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Adversarial Topology Discovery in Network Virtualization
Environments: A Threat for ISPs?

Yvonne Anne Pignolet · Stefan Schmid · Gilles Tredan

Abstract Network virtualization is a new Internet
paradigm which allows multiple virtual networks
(VNets) to share the resources of a given physical in-
frastructure. The virtualization of entire networks is the
natural next step after the virtualization of nodes and
links.

While the problem of how to embed a VNet (“guest
network”) on a given resource network (“host net-
work”) is algorithmically well-understood, much less
is known about the security implications of this new
technology. This paper introduces a new model to rea-
son about one particular security threat: the leakage of
information about the physical infrastructure—often a
business secret.

We initiate the study of this new problem and intro-
duce the notion of request complexity which describes
the number of VNet requests needed to fully disclose
the substrate topology. We derive lower bounds and
present algorithms achieving an asymptotically opti-
mal request complexity for important graph classes
such as trees, cactus graphs (complexity O(n)) as well
as arbitrary graphs (complexity O(n2)). Moreover, a
general motif-based topology discovery framework is
described which exploits the poset structure of the
VNet embedding relation.

This article is based on the conference publications [20–22].
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1 Introduction

Virtualization is arguably the main innovation motor in
today’s Internet. Already a decade ago, node virtualiza-
tion revamped the server business, and today’s datacen-
ters host thousands of virtual machines. But also links
become more virtualized, e.g., through the introduction
of Software-Defined Networking [19] technology.

After the virtualization of nodes and links, the in-
dustry as well as the academia discusses the virtualiza-
tion of entire networks: network virtualization [8,15]
envisions an Internet where customers (e.g., a startup
company or a content distribution provider) can request
virtual networks (VNets) on short notice and with ar-
bitrary specifications on the required node resources
and their connectivity. Indeed, first prototypes have
emerged (e.g., in the European CHANGE and UNIFY
projects, the American GENI project or the Asian
AKARI project). Network virtualization is particularly
attractive for Internet Service Providers (ISPs): ISPs
benefit from the improved resource utilization as well
as from the possibility to introduce new services. [27]

This paper argues that the network virtualization
trend also comes with certain threats. In particular, we
show that critical information about the ISP’s network
infrastructure and its properties can be learned from
answers to VNet embedding requests. Given that the
resource network constitutes a competitive advantage
and is a business secret, this is problematic; moreover,
the discovery of, e.g., bottlenecks, may be exploited
for attacks or bad publicity. Hence, providers around
the world are often reluctant to open the infrastructure
to novel technologies and applications that might lead
to information leaks.

Background on VNets and Embeddings. Basi-
cally, a VNet defines a graph (henceforth: the guest
graph): a set of virtual nodes (e.g., virtual machines)



which need to be interconnected via virtual links ac-
cording to the specified VNet topology. This graph
must be realized over a physical resource network (also
called the substrate network or host graph): the virtual
nodes must be mapped to physical nodes and the vir-
tual links must be mapped to physical paths (e.g. real-
ized by OpenFlow [19]).

In this paper we consider VNet requests which do
not impose any location constraints on where the vir-
tual nodes are mapped to: For example, a computa-
tional VNet to process large amounts of scientific data,
a datacenter VNet, or a testbed VNet such as Planet-
lab to experiment with novel networking protocols may
not specify locations. This flexibility in the VNet spec-
ification can be exploited to optimize the VNet embed-
ding.

Although VNets appear as dedicated and “real”
networks to their users, several VNets can be embed-
ded (i.e., realized) over the same infrastructure network
(referred to as the substrate network); network virtual-
ization technology therefore enables resource reuse. In
this paper, we will prefer the term substrate to the term
infrastructure as the substrate network may not nec-
essarily be a physical network, but a virtual network
itself. [27]

Figure 1 illustrates the VNet embedding problem.

Fig. 1 In order to embed a VNet (i.e., a guest graphG) with unit
link and node demands forming a triangle (left) in the substrate
network (i.e., a host graph H, in the middle), resources along
four links are allocated in the substrate network (right). In the
right graph, solid lines represent virtual links mapped on single
substrate links, solid curves are virtual links mapped on multi-
ple substrate links, dotted lines are substrate links implementing
a multihop virtual link, and dashed lines are unused substrate
links.

Contribution. This paper initiates the study of a
new problem, the discovery of a substrate topology
through repeated VNet embedding requests. The con-
sidered problem is motivated by the emergence of
network virtualization architectures which enables the
flexible placement of virtual networks.

Our main contributions are :
(a) a new model and problem definition
(b) upper and lower bounds for trees, cactus graphs

and general graphs
(c) a motif-based framework for further graph classes

(a) We introduce a formal model to study the prob-
lem of VNet topology inference. This model allows a

customer or attacker to issue the following types of re-
quests:

Is graph G (the VNet) embeddable
in graph H (the substrate)?

To measure how quickly a topology can be dis-
closed, we define the notion of request complexity: the
number of VNet requests needed to disclose a sub-
strate topology in the worst-case. Our model differs
from existing topology discovery problems (such as,
e.g., graph tomography, see Section 6) in that the re-
quests come in the form of entire graphs instead of
paths only.

An important assumption used in our work is
the honesty of the provider, i.e., we assume that the
provider will always accept a VNet request if it has
sufficient resources for the embedding.

We show that while the VNet embedding relation
differs from the graph minor relation, we can profit
from its poset (partially ordered set) properties, and
present algorithms achieving an optimal request com-
plexity for different settings and substrate topologies.

(b) We derive request complexity bounds for dif-
ferent graph classes. In particular, we show that the re-
quest complexity of trees and cactus graphs is O(n),
while arbitrary graphs have a request complexity of
O(n2), where n is the number of nodes in the sub-
strate. In addition we provide matching lower bounds
for these complexities.

(c) Moreover, we present a generalized graph in-
ference framework based on the concept of so-called
motifs that describe a graph based on components that
are glued together.

In general, we understand our work as a first step
towards a better understanding of the security aspects
of VNet embeddings, and believe that our work opens
interesting directions for future research.

Organization. The remainder of this paper is or-
ganized as follows. Section 2 introduces the VNet em-
bedding problem, defines the request complexity, and
derives some useful properties of the embedding rela-
tion. We present asymptotically optimal topology in-
ference algorithms for trees and arbitrary graphs in
Section 3. Our generalized motif framework appears
in Section 4, together with an extended example for
cactus graphs. We report on our simulation results in
Section 5. After reviewing related work in Section 6,
we conclude our work in Section 7.

2



2 Model

We first introduce the VNet topology discovery prob-
lem and subsequently describe our algorithmic ap-
proach.

2.1 VNet Embedding

Our formal setting consists of two entities: a customer
(the “adversary”) that issues virtual network (VNet) re-
quests and a provider (a virtual network or infrastruc-
ture provider [27]) that performs the access control and
the embedding of VNets. We model the virtual network
requests as simple, undirected graphs G = (V,E,w)

(the so-called guest graphs) where V denotes the vir-
tual nodes, E denotes the virtual edges connecting
nodes in V , and w denotes the resource requirements
of the node resp. link: the weight w(v) describes the
demand of node v ∈ V for, e.g., computation or stor-
age, andw(e) describes the bandwidth demand of edge
e ∈ E. Similarly, the infrastructure network is given as
an undirected graph H = (V,E,w) (the so-called host
graph or substrate) as well, where V denotes the set
of substrate nodes and E is the set of substrate links.
Again, a weight function w can describe the available
resources on a given node or edge.

Without loss of generality, we assume that neither
the VNet nor the substrate topologies contain parallel
edges or self-loops, and that H is connected. (As we
will see, if H consists of multiple connected compo-
nents, these components can be processed sequentially
with our algorithms by keeping the VNet embedding in
an already discovered component in order to focus on
the next component.) Moreover, in this paper, in order
to focus on the topological aspects, we will typically
consider host graphs with unit capacities only, i.e., we
will assume that w ≡ 1. As we will see, for substrate
networks with unit capacities, we can also make the
guest graph unweighted: all graph classes considered
in this paper can be inferred with an asymptotically op-
timal complexity using unweighted VNets only.

In this paper we assume that besides the resource
demands, the VNet requests do not impose any map-
ping restrictions, i.e., a virtual node can be mapped to
any substrate node, and we assume that a virtual link
connecting two substrate nodes can be mapped to an
entire (but single) path on the substrate as long as the
demanded capacity is available. These assumptions are
common for virtual networks. [8]

A virtual link which is mapped to more than one
substrate link however can entail certain costs at the re-
lay nodes, the substrate nodes which do not constitute
endpoints of the virtual link and merely serve for for-

warding. For example, this cost may represent a header
lookup cost and may be a function of the packet rate.
However, depending on the application, the cost can
also be more complex, e.g., in case of a VNet which re-
quires additional functionality at the backbone routers,
e.g., to implement an intrusion detection system. We
model these kinds of costs with a parameter ε > 0 (per
link). Moreover, we also allow multiple virtual nodes
to be mapped to the same substrate node if the node
capacity allows it; we assume that if two virtual nodes
are mapped to the same substrate node, the cost of a
virtual link between them is zero.

Armed with these definitions, we can formalize our
VNet embedding problem.

