
Distributed Cloud Computing:
Applications, Status Quo, and Challenges

Report on Dagstuhl Seminar 15072

Yvonne Coady Oliver Hohlfeld James Kempf
University of Victoria RWTH Aachen University Ericsson San Jose

Rick McGeer Stefan Schmid
CDG, SAP America & US Ignite TU Berlin & T-Labs

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
A distributed cloud connecting multiple, geographically dis-
tributed and smaller datacenters, can be an attractive al-
ternative to today’s massive, centralized datacenters. A dis-
tributed cloud can reduce communication overheads, costs,
and latencies by offering nearby computation and storage
resources. Better data locality can also improve privacy. In
this paper, we revisit the vision of distributed cloud com-
puting, and identify different use cases as well as research
challenges. This article is based on the Dagstuhl Seminar on
Distributed Cloud Computing, which took place in February
2015 at Schloss Dagstuhl.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Cloud Computing

Keywords
Distributed Cloud Computing, Distributed Systems,
Dagstuhl Seminar

1. INTRODUCTION
Most of the focus in public cloud computing technology

over the last 10 years has been on deploying massive, central-
ized datacenters with thousands or hundreds of thousands
of servers. These datacenters are typically replicated with a
few instances on a continent wide scale in semi-autonomous
zones. Even though this model has been proven quite suc-
cessful in economically scaling cloud services, it also has
drawbacks. For instance, the failure of a zone can lead to
a service dropout for tenants if the tenants do not replicate
their services across zones. Some applications may also need
finer grained control over network latency than it is currently
provided by a connection to a large centralized datacenter.
An application may further benefit from being able to spec-
ify location as a parameter in their deployment. Nontech-
nical issues, such as the availability of real estate, power,
and bandwidth for a large mega datacenter, also enter into
consideration. Being forced to use a remote datacenter may
also be problematic in terms of privacy and legal restrictions,
e.g., in the presence of incongruent political regimes.

An alternative model is to have many micro datacenters,
each interconnected by medium to high bandwidth links and
managed as the distributed datacenters were one larger dat-
acenter. This distributed cloud model is perhaps a better
match for private enterprise clouds, which tend to be smaller
than the large, public mega datacenters. It is also an at-
tractive solution for public clouds run by telecom carriers
which have facilities in various cities with power, cooling,
and bandwidth already available. It may be particularly
appropriate for Europe, with a multiplicity of governments,
cultures, and stakeholders. It is further attractive for mobile
operators, since it provides a platform whereby applications
can be deployed and easily managed. Such applications can
then benefit from a tighter coupling to the wireless access
network.

A third model is a grassroots distributed cloud as bottom-
up collaborative effort from many small devices, including
personal computers, tablets, cellphones, and small infras-
tructure elements such as programmable wireless base sta-
tions. This personal-devices cloud bears the same relation-
ship to the centralized cloud that efforts like BOINC [3]
have to supercomputing and infrastructure Grid comput-
ing. For a number of the use cases mentioned below, these
wide-area personal-device distributed clouds have a signifi-
cant role to play. Early examples that show the potential of
distributed clouds in practice include the Seattle testbed [21]
and Project BISmark [2].

Also note that the distributed and massively centralized
models are not mutually exclusive, e.g., a public cloud oper-
ator with many large datacenters distributed internationally
could manage the network of datacenters like a distributed
cloud. The distributed cloud model also encompasses the
federated cloud model, where datacenters are managed by
different organizations that federate to allow users to utilize
any of the connected datacenters. One distinguishing factor
between the federated cloud and the more tightly coupled
distributed cloud model is whether authentication is han-
dled centrally or whether each datacenter handles authen-
tication individually, with authentication for entry into the
distributed cloud implemented using single sign-on.

In many scenarios distributed clouds are already a fact
of life that must be dealt with. They arise by the desire
for federation of datasets and computational resources, es-
pecially in governmental or corporate institutions that are



internally fractioned into different departments, divisions,
business units, etc. At a more global level this leads to an
often heterogeneous computing infrastructure, with a need
to perform non-trivial computations and accesses across in-
ternal boundaries.

