pol-id)}
17: until res = ack
18: return res

icy id has not been claimed and that the policy has not been
concurrently modified, and then tries to update the policy.

A note on efficiency. Our implementations of synchro-
nization primitives (Algorithms 1-5) require only a constant
number of flow entries per memory address or claim. The
number of used addresses is constant for Algorithm 6 and
linear in the number of controllers for Algorithm 7.

5. PROOF-OF-CONCEPT
To investigate the feasibility of our approach, we imple-

mented a proof-of-concept of our algorithms as a python
library which wraps ovs-ofctl, a well-known command line
tool for monitoring and administering OpenFlow switches.
The code is made available online2.

We experimented with the low-level abstractions as well
as the transactional policy update algorithm of our proof-
of-concept, using different workloads. The tests were con-
ducted using a software switch, Open vSwitch (version 2.4.0)
and a virtual network simulator, Mininet.

For instance, we experimented with a setting where three
processes (controllers), concurrently issue 1000 concurrent
policy updates each, where every update replaces a single
rule with another one. We could confirm that despite the
concurrency, 100% of the updates eventually completed in
committing their transactions, possibly after several aborts
caused by conflicts.

6. CONCLUSION
We believe that our centralized in-band synchronization

approach is natural and attractive, as it avoids the com-
plexities and limitations of distributed out-of-band agree-
ment protocols, which may introduce additional points of
potential failures. Moreover, the switch is the element im-
plementing the controller policies anyway. The mechanisms
presented in this paper are simple and can be implemented
using the standard OpenFlow protocol: they do not require

2See https://github.com/lironsc/of-sync-lib.

any protocol/hardware extensions as postulated in recent
literature [2, 4]. Our work may hence also contribute to the
ongoing discussion of what can be implemented in-band in
today’s OpenFlow protocol [21], as well as to useful high-
level concurrency objects and language abstractions [18].
We see our paper as a first step, and more work is required
to investigate and compare useful in-band synchronization
abstractions, also in terms of performance. While our frame-
work can be used as a synchronization library, we also work
on integrating it into an existing SDN controller, e.g., Ryu.

7. REFERENCES
[1] Berde et al. ONOS: Towards an Open, Distributed

SDN OS. In Proc. ACM HotSDN, pages 1–6, 2014.
[2] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. A

distributed and robust sdn control plane for
transactional network updates. In Proc. 34th IEEE
INFOCOM, 2015.

[3] Curtis et al. Devoflow: Scaling flow management for
high-performance networks. In Proc. SIGCOMM,
pages 254–265, 2011.

[4] H. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soule. Netpaxos: Consensus at network speed. In
Proc. ACM SOSR, 2015.

[5] Dixit et al. Towards an Elastic Distributed SDN
Controller. In HotSDN, 2013.

[6] Ferguson et al. Participatory Networking: An API for
Application Control of SDNs. In SIGCOMM, 2013.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of Distributed Consensus with One
Faulty Process. J. ACM, 32(2), 1985.

[8] R. Guerraoui and M. Kapalka. Principles of
Transactional Memory,Synthesis Lectures on
Distributed Computing Theory. Morgan and Claypool,
2010.

[9] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A
Framework for Efficient and Scalable Offloading of
Control Applications. In HotSDN, 2012.

[10] M. Herlihy. Wait-free Synchronization. ACM Trans.
Program. Lang. Syst., 13(1), 1991.

[11] Koponen et al. Onix: A Distributed Control Platform
for Large-scale Production Networks. In OSDI, 2010.

[12] M. Kuniar, P. Peresni, and D. Kostic. What you need
to know about sdn flow tables. In Proc. Passive and
Active Measurement (PAM). 2015.

[13] L. Lamport. Lower bounds for asynchronous
consensus. Distributed Computing, 19(2):104–125,
2006.

[14] A. Ludwig, J. Marcinkowski, and S. Schmid.
Scheduling loop-free network updates: It’s good to
relax! In Proc. ACM PODC, 2015.

[15] Ludwig et al. Good Network Updates for Bad Packets:
Waypoint Enforcement Beyond Destination-Based
Routing Policies. In HotNets, 2014.

[16] R. Mahajan and R. Wattenhofer. On Consistent
Updates in Software Defined Networks. In HotNets,
2013.

[17] McKeown et al. OpenFlow: enabling innovation in
campus networks. SIGCOMM Comput. Commun.
Rev., 38(2):69–74, Mar. 2008.

[18] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing Software Defined Networks. In
NSDI, 2013.

[19] Padon et al. Decentralizing SDN Policies. In Proc.
ACM POPL, 2015.

[20] Reitblatt et al. Abstractions for Network Update. In
SIGCOMM, 2012.

[21] Schiff et al. Reclaiming the brain: Useful openflow
functions in the data plane. In Proc. ACM HotNets,
2014.