Definition 1 (Embedding π, Validity Properties,
Embedding Relation 7→) An embedding of a graph
A = (VA, EA, wA) to a graph B = (VB , EB , wB)

is a mapping π : A → B where every node of A
is mapped to exactly one node of B, and every edge
of A is mapped to a path of B. That is, π consists
of a node mapping πV : VA → VB and an edge
mapping πE : EA → PB , where PB denotes the
set of paths. We will refer to the set of virtual nodes
embedded on a node vB ∈ VB by π−1V (vB); simi-
larly, π−1E (eB) describes the set of virtual links passing
through eB ∈ EB and π−1E (vB) describes the virtual
links passing through vB ∈ VB with vB serving as a
relay node.

To be valid, the embedding π has to fulfill the fol-
lowing four properties: (i) Each node vA ∈ VA is
mapped to exactly one node vB ∈ VB (but given suffi-
cient capacities, vB can host multiple nodes from VA).
(ii) Links are mapped consistently, i.e., for two nodes
vA, v

′
A ∈ VA, if eA = {vA, v′A} ∈ EA then eA is

mapped to a single (possibly empty and undirected)
path in B connecting nodes π(vA) and π(v′A). A link
eA cannot be split into multiple paths. (iii) The ca-
pacities of substrate nodes are not exceeded: for all
vB ∈ VB :

∑
u∈π−1

V (vB) w(u)+ε·|π
−1
E (vB)| ≤ w(vB).

(iv) The capacities inEB are respected as well, i.e., for
all eB ∈ EB :

∑
e∈π−1

E (eB) w(e) ≤ w(eB).
If there exists such a valid embedding π, we say

that graph A can be embedded in B, indicated by A 7→
B. Hence, 7→ denotes the VNet embedding relation.

Definition 2 (Embedding Cost) The cost associated
with an embedding π is denoted by

Cost(π) =
∑

vA∈VA

w(vA) +
∑

eA∈EA

w(eA) · |π−1(eA)|

+ ε ·
∑

vB∈VB

|π−1
E (vB)|

3



The provider has a flexible choice where to embed
a VNet as long as a valid mapping is chosen. In order to
design topology discovery algorithms, we can exploit
the poset property of the embedding relation. The proof
of the following lemma appears in the appendix.

Lemma 1 The embedding relation 7→ applied to any
graph family G (short: (G, 7→)), forms a partially or-
dered set (a poset), i.e., it satisfies reflexivity, antisym-
metry and transitivity.

Observe that even though the VNet embedding is
similar to the minor graph relation, there are some im-
portant differences. The following lemma shows that
the minor graph relation and the embedding relation
do not imply each other. The proof appears in the ap-
pendix.

Lemma 2 Given two graphs A, B ∈ G with unit ca-
pacity it holds that (i)A 7→ B implies thatA is a minor
of B for ε > 0.5. (ii) For smaller ε it holds that A may
be embeddable in B even if A is not a minor of B. (iii)
Not every minorA of a graphB can be embedded inA.

2.2 Request Complexity

We assume the perspective of a customer (an “adver-
sary”) that seeks to disclose the (fixed) infrastructure
topology of a provider with a minimal number of re-
quests. These requests (and the answers to them) are
the only means of obtaining information. As a per-
formance measure, we introduce the notion of request
complexity, i.e., the number of VNet requests which
have to be issued until a given network is fully discov-
ered, i.e., all vertices, edges and capacities are known
to the adversary. The motivation for focusing on a re-
quest measure is based on the fact that a request con-
stitutes the natural unit of negotiation between cus-
tomer and provider, and issuing a request entails a cer-
tain overhead for both sides. In particular a situation
where after the provider’s answers, the customer re-
peatedly revokes her request, can be perceived as a
denial-of-service attack. Algorithms achieving a low
request complexity hence also ensure that adversarial
information discovery activities remain hidden.

We are interested in algorithms that “guess” the
target topology H (the host graph) among the set H
of possible substrate topologies allowed by the model.
Concretely, we assume that given a VNet request G (a
guest graph), the substrate provider always responds
with an honest (binary) reply R informing the cus-
tomer whether the requested VNet G is embeddedable
on the substrate H . In the following, we will use the
notation

request(G,H)

to denote such an embedding request of G to H , and
the provider will answer with the binary information
whetherG is embeddable inH (short:G 7→ H). Based
on this reply, the customer may then decide to ask the
provider to embed the corresponding VNet G on H ,
or it may not embed it and continue asking for other
VNets.

Let ALG be an algorithm that issues a series of re-
quest requests G1, . . . , Gt each consisting of a request
graph to reveal H .

Definition 3 (Request Complexity) The request com-
plexity to infer the topology is measured in the number
of requests t (in the worst case) until ALG issues a re-
questGt which is isomorphic toH and terminates (i.e.,
ALG knows that H = Gt and does not issue any fur-
ther requests).

2.3 Additional Complexities

An attacker only receives one bit of information:
whether the VNet can be embedded or not. Thus,
minimal information about the provider network is
revealed, entailing a high request complexity. Al-
ternative models may reduce the number of re-
quests needed to infer the topology. For exam-
ple, a plausible alternative may be a “valued reply
model” where the provider returns the embedding cost
Cost(request(G,H)). (The binary reply model can
be emulated with this model by using the variable
(Cost(request(G,H)) <∞).)

Moreover, we rely on the assumption that the
provider always gives an honest answer. While there
are algorithms to compute such honest answers [26],
the problem is related to graph isomorphism testing
and is generally NP-hard (see e.g., [3]). Thus, in prac-
tice, a provider may use approximation algorithms and
heuristics to embed VNets (see e.g. [8]), and may not
accept a VNet although it is theoretically embeddable.
In addition, a provider being aware of potential attacks
may proactively randomize its responses.

In other words, by focussing on the idealized case
where providers answer embedding requests correctly
and honestly, we investigate a worst case situation for
the provider. Hence the results of this article determine
how quickly and how much information on the host
network can be revealed in circumstances that are ideal
for attackers. These findings can help providers to de-
cide on the tradeoff of a comprehensive client offering
and the cost/benefit of attack countermeasures.
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Besides the request complexity and the embedding
complexity, there is a third relevant complexity which
has not been discussed so far: the complexity of gener-
ating the attack sequence, i.e., generating the request
Gi+1 out of Gi given the provider answer. We will
refer to this complexity as the generation complex-
ity. While the generation complexity plays a secondary
role in our paper, all algorithms presented in this paper
are essentially greedy and efficient; an exception is the
dictionary framework which relies on a pre-computed
directed acyclic graph.

2.4 Terminology and Notation

The algorithms presented in this paper are often based
on simple graphs (so-called motifs) such as a chain, a
virtual link connecting two virtual nodes, or a cycle,
three virtual nodes connected as a triangle.

Definition 4 (Chain C, Cycle Y , Diamond D, Bi-
partite MotifKx,y , CliquesKx) The motif C denotes
a Chain graph, a virtual edge that maps to a path on the
substrate: C = (V = {u, v}, E = {{u, v}}). Mo-
tif Y is a cYcle, i.e., a virtual triangle that maps to
a cycle in the substrate: Y = (V = {u, v, w}, E =

{{u, v}, {u,w}, {w, v}}). The Diamond motif D is a
complete graph over four nodes with one missing link.
Finally, Kx,y is a complete bipartite graph with x + y

nodes, and Kx is a clique with x nodes.

These basic motifs are then attached to each other
to grow more complex VNet requests. We will often
make use of a graph grammars notation [6] in order to
describe the graph exploration iteratively.

When two motifs are attached to each other we use
the term concatenation to describe that two motifs are
glued to each other selecting one of the nodes of each
of them as attachment points and merging them.

Definition 5 (Concatenation, prefix, postfix) We
will use the notationM j to denote the concatenation of
j motifsM (where the attachment points must be clear
from the context). Moreover, given two graphs G1 and
G2 containing nodes u, v, the notation G1vG2(u) de-
notes a graph where the node v ∈ G1 is merged with
the node u ∈ G2, i.e., the edges of G2 are added to
the set of G1’s edges and the corresponding nodes to
the set of G1’s nodes; the node u ∈ G1 is optional
if clear from the context. Given a sequence S of mo-
tifs attached to each other, and a particular motif M
belonging to this sequence, then prefix(M,S) and
postfix(M,S) denote the subsequences of S before
and after this motif M .

3 Adversarial Topology Discovery

This section presents tight bounds for the discovery of
trees and general graphs.

3.1 Trees

We start with a simple observation: it is easy to decide
whether the host graph forms a tree or not. A topol-
ogy discovery algorithm ALG can test if the substrate
H ∈ H is tree-like using a single request: ALG simply
asks for a triangle network (i.e., a complete graph K3

consisting of three virtual nodes, with unit virtual node
and link capacities). The triangle can be embedded if
and only if H contains a cycle. Once it is known that
the set of possible infrastructure topologies (or host
graphs)H is restricted to trees, the algorithm described
in this section can be used to discover them. Moreover,
as we will see, the algorithm presented in this section
has the property that if H ∈ H does contain cycles, it
automatically computes a spanning tree of H .

The tree discovery algorithm TREE (see Algo-
rithm 1 for the formal listing) described in the fol-
lowing is based on the idea of incrementally grow-
ing the request graph by adding longest chains (i.e.,
“branches” of the tree). Intuitively, such a longest chain
of virtual nodes will serve as an “anchor” for extend-
ing further branches in future requests: since the chain
is maximal and no more nodes can be embedded, the
number of virtual nodes along the chain must equal the
number of substrate nodes on the corresponding sub-
strate path. The endpoints of the chain thus cannot have
any additional neighbors and must be tree leafs (we
will call these nodes explored), and we can recursively
explore the longest branches of the so-called pending
nodes discovered along the chain.