In general, designing and operating a distributed cloud is a
multidisciplinary research problem that involves distributed
systems and databases, programming models and abstrac-
tions, and networking. Practical deployments are further
challenged by the heterogeneous nature of resources and
providers, and the relatively limited networking capabili-
ties (relative to clouds based in a single datacenter). To
exchange visions on how to design and manage future dis-
tributed clouds as well as to discuss a research agenda, we
organized a Dagstuhl seminar. The motivation of the sem-
inar was to bring together leading academic and industrial
researchers in the area of cloud computing, distributed sys-
tems, networking, and programming languages to discuss
the opportunities and challenges of distributed cloud com-
puting. In particular, we were interested in discussing po-
tential use cases, trade-offs between federated and integrated
distributed clouds, and unique research challenges arising
when designing and operating distributed clouds.

The Dagstuhl seminar on Distributed Cloud Comput-
ing [6] was held in February at Schloss Dagstuhl - Leib-
niz Center for Informatics [7] in Wadern, Germany. 22 re-
searchers attended the multidisciplinary seminar. Over the
course of the 3 day seminar, 15 presentations were given on
various aspects of distributed cloud computing or the dis-
ciplinary areas relevant to distributed cloud. The seminar
shared two talks with the concurrent seminar on Founda-
tions of Networking [5] and attended one of the Foundations
of Networking talks. Taking the presentations as input, the
workshop then broke into three groups to discuss a research
agenda for distributed cloud computing. The groups were
asked to come up with 3 questions in their particular area
(i.e., distributed systems, programming models, and cloud)
and two for the other two groups. Slides, abstracts of the
talks and reports from the breakout groups are available on
the seminar web site [6].

The scope of this paper is to summarize the seminar out-
comes. We start by outlining discussed application areas
and benefits before we present research challenges.

2. APPLICATIONS & BENEFITS
There are several motivating factors for cloud comput-

ing, where one of the most compelling is reducing costs.
Distributed cloud computing additionally offers redundancy
and reliability, as well as geo-replication. A distributed
cloud can provide instant fail-overs by having remote repli-
cas that can be booted up immediately in case of failures.

Applications that can benefit from locality include real-
time applications where latency is important (e.g., industrial
applications, virtual reality, interactive collaboration, gam-
ing, machine-to-machine communication, smart grid con-
trol), and any application where the local regulatory envi-
ronment requires user account data to be stored in the same
country where the user lives. Also hybrid clouds, consist-
ing of a private datacenter and a public datacenter, can be
an attractive use case: at times of peak demand, additional
resources can flexibly be obtained from the public cloud, al-
lowing enterprises to provision their datacenters for average
rather than peak load, thereby saving the capital expense

of building out the data center to handle the peak load.
Content delivery networks are another example where stor-
ing data close to the user is required. The opposite case—
moving the processing closer to the data—may become im-
portant when the data sets are large and networking costs
prohibit actually moving the data.

2.1 Reducing Wide-Area Traffic
A frequent argument for distributed clouds is resource ef-

ficiency: by exploiting locally available storage and com-
pute resources (or by moving compute resources closer to
data generators), wide-area communication can be reduced
or even avoided.

Examples for offloading the core network by turning the
traffic around in edge distributed clouds, include sensor net-
works, or “things” (as in Internet-of-Things), that generate
large amounts of data to be sent via wide area networks
for processing. Transmitting these data streams to a remote
datacenter is not only inefficient but often also pointless: of-
ten, administrators and data scientists are only interested in
a very small fraction of the data. Accordingly, it is desirable
to perform in-situ processing, exploiting nearby resources,
to aggregate and filter data, focusing only on the interesting
parts.

Applications for local processing are many. James Kempf
gave the example of an airplane: an airplane’s jet engine pro-
duces up to 500GB sensor data per flight. This data should
be analyzed locally and quickly at the airport, before the air-
plane takes off for the next flight (deadline constrained data
processing). Since the wide-area capacity might be limited
to transfer such amounts of data to remote datacenters for
processing, local datacenters are needed.