More concretely, TREE first discovers the overall
longest (cycle-free) chain of nodes in the substrate tree
by performing binary search on the length of the max-
imal embeddable path. This is achieved by requesting,
in request Ri, a VNet of 2i linearly connected vir-
tual nodes (of unit node and link capacities); in Algo-
rithm 1, we refer to a single virtual link connecting two
virtual nodes by a chain C, and a sequence of j chains
by Cj . The first time a path of the double length 2i

is not embeddable, TREE asks for the longest embed-
dable chain with 2i−1 to 2i − 1 virtual nodes; and so
on. Once the longest chain is found, its end nodes are
considered explored (they cannot have any additional
neighbors due to the longest chain property), and all re-
maining virtual nodes along the longest chain are con-
sidered pending (set P): their tree branches still need
to be explored. TREE then picks an arbitrary pending
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node v and seeks to attach a maximal chain (“branch”)
analogously to the procedure above, except for that the
node at the chain’s origin is left pending until no more
branches can be added. The scheme is repeated recur-
sively until there are no pending nodes left. Formally,
in Algorithm 1, we writeGvC to denote that a chain C
is added to an already discovered graphG at the virtual
node v.

Algorithm 1 Tree Discovery: TREE

1: G := {{v}, ∅} /* current request graph */
2: P := {v} /* pending set of unexplored nodes*/
3: while P 6= ∅ do
4: choose v ∈ P , S :=exploreSequence(v)
5: if S 6= ∅ then
6: G := GvS, add all nodes of S to P
7: else
8: remove v from P

exploreSequence(v)

1: S := ∅
2: if request(GvC,H) then
3: find max j s.t. GvCj 7→ H (binary search)
4: S := Cj

5: return S

Theorem 1 Algorithm TREE is correct and has a re-
quest complexity of O(n), where n is the number of
substrate nodes. This is asymptotically optimal in the
sense that any algorithm needs Ω(n) requests in the
worst case.

Proof Correctness: Since the substrate network is con-
nected, each node can be reached by a path from any
other node. As the algorithm explores each path at-
tached to a discovered node until no more nodes can
be added, every node is eventually found. Since a tree
is cycle-free, this also implies that the set of discovered
edges is complete.

Complexity (upper bound): We observe that our al-
gorithm has the property that at time t, it always ask
for a VNet which is a strict super graph of any embed-
dable graph asked at time t′ < t (positive answer from
the provider). Moreover, due to the exponential binary
search construction, TREE issues O(log `) requests to
discover a chain consisting of ` links. The cost of ex-
ploring a path can be distributed among its constituting
links, thus we have an accounting scheme which shows
that the amortized cost per link is constant: As there are
at most n−1 links in a tree, the total number of requests
due to the link discovery is linear in n as well. In order
to account for requests at nodes that do not have any
unexplored neighbors and lead to marking a node ex-
plored (at most one request per node), O(n) requests
need to be added.

Complexity (lower bound): The lower bound fol-
lows from the cardinality of the set of non-isomorphic
trees, which is in the order of 2.96n/n5/2 [24]. Since
any discovery algorithm can only obtain a binary in-
formation for each request issued, a request cuts the
remaining search space in (at most) half. Therefore,
the request complexity of any algorithm is at least
Ω(log(2.96n/n5/2)) = Ω(n). �

Although TREE looks simple, one has to be careful
to avoid pitfalls when trying to design tree discovery
algorithms. For instance, consider a scheme where in-
stead of searching for longest chains, we want to find
the nodes of largest degree, e.g., by performing bi-
nary search on the neighborhood size of a given vir-
tual node, and then recursively explore the discovered
pending nodes by adding newly found nodes to the
pending set: Since pending nodes are connected by vir-
tual links to each other, they may physically be sep-
arated by many hops, and one has to ensure that the
substrate nodes along these paths are not forgotten. Al-
though these problems can be handled within the same
asymptotical complexity, we do not elaborate on these
directions more here.

Observe that TREE has the nice property that if H
is not a tree, TREE simply computes a spanning tree of
H by extending maximal (cycle-free) branches from
the nodes.

Corollary 1 TREE determines a spanning tree of any
graph with request complexity O(n).

3.2 Arbitrary Graphs

Let us now turn to the general problem of inferring ar-
bitrary substrate topologies. First note that even if the
total number of substrate nodes is known, the adversary
cannot simply compute the substrate edges by testing
each virtual link between the node pairs: the fact that
the corresponding virtual link can be embedded does
not imply that a corresponding substrate link exists,
because the virtual link might be mapped across an en-
tire substrate path. Nevertheless, we will show in the
following that a request complexity of O(n2) can be
achieved; this is asymptotically optimal.

The main idea of our algorithm GEN is to build
upon the TREE algorithm to first find a spanning tree
(see Corollary 1). This spanning tree (consisting of
pending nodes only) “reserves” the resources on the
substrate nodes, such that they cannot serve as relay
nodes for virtual links passing through them. Subse-
quently, we try to extend the spanning tree with addi-
tional edges. An arbitrary pending node u is chosen,
and we try to add an edge to any other pending node
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v in the spanning tree. After looping over all pend-
ing nodes and adding the corresponding links, u is
marked explored. GEN terminates when no more pend-
ing nodes are left.

Theorem 2 A general graph can be discovered with
request complexity O(n2). This is asymptotically opti-
mal.

Proof Upper bound: According to Corollary 1, com-
puting a spanning treeG using TREE requiresO(n) re-
quests. Subsequently, GEN asks for each pair of pend-
ing nodes if an edge between them can be added with-
out destroying embeddability. Since the spanning tree
is used as a basis, and since ε > 0, two nodes can
be connected if and only if there is a direct substrate
link between them; otherwise, the capacity constraints
would be violated. Thus one request per possible sub-
strate link is sufficient, which results in at most O(n2)

requests.
Lower bound: The number an of non-isomorphic

simple graphs on n vertices satisfies 2(
n
2)/n! ≤ an ≤

2(
n
2). By the same argument as for the lower bound of

the request complexity for trees, Ω(log an) = Ω(n2)

requests are necessary in the worst case. �

3.3 Discussion

We have shown that tree graphs can be discovered in
time O(n), while general graphs require time O(n2).
This raises the question whether there exist additional
graph families, which still allow for a sub-quadratic
complexity. In the next section, we will answer this
question affirmatively, by presenting a general discov-
ery framework. As a corollary, we will show that for
example, also the important class of cactus graphs can
be explored in time O(n).

We conclude with a discussion of the other two
important complexities besides the request complex-
ity: the embedding complexity and the generation com-
plexity. Generally, the VNet embedding problem is
NP-hard even for host graphs forming a simple line
(i.e., a chain of physical nodes): the problem is equiva-
lent to the Minimum Linear Arrangement problem (see
e.g., [3]). Although some polynomial time solutions
exist for special VNet topologies (e.g., note that our
algorithms to discover trees rely on cycle-free VNets
only for which there are good or even optimal algo-
rithms [10]), for more complicated graphs such as cac-
tus graphs, optimized Integer Programs with good (i.e.,
tight) LP relaxations may be required. Since our fo-
cus is on the attacker and not on the VNet provider,
we do not study such formulations in more detail here

but refer the reader to the corresponding literature
(e.g., [26]).

More important for the efficient graph exploration
is the generation complexity: how quickly can an
adversary generate the next request? The algorithms
TREE and GEN are essentially greedy and hence fast:
an additional edge is added to a “pending” node which
has not been fully explored yet. This can be done in
time roughly linear with respect to the current VNet
size (or faster if the pending components are organized
efficiently in the data structure).

4 Motif Framework

We now present a framework for arbitrary graph in-
ference. The framework is based on three principles:
(1) growing request graphs iteratively, (2) using sim-
ple motifs to reserve entire subgraphs while exploring
the detailed structure of the subgraph only later, (3) re-
questing more highly connected motifs first.

Concretely, our algorithm DICT is based on the
observation that given a spanning tree, it is very
costly to discover additional edges between nodes in
2-connected components: essentially, finding a single
such edge requires testing all possible node pair com-
binations, which is quadratic in the component size.
Thus, our algorithm iteratively first explores the ba-
sic “knitting” of the topology, i.e., it discovers first
a sequence of maximal minors which are at least 2-
connected (the motifs). DICT maintains the invariant
that there are never two nodes u, v which are not k-
connected in the currently requested graph H ′ while
they are k-connected in H; no path relevant for the
connectivity of the current component is overlooked
and needs to be found later. Subsequently, nodes and
edges which are not contributing to the connectivity of
the current component can then be discovered by (1)
edge expansion where additional nodes of degree two
are added along a motif edge, and by (2) adding se-
quences of motifs to the nodes iteratively with the same
process.

Figure 2 gives a simplified overview of our discov-
ery strategy: in a first phase, we seek to discover the
highly connected parts of the physical network (and re-
serve the corresponding resources, see Lemma 4); this
is achieved by trying to embed sequences of so-called
“motifs” of the highest connectivity and subsequently
shifting toward less connected motifs. Nodes of degree
two are found using edge expansion.
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Knitting Expand Links Repeat

Fig. 2 Algorithm DICT first discovers and reserves sequences of
highly connected parts of the host graph. Then, less connected
parts are discovered by edge expansion and then the process is
repeated until no additional nodes and edges can be found.

4.1 Overview

With the above intuition in mind, we give a short
overview of this section. In Section 4.2, we first for-
mally introduce the concept of motifs: simple graphs
describing the possible knitting patterns of a host
graph. For example, for a tree graph we only need a
single motif, the chain C (two nodes connected by a
link); since there are no 2-connected motifs in a tree, it
can be discovered by attaching chains C to each other.