Similarly, Rick McGeer gave the example in the context of
the networks at the LHC at Cern in which each sensor can
generate millions of events in a short amount of time. Since
not all events are relevant and need to be transferred to the
remote scientists, a distributed network of filtering compute
nodes can reduce the overall traffic volume. The yield from
the ATLAS detector at LHC is about 200 events/second out
of a total of 600 million generated events/second [17], a yield
rate of about one in three million: the rest are filtered by
a combination of hardware and software. This is an exam-
ple of a centralized high-bandwidth sensor, where filtering
can be done locally. However, there are also many examples
of high-bandwidth distributed sensors, e.g., the Cooperative
Adaptive Sensing of the Atmosphere project [4], which en-
visions an array of relatively closely-spaced weather radars
across the tornado belt, each of which can generate over 150
Mb/s. These examples motivate scenarios for using special-
ized and dedicated infrastructures for big data processing
that are limited to a particular set of users.

A more futuristic example requiring a more generic dis-
tributed compute infrastructure was been given by Tim
Wood: augmented reality applications may require much
local compute power, e.g., in order to process and render
information on the user’s glasses: if the user’s devices do
not have enough capacity to perform this task, it may be
out-sourced to a nearby cloud.

While it is beneficial to move data processing nodes closer
to traffic generators or storage systems, not every node can
be used to perform compute jobs. In this respect, Lars Eg-
gert emphasized that moving VMs to storage systems is chal-
lenging since their CPU capacity is limited and will then be



occupied by compute jobs. In these cases, it can be bene-
ficial to still move the data to dedicated compute clusters
for processing when the data is hot. The processing pipeline
should focus on hot data rather than cold data. Lars dis-
cussed further aspects of storage systems and their evolution
in his talk on data management.

A general perspective on challenges arising in big data
processing in distributed clouds was presented by Patrick
Eugster. His talk was motivated by two observations: first,
copying all data to a single datacenter for subsequent anal-
ysis is inefficient, if feasible at all under sharing regulations.
Second, especially when leveraging public clouds, process-
ing confidential data in the cloud is undesirable with the
security dangers implied by multi-tenancy underlying cloud
platforms. His talk then presented a survey on some practi-
cal first steps towards addressing these challenges. This in-
cludes work on (a) geo-distributed big data analysis and (b)
assured cloud-based big data analysis. In short, the former
consists in moving computation towards data rather than
only the other way around, and the latter consists in lever-
aging a combination of replication and partially homomor-
phic encryption to ensure integrity/correctness and privacy
of big data analyzed in the cloud.

2.2 Reducing Latency
Another motivation for the distributed cloud is latency:

today, the latency within a datacenter rack is an order of
magnitude lower than across the entire datacenter, which
in turn is an order of magnitude lower than the latency to
the next datacenter. Using a nearby datacenter may be
attractive for a group of mobile users wishing to collaborate
on an interactive document, or for computer gaming. Users
of a local cloud may not only be humans, but also computers,
robots, or self-driving cars. One futuristic use case given
by Tim Wood concerns robots seeking to coordinate their
movements in an accurate and synchronous manner.

In general, quantifying the impact of reduced latency on
user perception is however non-trivial. As Oliver Hohlfeld
pointed out, whether service quality is perceived to be good
or bad depends on a multitude of user specific factors in-
cluding the users’ expectation and the users’ context, e.g.,
on the current location of the user. As an example, Oliver
presented his assessment of latency on gaming quality in user
studies. He argued that one should take a user perspective
when designing distributed clouds, where human users and
machine users will differ in their requirements.

2.3 Computation at the Edge
One use case for micro datacenters is distributed Utility

Computation (UC), as outlined by Jonathan Pastor. His
talk on the Discovery Initiative [8, 16] proposed to leverage
compute resources hosted at Points-of-Presence for bringing
UC closer to end users. In light of this problem, Jonathan
presented LUC-OS: a fully distributed IaaS system, based
on P2P architecture. The architecture targets scalability
by managing hundred thousands of VMs upon thousands of
physical machines spread throughout hundreds of sites.

Hagen Woesner presented a second motivation for moving
distributed cloud computing to the edge. He raised the ques-
tion of which applications we see centralized and which ones
distributed, given infinite bandwidth to the home. He ar-
gued that customer premise equipment is the most suitable
location for functions concerning traffic monitoring, QoS, or

security. He also argued that it could be beneficial to push
the energy cost of computation to the end user, where, e.g.,
renewable energy can be exploited. His talk also opened the
question on how resources should be exposed to an orches-
tration platform. One potential solution would be to expose
them as networking function forwarding graphs.

Chip Elliott also pointed out that a telco-driven dis-
tributed cloud à la EC2 can be an attractive business model:
users may be willing to pay more for a service which ensures
data locality.