Another interesting graph family are cactus
graphs: connected graphs in which any two simple cy-
cles have at most one vertex in common. Cactus graphs
are interesting in the sense that many backbone or core
networks are reminiscent of cacti (see, e.g., the topolo-
gies collected in the Rocketfuel project [28]). In terms
of motifs, since a cactus graph may contain cycles, be-
sides the chain C we also need a cycle motif Y : three
nodes connected in a triangle manner; however, C and
Y are also sufficient to discover all cactus graphs.

More complicated graphs which include higher
connected parts may require, e.g., motifs describing di-
amonds D or cliques K4. We describe how to extract
motifs for a given graph family in Lemma 3.

The first idea behind our algorithm DICT is that
once a motif is embedded, it occupies resources on the
entire host subgraph (Lemma 4 and Corollary 2), and
the discovery of the remaining parts of the subgraph
where the motif is embedded can be postponed to some
later point: For example, Figure 2 (left) shows a motif
occupying resources on the subgraph at the top; addi-
tional nodes (Figure 2 (middle)) and edges (Figure 2
(right)) can be discovered later.

However, in order to discover entire graphs, multi-
ple motifs are needed: motifs must be attached to each

other; accordingly, we introduce the concept of motif
sequences and attachment points (Definition 8). More-
over, for DICT to be correct, it is important that more
highly connected motifs are embedded first: a less con-
nected motif may be embeddable on a subgraph but
may “overlook” (i.e., not allocate resources on) some
links. The situation is complicated by the fact that a
graph A may not be embeddable on graph B and vice
versa, but A may be embeddable on two graphs B
which are attached to each other (see Figure 3). This
motivates the dictionary concept (Section 4.3) where
motifs are organized in an acyclic directed graph.

Our main result is an algorithm that correctly dis-
covers a given topology by respect the order of the dic-
tionary of the corresponding graph family(Theorem 3).

We will give a concrete examples for our concepts
and our approach throughout this section and describe
the explicit requests issued by our algorithm for a given
network in Section 4.6.

4.2 Motifs: Composition and Expansion

We now start to make the intuition provided above
more formal.

Definition 6 (Motif) Given a graph family H, the set
of motifs of H is defined constructively: If any mem-
ber of H ∈ H has an edge cut of size one, the chain
C is a motif for H. All remaining motifs are at least
2-connected (i.e., any pair of nodes in a motif is con-
nected by at least two vertex-disjoint paths). These mo-
tifs can be derived by the at least 2-connected compo-
nents of any H ∈ H by repeatedly removing all nodes
with degree smaller or equal than two from H and
merging the incident edges, as long as all remaining
cycles do not contain parallel edges. Only one instance
of isomorphic motifs is kept.

In other words, a graph family containing all ele-
ments ofH can be constructed by applying the follow-
ing rules repeatedly.

Definition 7 (Rules) (1) Create a new graph consist-
ing of a motif M ∈ M (New Motif Rule). (2) Given
a graph created by these rules, replace an edge e of H
by a new node and two new edges connecting the inci-
dent nodes of e to the new node (Insert Node Rule). (3)
Given two graphs created by these rules, attach them
to each other such that they share exactly one node
(Merge Rule).

These rules are sufficient to compose all graphs in
H: If M includes all motifs of H, it also includes all
2-connected components of H , according to Defini-
tion 6. These motifs can be glued together using the
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Merge Rule, and eventually the low-degree nodes can
be added using the Insert Node Rule. Therefore, we
have the following lemma.

Lemma 3 Given the motifs M of a graph family H,
the repeated application of the rules in Definition 7 al-
lows us to construct each member H ∈ H.

The following lemma shows that when degree-two
nodes are added to a motif M to form a graph G,
all network elements (substrate nodes and links in the
graph defining the motif) are used when embeddingM
in G (i.e., M 7→ G).

Lemma 4 Let M ∈ (M\ {C}) be an arbitrary two-
connected motif, and let G be a graph obtained by ap-
plying the Insert Node Rule (Rule 2 of Definition 7) to
motif M . Then, an embedding M 7→ G involves all
nodes and edges in G: at least ε resources are used on
all nodes and edges.

Lemma 4 implies that no additional nodes can be
inserted to an existing embedding. In other words, a
motif constitutes a “minimal reservation pattern”. As
we will see, our algorithm will exploit this invariant
that motifs cover the entire graph knitting, and adds
simple nodes (of degree 2) only in a later phase.

Corollary 2 LetM ∈ (M\{C}) and letG be a graph
obtained by applying Rule 2 of Definition 7 to motifM .
Then, no additional node or motif can be embedded on
G after embedding M 7→ G.

Next, we want to combine motifs to explore larger
“knittings” of graphs. Each motif pair is glued together
at a single node or edge (“attachment point”): We need
to be able to conceptually join to motifs at edges as
well because the corresponding edge of the motif can
be expanded by the Insert Node Rule to create a node
where the motifs can be joined.

Definition 8 (Motif Sequences, Attachment Points,
Subsequences) A motif sequence S is a list S =

(M1a1a
′
1M2 . . .Mk) where for all i: Mi ∈ M,

and where Mi is glued together at exactly one node
with Mi−1 (i.e., Mi is “attached” to a node of mo-
tif Mi−1): the notation Mi−1ai−1a

′
i−1Mi specifies the

selected attachment points ai−1 and a′i−1. If the at-
tachment points are irrelevant, we use the notation
S = (M1M2 . . .Mk) and Mk

i denotes an arbitrary se-
quence consisting of k instances of Mi. If S can be de-
composed into S = S1S2S3, where S1, S2 and S3 are
(possibly empty) motif sequences as well, then S1, S2

and S3 are called subsequences of S. This relationship
is denoted by writing, e.g., S1 ≺ S.

In the following, we will sometimes use the Kleene
star notationX? to denote a sequence of (zero or more)
elements of X attached to each other.

One has to be careful when arguing about the em-
bedding of motif sequences, as illustrated in Figure 3
which shows a counter example for Mi 67→ Mj ⇒
Mi 67→ Mk

j for any k. More precisely, there exist mo-
tifs that cannot be embedded into single instances of
each other but at least one of them can be embedded
in sequences of the other motif. Consider the problem
instance where we have two motifs A and B where
A 67→ B, butA 7→ B2 and the host network isB2. If we
proceed purely incrementally, then we might not fully
discover the host network, depending on the order of
embedding requests. If we requestA first, we will get a
positive reply and cannot embed any other motifs sub-
sequently. Only if we request B first, we will be able
to discover B2 with this approach. Thus an algorithm
that adds motifs to its request networks purely incre-
mentally in an arbitrary order cannot discover all sub-
structures. This is the motivation for introducing the
concept of a dictionary which imposes an order on mo-
tif sequences and their attachment points.

4.3 Dictionary Structure and Existence

In a nutshell, a dictionary is a Directed Acyclic Graph
(DAG) defined over all possible motifsM and imposes
an order (poset relationship 7→) on problematic motif
sequences which need to be embedded one before the
other (e.g., the composition depicted in Figure 3). To
distinguish them from sequences, dictionary entries are
called words.

Definition 9 (Dictionary, Words) A dictionary
D(VD, ED) is a Directed Acyclic Graph (DAG)
over a set of motif sequences VD together with their
attachment points. In the context of the dictionary,
we will call a motif sequence word. The links ED
represent the poset embedding relationship 7→.

Concretely, the DAG has a single root r, namely the
chain graphC (with two attachment points). In general,
the attachment points of each vertex v ∈ VD describ-
ing a word w, define how w can be connected to other
words. The directed edges ED = (v1, v2) represent
the transitively reduced embedding poset relation with
the chain C context: Cv1C is embeddable in Cv2C

and there is no other word Cv3C such that Cv1C 7→
Cv3C, Cv3C 7→ Cv2C and Cv3C 67→ Cv1C holds.
(The chains before and after the words are added to en-
sure that attachment points are “used”: there is no edge
between two isomorphic words with different attach-
ment point pairs.)
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Fig. 3 Left: Motif A. Center: Motif B. Observe that A 67→ B. Right: Motif A is embedded into two consecutive Motifs B: solid lines
are virtual links mapped on single substrate links, s olid curves are virtual links mapped on multiple substrate links, dotted lines are
substrate links implementing a multi-hop virtual link, and dashed lines are substrate unused links. Grayed nodes are relay-only nodes.
Observe that the central node has a relaying load of 4ε.

We require that the dictionary be robust to compo-
sition: For any node v, let Rv = {v′ ∈ VD, v 7→ v′}
denote the “reachable” set of words in the graph and
Rv = VD \Ri all other words. We require that v 67→W

for allW ∈ Qi := R
?

i \R?i , where the transitive closure
operator X? denotes an arbitrary sequence (including
the empty sequence) of elements in X (according to
their attachment points).

See Figure 4 for an example. Informally, the ro-
bustness requirement means that the word represented
by v cannot be embedded in any sequence of
“smaller” words, unless a subsequence of this sequence
is in the dictionary as well. As an example, consider
a dictionary containing the motifs A and B from Fig-
ure 3: this dictionary would not only contain verticesA
andB but alsoBB, as well as a path fromA toBB. In
the following, we use the notation maxv∈VD

(v 7→ S)

to denote the set of “maximal” vertices with respect to
their embeddability into S: i ∈ maxv∈VD

(v 7→ S) ⇔
(i 7→ S) ∧ (∀j ∈ Γ+(i), j 67→ S), where Γ+(v) de-
notes the set of outgoing neighbors of v. Furthermore,
we say that a dictionary D covers a motif sequence S
iff S can be formed by concatenating dictionary words
(henceforth denoted by S ∈ D?) at the specified at-
tachment points. More generally, a dictionary covers a
graph, if it can be formed by merging sequences ofD?.