2.4 Education
Many discussions revolved around the potential of using

distributed cloud computing in education. This use case is
appealing since it can provide easy access and early experi-
ences on programming distributed applications, as well as on
distributed state management (e.g., by applying consistency
models).

On this regard, Justin Cappos introduced the Seattle
distributed cloud testbed [21] (also available via the SIG-
COMM Educational Resources [23]) and showcased its po-
tential for educational usage. Justin presented several
Seattle based programming assignments for in class usage
(see [22]). He further commented on his experience on the
educational appeal of Seattle. Seattle simplifies experimen-
tation with a distributed networked systems. Reporting on
past experience, it is very appealing even to high school stu-
dents to test their networked programs by running them at
remote computers, e.g., phones located in China.

This perspective was complemented by Rick McGeer’s dis-
cussion on educational games that run in a distributed cloud.
This use case is motivated by using the cloud to avoid shar-
ing educational game code with the end users to 1) prevent
cheating / maintain control and to 2) simplify portability:
by only streaming a video rendered by the game over the
network, fewer platforms need to be supported by game ven-
dors.

3. RESEARCH CHALLENGES
Distributed cloud computing comes with many challenges.

Distributed clouds will seldom be designed from scratch, but
grow out of existing infrastructures. Moreover, how to best
allocate resources as well as to program a distributed cloud,
also depends on the context, the specific application, and
the objectives.

Initial motivational questions. Around the seminar
talks, we organized panels, breakout sessions and standup
meetings to identify and discuss enablers as well as chal-
lenges of the vision of distributed clouds. For example, we
discussed questions such as:

1. Deployment models for cloud: hyper-centralized (e.g.,
one datacenter per continent), centralized (two or
three datacenters per continent), distributed (one dat-
acenter per metro area), hyper-distributed (a datacen-
ter on your street corner). In what cases is a specific
deployment model favored?

2. Federated vs. integrated vs. autonomous: what are
the trade-offs of these distributed cloud models? Dis-
tributed operating system vs distributed cloud man-
agement (e.g. distributed OpenStack) approaches:
what are the advantages and disadvantages of each?



Service composition and decomposition: what are the
primitives for infrastructure management?

3. How to support for network virtualization going out
of the datacenter and between datacenters? What ser-
vice differentiation protocols could or should be imple-
mented in a distributed cloud? How does it compare
to Google B4 [12]?

4. What are suitable programming models for wide area
clouds? Which details on resources (e.g., bandwidth
and latency) and location should be exposed to the
programmer? What logical abstractions are useful and
tolerable?

5. What consistency models are required in a distributed
cloud? Can we assume synchronized environments
à la Google Spanner [11]? Which distributed agree-
ment protocols (e.g., RAFT [18], Paxos [15], and
ZooKeeper [10]) are used in which context?

6. What benefits and challenges exist in terms of privacy
and security?

7. Economics of distributed cloud deployment: cheaper
or more expensive than centralized cloud? What are
the costs of networking resources for distributed cloud
vs. centralized cloud?

8. How can academia contribute what companies can-
not? How to conduct scientific experiments on the
distributed cloud: scalability and repeatability of ex-
periments?

The discussions around these questions resulted in the
identification of challenges in three major lines of research,
i.e., programmability, consistency, and security.

3.1 Programmability
The first research challenge concerns identifying proper

programming models, primitives, and abstractions for dis-
tributed cloud computing. Today, cloud computing relies on
virtual machines as execution model. However, a program-
ming model is still missing.

Much progress has been made over the last years in the
design of network programming languages providing higher
levels of abstractions, see for example the frenetic language
family by Nate Foster et al. [9]. Indeed, the software-defined
networking paradigm can serve as an inspiration for dis-
tributed cloud computing as well. In his presentation, Chip
Elliott used the notion of software-defined infrastructures, to
describe the recent convergence of multi-tenant clouds, dis-
tributed clouds, network functions virtualization, and soft-
ware defined networking.

There seems to exist a wide consensus that in terms of
programming languages for distributed clouds, there is no
lingua franca, no “one size fits all”: different components
and their interconnections will likely be programmed in dif-
ferent languages. In particular, it is often convenient to use
constrained, domain-specific languages to provide the right,
hopefully high-level abstractions, to allow programmers to
focus on the important concepts. Often times these also
introduce verifiability: in contrast to Turing complete lan-
guages, programs can be checked efficiently. However, there
is also a wide consensus among the participants, that there is

still a long way ahead, in terms of developing more powerful
programming languages for networked systems.

Moreover, while programming a network or infrastruc-
ture from a “logically centralized” software controller can
be convenient and attractive, for its simplicity and since
many operational tasks are inherently non-local, implement-
ing correct controller software today is non-trivial. In her
talk, Jennifer Rexford discussed challenges and pitfalls in
programming simple notions of MAC learning switches and
stateful firewalls.

An interesting question also pertains to the actual imple-
mentation of the logically centralized controller abstraction:
Stefan Schmid argued that in order to ensure availability
and fault-tolerance of a software-defined infrastructure, the
controller should actually be distributed and redundant [14],
and ideally handle latency-critical events close to where they
occur [20]. The need for a distributed control can also come
from administrative constraints. Stefan presented the hier-
archical control architecture developed in the FP7 UNIFY
project which aims to unify the programmability of cloud
and carrier infrastructure [19].

Johan Eker took a look further into the future, where
billions of devices will be connected to the clouds, which
offer not only IT services but also mission critical services
such as automation and health-care, requiring predictable
latency and high availability. He argued that accordingly, a
programming platform must expose cloud services and net-
work functionalities in a simple and straightforward matter,
and presented the Calvin project that aims at developing a
programming framework for applications that spans over a
heterogeneous hardware platform consisting of mobile sen-
sors and cloud.

Igor Konnov emphasized the importance of verifying
safety and liveness of the fault-tolerance mechanisms in a
distributed cloud, and presented an abstraction-based model
checker for threshold-based fault-tolerant algorithms [13].
The model checker implements novel parameterized verifi-
cation techniques that allow one to check systems of arbi-
trary size, which is particularly important for the system
sizes encountered in data centers and clouds.

In the breakout sessions, we also discussed the differ-
ent programming language primitives needed for placement,
configuration of non-functional and functional requirements,
service discovery and SLA, in the context of application
classes such as big data analytics, services (such as con-
trol loop, drive my car, do face matching), games, latency-
sensitive applications, education, and web servers.

3.2 Consistency
Related to the programmability model and abstraction is

the question of what type of distributed system we want to
build or expose. In his talk, Marc Shapiro gave an overview
of the design space of distributed systems. He further high-
lighted interesting trade-offs between the strength of a con-
sistency model and performance. For example, it is well
known that to achieve stronger consistency, multiple round-
trip times are needed. Marc also argued that oftentimes,
in distributed systems, researchers and practitioners end
up needing less consistency than initially thought. He also
confirmed that in the past, generic programming languages
failed in the distributed world, and that there is no one size
fits all in distributed systems: different requirements need to
be supported, also in terms of programming libraries. What



is needed is an understanding of what a programmer intends
to do with resources provided by distributed clouds.

Marc also pointed out that the differences between com-
peting consistency models (such serializability, snapshot iso-
lation, eventual consistency, etc.) can be subtle and hard to
understand, but reflect fundamental trade-offs between fault
tolerance, performance, and programmability (see e.g., [1]).
For instance, describing consistency models in terms of ac-
ceptable histories is not very informative. Marc argued that
what programmers really care about is a consistency model’s
properties: guarantees (i.e., what kind of application invari-
ants are ensured automatically by a model), scalability (i.e.,
opportunities for parallelism and implementation freedoms
in a model), or abstract classes of guarantees (e.g., partial-
order-type invariants, equivalence-type invariants, identical-
observer guarantee).

Also the placement and orchestration problem can be
seen from the distributed system perspective. This perspec-
tive involves trade-offs between performance (placing com-
ponents close to each other) and reliability (placing com-
ponents far from each other). Distributed cloud computing
enables the moving of execution of distributed applications
towards client machines. Annette Bieniusa argued that cur-
rent data management solutions for cloud infrastructures
replicate data among several geographically distributed dat-
acenters but lack support for managing data maintained by
clients. The SwiftCloud [24] storage infrastructure for cloud
environments aims to cover this gap: SwiftCloud pushes
the scalability and concurrency envelope, ensuring trans-
actional causal consistency using Conflict-Free Replicated
Data Types (CRDTs). CRDTs provide higher-level ob-
ject semantics, such as sets, maps, graphs and sequences,
support unsynchronized concurrent updates, while provably
ensuring consistency, and eschewing rollbacks. Client-side
replicas are kept up to date by notifications, allowing client
transactions to execute locally, both for queries and for up-
dates.