Let us now derive some properties of the dictio-
nary which are crucial for a proper substrate topology
discovery. First we consider maximal dictionary words
which can serve as embedding “anchors” in our algo-
rithm.

Lemma 5 Let D be a dictionary covering a sequence
S of motifs, and let i ∈ maxv∈VD

(v 7→ S). Then i con-
stitutes a subsequence of S, i.e., S can be decomposed
to S1iS2, and S contains no words of order at most i,
i.e., S1, S2 ∈ (Ri ∪ {i})?.

The following corollary is a direct consequence of
the definition of i ∈ maxv∈VD

(v 7→ S) and Lemma 5:
for a motif sequence S with S ∈ (Ri ∪ {i})?, all
the subsequences of S that contain no i are in R

?

i . As
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Fig. 4 a) Example dictionary with motifs Chain C, Cycle Y ,
Diamond D, complete bipartite graph B = K2,3 and complete
graphK = K5. The attachment point pair of each word is black,
the other nodes and edges of the words are grey. The edges of the
dictionary are locally labeled, which is used in DICT later. b) A
graph that can be constructed from the dictionary words.

we will see, the corollary is useful to identify the mo-
tif words composing a graph sequence, from the most
complex words to the least complex ones.

Corollary 3 Let D be a dictionary covering a mo-
tif sequence S, and let i ∈ maxv∈VD

(v 7→ S).
Then S can be decomposed as a sequence S =

T1iT2i, . . . , iTk with Tj ∈ Qi for all j = 1, . . . , k.

This corollary can be applied recursively to de-
scribe a motif sequence as a sequence of dictionary en-
tries. Note that a dictionary always exists.

Lemma 6 There exists a dictionary D = (VD, ED)

that covers all member graphsH of a motif graph fam-
ilyH with n vertices.
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Note that the proof of Lemma 6 only addresses the
composition robustness for sequences of up to n nodes.
However, it is clear that |V (G)| > |V (H)| ⇒ G 67→
H . Therefore it cannot happen that a request of a se-
quence with more than n nodes is answered positively
on a host network of n nodes and hence this limitation
does not pose an issue when devising dictionary-based
algorithms for VNet topology discovery.

4.4 The Dictionary Algorithm

With these concepts in mind, we are ready to present
DICT in detail (cf Algorithm 2). Basically, DICT al-
ways grows a request graph G = H ′ until it is iso-
morphic to H (the graph to be discovered). This graph
growing is performed according to the dictionary, i.e.,
we try to embed new motifs in the order imposed by
the dictionary DAG.

Let us specify the topological order in which algo-
rithm DICT discovers the dictionary words. First, for
each node v in VD, we define an order on its outgo-
ing edges {(v, w)|w ∈ Γ+(v)}. This order is some-
times referred to as a port labeling, and each path from
the dictionary root (the chain C) to a node in VD can
be represented as the sequence of port labels at each
traversed node (l1, l2, . . . , ll), where l1 corresponds to
a port number in C. We can simply use the lexico-
graphic order on integers, <d: (a1, a2, . . . , an1

) <d

(b1, b2, . . . , bn2
) ⇐⇒ ((∃ m > 0) (∀ i < m)(ai =

bi) ∧ (am < bm)) ∨ (∀i ∈ {1, . . . n1}, (ai = bi) ∧
(n1 < n2)), to associate each vertex with its min-
imal sequence, and sort vertices of VD according to
their embedding order. Let r be the rank function as-
sociating each vertex with its position in this sorting:
r : VD → {1, . . . |VD|} (i.e., r is the topological order-
ing of D).

The fact that subsequences can be defined recur-
sively using a dictionary (Lemma 5 and Corollary 3)
is exploited by algorithm DICT. Concretely, we apply
Corollary 3 to gradually identify the words compos-
ing a graph sequence, from the most complex words
to the least complex ones. This is achieved by travers-
ing the dictionary depth-first, starting from the root C
up to a maximal node: algorithm DICT tests the nodes
of Γ+(v) in increasing port order as defined above.
As a shorthand, the word v ∈ VD with r(v) = i

is written as D[i]; similarly D[i] < D[j] holds if
r(D[i]) < r(D[j]), a notation that is useful since
D[j] is detected before D[i] by algorithm DICT. As
a consequence, the first matched word of a sequence
S is unique: it is i = argmaxx(D[x] 7→ S) =

max{r(v)|v ∈ maxv′∈VD
(v′ 7→ S)}, the maximal

word in S.

Algorithm DICT distinguishes whether the subse-
quences next to a word v ∈ VD are empty (∅) or
chains (C), and we will refer to the subsequence be-
fore v by BF and to the subsequence after v by AF.
Concretely, while recursively exploring a sequence be-
tween two already discovered parts T< and T> we
check whether the maximal word v is directly next to
T< (i.e., T< v, . . . , T>) or T> or both (∅), or whether
v is somewhere in the middle. In the latter case, we add
a chain (C) to be able to find the greatest possible word
in a next step.

DICT uses tuples of the form (i, j,BF,AF) where
i, j are integers and (BF,AF) ∈ {∅, C}2, i.e., D[i] de-
notes the maximal word in D, j is the number of con-
secutive occurrences of the corresponding word, and
BF and AF represent the words before and after D[i].
These tuples are lexicographically ordered by the to-
tal order relation > on the set of possible (i, j,BF,AF)

tuples defined as follows: let t = (i, j,BF,AF) and
t′ = (i′, j′,BF′,AF′) two such tuples. Then t > t′ iff
w > w′ or w = w′∧j > j′ or w = w′∧j = j′∧BF =

C ∧ BF′ = ∅ or w = w′ ∧ j = j′ ∧ BF = BF′ ∧ AF =

C ∧ AF′ = ∅.
With these definition we can prove that algo-

rithm DICT is correct.

Theorem 3 Given a dictionary forH, algorithm DICT

correctly discovers any H ∈ H.

Algorithm 2 Motif Graph Discovery DICT

1: H′ := {{v}, ∅} /*current request graph*/,
P := {v} /*set of unexplored nodes*/

2: while P 6= ∅ do
3: choose v ∈ P , T := findMotifSequence(v, ∅, ∅)
4: if (T 6= ∅) then H′ := H′vT , add all nodes of T to P ,

for all e ∈ T do edgeExpansion(e)
5: else remove v from P

findMotifSequence(v, T<, T>)
1: find maximal i, j,BF,AF s.t.H′v (T<) BF (D[i])j AF (T>)

7→ H where BF,AF ∈ {∅, C}2 /* issue requests */
2: if ((i, j,BF,AF) = (0, 0, C, ∅)) then return T<CT>
3: if (BF = C) then BF =

findMotifSequence(v, T<, (D[i])j AF T>)
4: if (AF = C) then AF =

findMotifSequence(v, T< BF (D[i])j , T>)

5: return BF (D[i])j AF

edgeExpansion(e)
1: let u, v be the endpoints of edge e, remove e from H′

2: find maximal j s.t. H′vCju 7→ H /* issue requests */
3: H′ := H′vCju, add newly discovered nodes to P
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4.5 Request Complexity

The focus of DICT is on generality rather than perfor-
mance, and indeed, the resulting request complexities
can often be high. However, as we will see, there are in-
teresting graph classes which can be solved efficiently.

Let us start with a general complexity analysis.
The requests issued by DICT are constructed in Line
1 of finding motif sequence() and in Line 2 of
edgeExpansion(). We will show that the request com-
plexity of the latter is linear in the number of edges
of the host graph while the request complexity of
finding motif sequence() depends on the structure
of the dictionary. Essentially, an efficient implementa-
tion of Line 1 of finding motif sequence in DICT

can be seen as the depth-first exploration of the dictio-
nary D starting from the chain C. More precisely, at a
dictionary word v requests are issued to see if one of
the outgoing neighbors of v could be embedded at the
position of v. As soon as one of the replies is positive,
we follow the corresponding edge and continue recur-
sively from there, until no outgoing neighbors can be
embedded. Thus, the number of requests issued before
we reach a vertex v can be determined easily.

Recall that DICT tests vertices of a dictionary D
according to a fixed port labeling scheme. For any v ∈
VD, let p(C, v) be the set of paths from C to v (each
path including C and v). In the worst case, discovering
v costs cost(v) = maxp∈p(C,v)(

∑
u∈p |Γ+(u)|).

Lemma 7 The request complexity of
Line 1 of findMotifSequence(v′, T<, T>)
to find the maximal i, j,BF,AF such
that H ′v′ (T<) BF (D[i])j AF (T>) 7→ H where
BF,AF ∈ {∅, C}2 and H ′ is the current request graph
is O(maxv∈VD

cost(v) + j).

When additional nodes are discovered by a positive
reply to an embedding request, then the request com-
plexity between this and the last previous positive reply
can be amortized among the newly discovered nodes.
Let num nodes(v) denote the number of nodes in the
motif sequence of the node v in the dictionary.

Theorem 4 The request complexity of algorithm DICT

is at most O(n · ∆ + m), where m denotes the num-
ber of edges of the inferred graph H ∈ H, and ∆

is the maximal ratio between the cost of discover-
ing a word v in D and num nodes(v), i.e., ∆ =

maxv∈VD
{cost(v)/num nodes(v)}.

4.6 Examples for Theorems 3 and 4

Let us consider concrete examples to provide some
intuition for Theorem 3 and Theorem 4. We will de-

note chains, cycles, diamonds, the complete bipartite
graph over two times three nodes and the complete
graph over five nodes by C, Y , D, B and K respec-
tively. If we ignore the attachment points, then execut-
ing DICT on the graph in Figure 4.b), leads to the fol-
lowing request sequence for the first call of findMotif-
Sequence(): C → Y → D→ B→K (negative reply)
→ BB (negative reply)→ CKC (recursion in Line 3)
→ Y KC (negative reply) → Y CKC → DCKC →
D2CKC (negative reply) → CDCKC → . . .. The
motif sequence tree of this example is illustrated in
Figure 5.
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Fig. 5 Motif sequence tree of the graph in Figure 4 b). The
squares and the edges between them depict the motif com-
position, the shaded squares belong to the motif sequence
Y C2BDYD2 discovered in the first execution of findMotifSe-
quence() (chains, cycles, diamonds, and the complete bipartite
graph over two times three nodes are denoted by C, Y , D and B
respectively). Subsequently, the found edges are expanded be-
fore calling findMotifSequence() another four times to find Y
and three times C.

A fundamental graph class are trees. Since, the tree
does not contain any 2-connected structures, it can be
described by a single motif: the chain C. Indeed, if
DICT is executed with a dictionary consisting in the
singleton motif set {C}, it is equivalent to a recursive
version of TREE from [21] and seeks to compute max-
imal paths.

Corollary 4 Trees can be described by one motif (the
chain C). The request complexity of DICT on trees is
O(n).

Proof Since there is only one motif and it has only one
attachment point pair, ∆ of the dictionary is constant.
Consequently, a linear request complexity follows di-
rectly from Theorem 4 due to the planarity of cactus
graphs (i.e., m ∈ O(n)). �

An example where the dictionary is efficient al-
though the connectivity of the topology can be high,
are block graphs. A block graph is an undirected graph

12



in which every bi-connected component (a block) is
a clique. A generalized block graph is a block graph
where the edges of the cliques can contain addi-
tional nodes. In other words, in the terminology of
our framework, the motifs of generalized block graphs
are cliques. For instance, cactus graphs are generalized
block graphs where the maximal clique size is three.

Corollary 5 Generalized block graphs can be de-
scribed by the motif set of cliques. The request com-
plexity of DICT on generalized block graphs is O(m),
where m denotes the number of edges in the host
graph.

Proof The framework dictionary for generalized block
graphs consists of the set of cliques, as a clique with
k nodes cannot be embedded on sequences of cliques
with less than k nodes. As there are three attachment
point pairs for each complete graph with four or more
nodes, DICT can be applied using a dictionary that con-
tains three entries for each motif with more than three
nodes (num nodes() > 3). Thus, the ith dictionary
entry has bi/3c + 3 nodes for i > 1 and cost(D[i]) <

3(i + 2) and ∆ of D is hence in O(1). Consequently
the complexity for generalized block graphs is O(m)

due to Theorem 4. �

On the other hand, Theorem 4 also states that
highly connected graphs may require Ω(n2) requests,
even if the dictionary is small.

4.7 Extended Example: Cactus Graphs

We conclude the discussion of the framework with
an extended example for cactus graphs. As already
mentioned, cactus graphs are a particularly interesting
topology in the context of the Internet. For example,
the topologies collected in experiments such as Rock-
etfuel are often sparse but contain certain cycles along
the backbone, and thus resemble the cactus graph. [28]
Formally, a cactus graph is a connected graph in which
any two simple cycles have at most one vertex in com-
mon. Or equivalently: every edge in the cactus graph
belongs to at most one 2-connected component, i.e.,
the cactus graph does not contain any diamond graph
shaped minors.

The motif set for cactus contains only cycles (short
form: Y ) and chains (short form: C). Since cycles are
symmetric, the dictionary required to discover cactus
graphs is very simple: {C, Y }. Due to this simplic-
ity it is possible to unfold the recursions in DICT to
produce a iterative and compact algorithm to discover
cactus topologies: the algorithm CACTUS. This might

prove useful for implementations and provides a dif-
ferent perspective to the reader. Note that in contrast
to a tree where nodes are origins of simple paths (i.e.,
branches), a cactus graphs is very simple: C, Y . Due
to this simplicity it is possible to unfold the recursions
in DICT to produce a standalone iterative and compact
algorithm to discover cactus topologies: the CACTUS

algorithm. Note that in contrast to a tree where nodes
are origins of simple paths (i.e., branches), a cactus
node can be the origin of several sub-cactus graphs
consisting of 1- and 2-connected components. That is,
the resulting graph when collapsing one or several 2-
connected components to a single node is a cactus as
well, or even a tree if all components are collapsed.
The structure of CACTUS is therefore similar to TREE

in its iterative approach. Concretely, instead of using
longest chains as “anchor points” for extending an ex-
isting topology, we search, in each possible direction
from a pending cactus node v for a maximal sequences
of cycles and chains. Only once such a sequence (or
“motif ”) is found, our algorithm CACTUS finds out the
detailed structure of the chain/cycle sequence by in-
serting as many nodes on the chains and cycles as pos-
sible.

The formal listing of CACTUS appears in Algo-
rithm 3. Since the algorithm is no longer recursive as
the DICT algorithm and only requires two motifs, we
can prove its correctness and request complexity more
easily.

Theorem 5 CACTUS discovers any cactus topology
with request complexity O(n). This is asymptotically
optimal.

Proof Correctness: Since by definition, the cactus
graph does not contain any diamond graph shaped mi-
nor graphs, no two finite faces of the cactus graph can
share a link (but sharing nodes is possible), and hence,
any node v connects a set of (sub)cactus graphs.

Starting with one node, CACTUS repeatedly finds a
sequence S of cycles (Y ) and chains (C) with explore-
Sequence() and then expands these cycles and chains
to find all nodes lying on them with edgeExpansion().
This algorithm terminates as soon as all edges inci-
dent to nodes found so far (i.e., pending nodes) have
been discovered. Consequently, we need to show that
all nodes and all their adjacent edges are detected in
order to prove correctness (i.e., there is a bijection be-
tween the edges in G and in H and thus it is not possi-
ble that a virtual edge connects two nodes that are not
adjacent in the (sub)cactus graphs).

Note that the algorithm maintains the invariant that
GvS 7→ H at all times. As a consequence we can
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Algorithm 3 Cactus Discovery: CACTUS

1: G := {{v}, ∅} /* current request graph */
2: P := {v} /* pending set of unexplored nodes*/
3: while P 6= ∅ do
4: choose v ∈ P , S :=exploreSequence(v)
5: if S 6= ∅ then
6: G := GvS, add all nodes of S to P
7: for all e ∈ S do edgeExpansion(e)
8: else
9: remove v from P

exploreSequence(v)
1: S := ∅, P ′′ := ∅
2: if GvY CY 7→ H then
3: find max j s.t. GvY jCY 7→ H

4: S := Y jCY , P ′ := {C}
5: while P ′ 6= ∅ do
6: for all Ci ∈ P ′ do
7: A := prefix(Ci, S), B := postfix(Ci, S);
8: if GvACY CB 7→ H then
9: find max j, k s.t. GvAC(Y jC)kB 7→ H

10: for l := 1, . . . , k do
11: P ′′ := P ′′ ∪ {Cl}
12: S := AC(Y jC)kB
13: P ′ := P ′′, P ′′ := ∅
14: if request(GvSY,H) then
15: find max j s.t. GvSY j 7→ H
16: S := SY j

17: if request(GvSC,H) then
18: S := SC
19: return S

edgeExpansion(e)
1: let u, v be the endpoints of edge e, remove e from G

2: find max j s.t. GvCju 7→ H

3: G := GvCju, add newly discovered nodes to P

analyze the properties of S and thereby deduce prop-
erties of the substrate. We start by proving that for a
sequence S discovered in exploreSequence(v) the fol-
lowing properties hold: (i) no more Y s can be inserted
(replace a Y by a Y Y or a C by a CY C), (ii) no chain
can be inserted between two cycles (replace Y Y with
Y CY ) and (iii) no C can be replaced by a Y . These
invariants show that the discovered sequence S cannot
be extended with more cycles or chains between cy-
cles. Based on these invariants it remains to show that
in the following steps of the algorithm we discover all
nodes which are part of this sequence.

(i) If there are cycles attached to v directly, their
maximal undetected concatenated occurrence is dis-
covered in Line 3 (i.e., if GvY j 7→ H , j maximum, it
is not possible that the remaining topology of H after
the embedding π(G) contains a sequence starting at v
with more than j concatenated cycles). Within one exe-
cution of the forall loop (Line 6-13) the maximal value
j reaches, decreases in the next execution of the loop.
For each chain Ci treated in the forall loop it holds
that all Y j occurrences are discovered (guaranteed by

Line 9) and thus it is not possible to replace any Y by
Y Y . Replacing aC by aCY C is not possible since this
is checked for all C in Line 9 of exploreSequence(v).
The last C that might be appended to S in Line 19 can-
not be replaced by CY C as this would have happened
in Line 9. (ii) Replacing S = AY Y B by AY CY B
is only possible if the substrate contains AY Y Y B and
B starts with C, i.e., it would invalidate (i) and is thus
impossible. (iii) Every C of S is between two Y . If C
could be replaced by a Y this would have been discov-
ered in Line 3 or 9 and is thus not possible anymore at
the end of exploreSequence(v).