In multi-domain distributed clouds, different parts of the
cloud will be owned and operated by different organizations.
This also raises the question: How will resources be de-
scribed and obtained? Will there be brokers, and how does
multi-domain management work? Moreover, if parts of the
cloud will be battery powered, what impact will this have
on the architecture in terms of reliability, consistency, etc.?

3.3 Privacy and Security
A distributed cloud may improve privacy, by keeping data

local: in the neighborhood, or at least within a region or
country. However, today, we are still far from enforcing this
locality. We do not have mechanisms for path control, and
data may travel far even to arrive at a close cloud. Also,
multitenant clouds may actually increase the number of en-
tities a user has to trust. Privacy often comes at a perfor-
mance cost that needs to be considered in the design phase,
as argued by Oliver Hohlfeld. Fostered by the wish for data
locality, privacy concerns drive migrations to private clouds,
e.g., running Openstack. When data needs to be processed
but not stored in public clouds, storage devices owned by
the data owners can be moved next to big datacenters (e.g.,
operated by Amazon) for fast-path access to compute clus-
ters. This approach addresses the issue of data ownership
that remains at the storage location. In general, users need
to express restrictions on data locality and data process-

ing (e.g., where and by whom data should be stored and
processed). To address these needs, Oliver referenced their
efforts on designing privacy aware cloud architectures within
the SSICLOPS EU project.

Hannes Hartenstein pointed out that a security objective
does typically not exist “in isolation”, but in combination
with other objectives: confidentiality and performance, con-
fidentiality and availability etc. In his talk, he considered
two use cases that both show benefits and challenges of dis-
tributed clouds, namely confidential data outsourcing and
secret sharing schemes. He argued that confidentiality may
be achieved based on non-colluding cloud providers and how
the resulting trade-offs with performance and availability
can be tuned for the cases of outsourcing databases and out-
sourcing strong cryptographic keys based on secret sharing
schemes. He also promoted the conduction of a threat anal-
ysis on some consistency mechanisms to determine possible
security issues.

Christine Morin described her vision of ephemeral clouds,
personalized, spontaneous and transient clouds which are al-
located for the duration of a collaboration, and highlighted
critical security requirements. A more tightly coupled dis-
tributed cloud model may hide the locality distinctions be-
tween physical datacenters and present the distributed cloud
as one single datacenter without exposing the network in-
terconnections. In the latter model, orchestration software
manages the user’s view of the compute/storage/networking
resources to hide locality. Such a model may be important in
cases where locality is not a critical characteristic for appli-
cation deployment. In other cases, however, locality should
be exposed through the orchestration layer.

4. CONCLUSION
The vision behind distributed cloud computing is

to utilize software as a means to aggregate com-
pute/storage/networking resources across distributed phys-
ical datacenters. This model addresses data locality that is
incorporated as design criterion for those applications that
require it. It further includes achieving scalability and re-
liability by performing scale-outs. The scale-out model of
service deployment—deploying many small instances of a
service to meet demand rather than a few large instances—
has proven successful for IaaS and SaaS. Distributed cloud
computing applies the same scale-out model to datacenters.

This paper has reported on our Dagstuhl seminar on dis-
tributed cloud computing, which complemented our work-
shop series on distributed cloud computing, held together
with IEEE/ACM UCC 2013, ACM SIGCOMM 2014, and
ACM SIGMETRICS 2015. We believe that the seminar has
been very productive and lively, and contributed to the com-
munity building. We also hope that the seminar opened new
collaborations, and we will soon be able to give a better an-
swer to Rick’s most pressing question: “How do we build
the thing?”