As a consequence of Properties (i), (ii), (iii) it
holds that with S all nodes of degree one or nodes
that lie at the intersection of cycles and chains or cy-
cles and cycles (i.e., nodes with degree three or four
in S) are detected in exploreSequence(v). For a given
sequence S the remaining nodes of degree two in S

are discovered in edgeExpansion(e). It thus remains to
prove that among these discovered nodes the ones with
higher degrees are further explored for additional se-
quences attached to them. As all nodes are added to
P when they are discovered (Line 6 of Algorithm 3,
and Line 3 of the subroutine edgeExpansion(e)), and
as the while loop in Line 3 is repeated until there are
no outgoing sequences from a node anymore, all cac-
tus edges are detected. Any additional edge would lead
to a diamond minor, resulting in a contradiction.

Complexity: We can again use an amortization
scheme that assigns request costs to edges: an edge is
assigned the cost of the request where it is identified
for the first time (in exploreSequence(v) this can hap-
pen at Lines 2, 3, 8, 9, 15, 16, 18, in edgeExpansion(e)
in Line 2). In order to find the maximum embeddable
sequence, there is one request with a negative answer in
the execution of Lines 3, 9, 16 in exploreSequence(v)
and Line 2 in edgeExpansion(e). Let us assign these
unsuccessful requests that do not discover a new edge
to the last edge discovered before. Thus in the worst
case, there are two requests for each edge. Since the
number of edges in cactus graphs is linear in the num-
ber of nodes, a request complexity of O(n) follows.

Optimality: Since cactus graphs constitute a super-
set of tree graphs, the lower bound of Theorem 1 still
applies, i.e., Ω(n) requests are needed by any algo-
rithm. �

5 Simulations

To complement our theoretical results and to validate
our framework on real network topologies, we dis-
sected the ISP topologies provided by the Rocket-
fuel [28] mapping engine. In particular, given the high
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execution times of DICT in the worst-case and for com-
plex motif sets, we were interested in (1) the structure
and complexity of the motif sets of these topologies,
and in (2) the question whether an efficient and approx-
imate variant of DICT could be used in practice to infer
large parts of the network in linear time.

For this purpose, we implemented our motif ex-
traction algorithm. Concretely, for each Rocketfuel
topology, we first isolate the subgraphs that are trees
(i.e., the 1-connected subgraphs), by recursively re-
moving leaf-nodes. The remainder of the topology
is then simplified by contracting degree-2 nodes that
would be detected during the algorithms’ edge ex-
pansion phases. The result is a topology only con-
taining motifs connected by “articulation vertices”,
which provide us with a mean to distinguish motifs.
Finally, the extracted motifs are compared pairwise to
distinguish between isomorphic and non-isomorphic
ones. (The corresponding R script is made publicly
available at homepages.laas.fr/˜gtredan/
topoInference.R.)

Figure 6 a) provides some statistics about the con-
sidered AS router-level topologies: their overall size,
the number of nodes belonging to a 1-connected sub-
graph, the number of nodes belonging to a motif, and
the number of nodes belonging to the largest motif of
each topology. For instance, the figure shows that the
AS 1221 topology contains 2669 nodes, but only 310
nodes are part of a bi-connected component. Among
those nodes, 47 are expanded degree-2 nodes, and 48
are part of motifs containing only 3 or 4 nodes. The re-
maining 215 nodes compose the “network heart” (con-
taining 716 edges out of the topologies’ 3175 edges):
such a single highly-connected motif is typical and ap-
pears for many AS topologies. One takeaway from this
plot is that, since most Rocketfuel networks are built of
simple motifs and since DICT discovers both tree and
relay nodes easily, most of each topology could be dis-
covered quickly with an approximate DICT algorithm
containing merely the basic motifs: only the few more
complex motifs in the network heart require an exhaus-
tive link exploration. In other words, the vast majority
of the topology can be discovered in linear time.

Figures 6 b) and c) further explore the fraction of
nodes that can be discovered by DICT restricted to a
small motif set. For this purpose, we built a dictionary
containing all the motifs identified in our dataset, and
removed the biggest motif of each topology (the “net-
work heart”). The remaining 19 motifs are depicted
Figure 6 b): they are surprisingly simple and symmet-
ric. Figure 6 c) shows the fraction of nodes in perfectly
inferred subgraphs: we see that a 19-motifs dictionary
is sufficient to explore from 37 to 92% of the nine con-
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Fig. 7 Representation of the AS-4755 network where tree nodes
are colored yellow, relay-nodes are green, attachment point
nodes are red, cYcle motifs nodes are purple and the maximal
motif nodes are blue.

sidered AS topologies. Figure 6 d) represents the fre-
quency distribution of the most common motifs in the
nine topologies. Note that interestingly, motif Y only
comes third, with 11 occurrences across the dataset.

To conclude our study of ISP network motifs, in
Figure 7 we show an example for how the motifs cover
a specific AS topology (namely AS-4755).

6 Related Work

Our work is motivated by the virtualization trend in
today’s Internet and especially network virtualization.
For a general introduction and a good survey, we re-
fer the reader to [8]. Our model differentiates between
a customer (e.g., a service provider requesting VNets)
and a substrate provider (e.g., a physical infrastructure
provider or a virtual network provider). In the termi-
nology of [27], our customer is the SP, and the provider
may either be the PIP or the VNP.

VNet Embedding. The embeddings of VNets is
an intensively studied problem and there exists a large
body of literature (e.g., [13,14,18,31]), and there also
exist distributed computing approaches [16] and online
algorithms [5,11]. Our work is orthogonal to this line
of literature in the sense that we assume that an (arbi-
trary and not necessarily resource-optimal) embedding
algorithm is given. Rather, we focus on the question
of how the feedback obtained through these algorithms
can be exploited, and we study the implications on the
information which can be obtained about a provider’s
infrastructure.
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Fig. 6 Results of DICT when run on different Internet and power grid topologies. a) Number of nodes in different autonomous systems
(AS). We computed the set of motifs of these graphs as described in Definition 6 and counted the number of remaining nodes after
removing the nodes that : (i) belong to a tree structure at the “fringe” of the network, (ii) have degree 2 and belong to two-connected
motifs, and finally (iii) are part of the largest motif. b) The 19-motif dictionary built from the dataset. c) The fraction of nodes that can
be discovered with the dictionary. d) Most frequent motifs encountered in the dataset.

Topology Inference. Our work studies a new kind
of topology inference problems. Traditionally, much
graph discovery research has been conducted in the
context of today’s complex networks such as the In-
ternet which have fascinated scientists for many years,
and there exists a wealth of results on the topic. One
of the most influential measurement studies on the In-
ternet topology was conducted by the Faloutsos broth-
ers [12], and their work has subsequently been inten-
sively discussed both in practical [17] and theoreti-
cal [2] papers. The classic instrument to discover In-
ternet topologies is traceroute [7], but the tool has sev-
eral problems which renders the problem challenging.
One complication of traceroute stems from the fact that
routers may appear as stars (i.e., anonymous nodes),
which renders the accurate characterization of Internet
topologies difficult [1,23,30]. Network tomography is
another important field of topology discovery. In net-
work tomography, topologies are explored using pair-

wise end-to-end measurements, without the coopera-
tion of nodes along these paths. This approach is quite
flexible and applicable in various contexts, e.g., in so-
cial networks. For a good discussion of this approach
as well as results for a routing model along shortest and
second shortest paths see [4]. For example, [4] shows
that for sparse random graphs, a relatively small num-
ber of cooperating participants is sufficient to discover
a network fairly well.

Both the traceroute and the network tomography
problems differ from our virtual network topology dis-
covery problem in that the exploration there is inher-
ently path-based while we can ask for entire virtual
graphs.

Virtualization and Security. The benefits and
threats of virtualization are extensively studied but still
not well-understood. A complete review of the re-
search is beyond the scope of this paper, and we refer
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the reader to the recent literature, e.g., on virtual ma-
chine collocation attacks [25].

Graph Grammars and Mining. We decided to
describe our algorithms using a graph grammar formal-
ism, and indeed, some graph grammar problems share
commonalities with our work. Graph grammars are a
powerful tool to generate and characterize topologies,
and we refer the interested reader to, e.g., [6]. More
remotely, our work also has connections with graph
data mining [29]. For instance, in [9], an algorithm
is presented to search subsequences which can best
compress an input graph based on a minimum descrip-
tion length principle. Although these algorithms pur-
sue a different goal, the computationally-constrained
beam search is reminiscent of some of our techniques
as nodes are incrementally (and greedily) expanded.

Bibliographic Note. Our article builds upon our
model introduced in a Brief Announcement at DISC
[20]; the tree and cactus related results appeared at IN-
FOCOM 2013 [21] and the dictionary was presented at
NETYS 2013 [22].

7 Conclusion

This paper has initiated, from an algorithmic per-
spective, the discussion of topology discovery in net-
work virtualization environments, and presented tight
bounds for three important graph classes. We under-
stand our results as a first step to shed light on possible
security threats of the virtualization technology.

We find that the topology of typical sparse back-
bone networks such as tree or cactus graphs can be
discovered relatively fast (request complexity O(n)).
However, the motif-based topology discovery frame-
work we sketched suggests that the request complex-
ity for denser graphs is higher, as the number of graph
knittings can grow combinatorially, and one has to re-
sort to testing edges individually (after computing a
spanning tree) which yields a quadratic request com-
plexity.

Our work opens several interesting directions for
future research. First, more work is needed to under-
stand the implications of the framework on other im-
portant graph classes, such as different types of planar
graphs: in order to beat the trivial O(n2) upper bound
on the request complexity, additional dictionary prop-
erties must be exploited.