5. ATTENDEES
This workshop was held at Schloss Dagstuhl - Leibniz

Center for Informatics [7] in Wadern, Germany. We would
like to thank the Dagstuhl organizers, in particular Roswitha
Bardohl, and all the participants for their active contribu-
tions:

• Mark Berman (BBN Technologies Cambridge, US)



• Annette Bieniusa (TU Kaiserslautern, DE)

• Justin Cappos (New York University, US)

• Yvonne Coady (University of Victoria, CA): Co-
Chair

• Lars Eggert (NetApp Deutschland GmbH Kirchheim,
DE)

• Johan Eker (Lund University, SE)

• Chip Elliott (BBN Technologies Cambridge, US)

• Erik Elmroth (University of Ume̊a, SE)

• Patrick Eugster (Purdue University and TU Darm-
stadt, US + DE)

• Hannes Hartenstein (KIT Karlsruher Institut für Tech-
nologie, DE)

• Oliver Hohlfeld (RWTH Aachen, DE): Collector

• James Kempf (Ericsson San Jose, US): Co-Chair

• Igor Konnov (TU Wien, AT)

• Rick McGeer (Comunication Design Group, SAP
America, and US Ignite): Co-Chair

• Christine Morin (Inria, FR)

• Jörg Ott (Aalto University, FI)

• Jonathan Pastor (Inria, FR)

• Vivien Quema (Grenoble INP, FR)

• Stefan Schmid (TU Berlin & T-Labs, DE): Co-Chair

• Marc Shapiro (Inria Paris-Rocquencourt and LIP6-
UPMC-Sorbonne Universités, FR)

• Hagen Woesner (BISDN GmbH Berlin, DE)

• Tim Wood (George Washington University Washing-
ton, US)

6. REFERENCES
[1] M. S. Ardekani, P. Sutra, and M. Shapiro. G-DUR: A

middleware for assembling, analyzing, and improving
transactional protocols. In Int. Conf. on Middleware,
2014.

[2] Project bismark. projectbismark.net/.

[3] Boinc: Open-source software for volunteer computing
and grid computing. boinc.berkeley.edu.

[4] Casa: Collaborative adaptive sensing of the
atmosphere. www.casa.umass.edu/.

[5] Dagstuhl seminar 15071: Formal foundations for
networking. www.dagstuhl.de/15071, 2015.

[6] Dagstuhl seminar 15072: Distributed cloud
computing. www.dagstuhl.de/15072, 2015.

[7] Schloss dagstuhl. http://www.dagstuhl.de.

[8] Discovery initiative.
http://beyondtheclouds.github.io.

[9] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A
network programming language. SIGPLAN Not.,
46(9):279–291, Sept. 2011.

[10] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for internet-scale
systems. In USENIX ATC, 2010.

[11] J. Corbett et al. Spanner: Google’s
globally-distributed database. In USENIX OSDI,
2012.

[12] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:
Experience with a globally-deployed software defined
wan. In SIGCOMM, 2013.

[13] A. John, I. Konnov, U. Schmid, H. Veith, and
J. Widder. Parameterized model checking of
fault-tolerant distributed algorithms by abstraction. In
FMCAD, 2013.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
distributed control platform for large-scale production
networks. In USENIX OSDI, 2010.

[15] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[16] A. Lèbre, P. Anedda, M. Gaggero, and F. Quesnel.
DISCOVERY, Beyond the Clouds - DIStributed and
COoperative framework to manage Virtual
EnviRonments autonomicallY: a prospective study. In
Virtualization for High Performance Cloud Computing
Workshop, 2011.

[17] Taking a closer look at LHC.
www.lhc-closer.es/1/3/12/0.

[18] D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. In USENIX
ATC, 2014.

[19] P. Skoldstrom et al. Towards unified programmability
of cloud and carrier infrastructure. In European
Workshop on Software Defined Networking, 2014.

[20] S. Schmid and J. Suomela. Exploiting locality in
distributed SDN control. In HotSDN, 2013.

[21] Seattle: Open peer-to-peer computing.
seattle.poly.edu/.

[22] Seattle in the classroom.
https://seattle.poly.edu/html/education.html.

[23] ACM SIGCOMM educational resources: Seattle
testbed. http:
//edusigcomm.info.ucl.ac.be/Public/20100614001.

[24] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte,
C. Baquero, M. Shapiro, and N. Preguiça. SwiftCloud:
Fault-tolerant geo-replication integrated all the way to
the client machine. Rapp. Rech. RR-8347, Institut
National de la Recherche en Informatique et
Automatique (Inria), Aug. 2013.