Moreover, in the context of TREE we have seen that
if the host graph is not a tree, running TREE will sim-
ply result in a spanning tree. This raises the question
whether similar spanning structures can be computed
with incomplete motif sets, resulting in the “densest

spanning structures” given these motif sets. For exam-
ple, when applying CACTUS to a general graph, which
fraction of edges will be discovered?

Finally, while our work so far has focused on dis-
covering the entire topology, more specific graph prop-
erties may be inferred much more efficiently.
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A Proof of Lemma 1

We prove the lemma for undirected graphs. The extension to di-
rected graphs is straight-forward.

A poset structure (S,�) over a set S requires that� is a (re-
flexive, transitive, and antisymmetric) order which may or may
not be partial. To show that (G, 7→), the embedding order de-
fined over a given set of graphs G, is a poset, we examine the
three properties in turn.

Reflexivity (for each G ∈ G, G 7→ G): By using the identity
mapping π : G = (V,E) → G = (V,E) which embeds each
node and link to itself, the claim is proved.

Transitivity (for all A,B,C ∈ G, if A 7→ B and B 7→ C

thenA 7→ C): Let π1 denote the embedding function forA 7→ B
and let π2 denote the embedding function for B 7→ C, which
must exist by our assumptions. We will show that then also a
valid embedding function π exists to map A to C. Regarding the
node mapping, we define πV as πV := π1V ◦π2V , i.e., the result
of first mapping the nodes according to π1V and subsequently
according to π2V . We first show that πV is a valid mapping from
A to C as well. First, for all vA ∈ VA, π(vA) maps vA to a
single node in VC , fulfilling the first condition of the embedding
(see Definition 1). Ignoring relay capacities (which is studied
together with the conditions on the links below), Condition (ii)
of Definition 1 is also fulfilled since the mapping π1V ensures
that no node in VB exceeds its capacity, and can hence safely be
mapped to VC . Let us now turn our attention to the links. We use
the following mapping πE for the edges. Note that π1E maps a
single link e to an entire (but possibly empty) path in B and π2E
then maps the corresponding links e′ inB to a walk inC. We can
transform any of these walks into paths by removing cycles; this
can only lower the resource costs. Since π1E maps to a subset
of EB only and since π2E can embed all edges of B, all link
capacities are respected up to relay costs. However, note also that
by the mapping π1 and for relay costs ε > 0, each node vB ∈ VB
can either not be used at all, be fully used as a single endpoint of
a link eA ∈ EA, or serve as a relay for one or more links. Since
both end-nodes and relay nodes are mapped to separate nodes
in C, capacities are respected as well. Conditions (iii) and (iv)
hold as well.

Antisymmetry (for all A,B ∈ G, A 7→ B and B 7→ A im-
plies A = B, i.e., A and B are isomorphic): First observe that
if the two networks differ in size, i.e., |VA| 6= |VB | or |EA| 6=
|EB |, then they cannot be embedded to each other: Without loss
of generality, assume |VA| > |VB |, then since nodes of VA of
cannot be split into multiple nodes of VB (cf Definition 1), there
exists a node vA ∈ VA to which no node from VB is mapped.
This however implies that node π1(vA) ∈ VB must have avail-
able capacities to host also vA, contradicting our assumption that
nodes cannot be split in the embedding. Similarly, if |EA| 6=
|EB |, we can obtain a contradiction with the single path argu-
ment. Thus, not only the total number of nodes and links in A
and B must be equivalent but also the total amount of node and
link resources. So consider a valid embedding π1 forA 7→ B and
a valid embedding π2 for B 7→ A, and assume |VA| = |VB | and
|EA| = |EB |. It holds that π1 and π2 define an isomorphism be-
tween A and B: Clearly, since |VA| = |VB |, π1 and π2 define a
permutation on the vertices. Without loss of generality, consider
any link {vA, v′A} ∈ EA. Then, also {π1(vA), π1(v′A)} ∈ EB :
|{π1(vA), π1(v′1)}| = 0 would violate the node capacity con-
straints in B, and |{π1(vA), π1(v′A)}| > 1 requires |EB | >
|EA|.

B Proof of Lemma 2

(i) From Definition 1, A 7→ B defines a mapping π from VA to
VB and from EA to EB , which implies that the subgraph where
A is embedded on B constitutes a minor of B. Since ε > 0.5
every node of VB in π(A) is used exactly once. Contracting the
edges on paths of π(e) for each e ∈ EA thus results in A which
proves the claim. (ii) For smaller ε there are graphs which can be
embedded into other graphs H although they are not minors of
H, e.g., the forbidden minor K5 (i.e., the clique with five nodes)
can be embedded in some planar graphs, see Figure 8 for an ex-
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ample. (iii) The opposite direction of (i) does not hold, as can be
seen in the following example demonstrating that not all minors
of a substrate are embeddable. Given ε, let r = d1/εe + 1 and
consider a r-ary tree of height 2 with r2 leaves. A star graph with
r2 leaves is a minor of this tree, however, it cannot be embedded
in the tree because the relay nodes cannot support r paths with-
out exceeding their capacities and hence there are not enough
paths to all leaves.

Fig. 8 Planar graphs are K5 minor free, but the planar substrate
H depicted in this figure a K5 can be embedded if ε ≤ 0.5.

C Proof of Lemma 4

Let v ∈ G. Clearly, if there exists u ∈ M such that v = π(u),
then v’s capacity is fully used. Otherwise, v was added by Rule 2.
Let a, b be the two nodes of G between which Rule 2 was ap-
plied, and hence {π−1(a), π−1(b)} ∈ EM must be a motif edge.
Observe that for these nodes’ degrees it holds that deg(a) =
deg(π−1(a)) and deg(b) = deg(π−1(b)) since Rule 2 never
modifies the degree of the old nodes in the host graph G. Since
links are of unit capacity, each substrate link can only be used
once: at a at most deg(a) edge-disjoint paths originate, which
yields a contradiction to the degree bound; the relaying node v
has a load of ε.

D Proof of Lemma 5

By contradiction assume i ∈ maxv∈VD
(v 7→ S) and i is not a

subsequence of S (written i 6≺ S). Since D covers S we have
S ∈ V ?D by definition.

Since D is a dictionary and since i 7→ S, we know that
S 6∈ Qi. Thus, S ∈ D?\Qi: S has a subsequence of at least
one word in Ri. Thus there exists k ∈ Ri such that k ≺ S.
If k = i this implies i ≺ S which contradicts our assumption.
Otherwise it means that ∃j ∈ Γ+(i) such that j 7→ k ≺ S,
which contradicts the definition of i ∈ maxv∈VD

(v 7→ S) and
thus it must hold that i ≺ S.

E Proof of Lemma 6

We present a procedure to construct such a dictionary D. Let
Mn be the set of all motifs with n nodes of the graph familyH.
For each motif m ∈ Mn with x possible attachment point pairs
(up to isomorphisms), we add x dictionary words to VD , one for
each attachment point pair. The resulting set is denoted by VM .
For each sequence of V ?M with at most n nodes, we add another

word to VD (with the un-used attachment points of the first and
the last subword). There is an edge e ∈ ED if the transitive re-
duction of the embedding relation with context includes an edge
between two words. We now prove that D is a dictionary, i.e.,
it is robust to composition. Let i ∈ VD . Observe that Ri con-
tains all compositions of words with at most n nodes in which i
can be embedded. Consequently, no matter which sequences are
in R?i , it holds that vi cannot be embedded in sequences in Qi,
and the robustness condition is satisfied. Since H has n vertices,
and since D contains all possible motifs of at most n vertices, D
covers H.

F Proof of Theorem 3

We first prove that the claim is true if H forms a motif se-
quence (without edge expansion). Subsequently, we study the
case where the motif sequence is expanded by Rule 2, and fi-
nally tackle the general composition case.

Discovery of motif sequences: Due to Lemma 5, it holds
that for w chosen when Line 1 of findMotifSequence() is ex-
ecuted for the first time, S is partitioned into three subse-
quences S1, w and S2. Subsequently findMotifSequence() is
executed on each of the subsequences S′ ∈ {S1, S2} recur-
sively if C 7→ S′, i.e., if the subsequences are not empty. Thus
findMotifSequence() computes a decomposition as described in
Corollary 3 recursively. As each of the words used in the decom-
position is a subsequence of S, and as findMotifSequence() does
not stop until no more words can be added to any subsequence,
it holds that all nodes of S will be discovered eventually. In other
words, π−1(u) is defined for all u ∈ S.

As a next step we assume S′ 6= S to be the sequence
of words obtained by DICT to derive a contradiction. Since
S′ := H′ is the output of algorithm DICT and is hence em-
beddable inH: S′ 7→ S, there exists a valid embedding mapping
π. Given u, v ∈ V (S), we denote by Eπ

−1
(S′) the set of pairs

{u, v} for which {π−1(u), π−1(v)} ∈ E(S′). Now assume that
S and S′ do not lead to the same resource reservations. Hence
there are some inconsistencies between the substrate and the out-
put of algorithm DICT: Φ = {{u, v} ∈ E(S)\Eπ−1

(S′) ∪
Eπ
−1

(S′)\E(S)}. With each of these “conflict” edges, one
can associate the corresponding word Wu,v (resp. W ′u,v) in S
(resp. S′). If a given conflict edge spans multiple words, we only
consider the words with the highest index as defined by DICT.
We also define iu,v = r(Wu,v) (resp. i′u,v = r(W ′u,v)). Since
S′ and S are by definition not isomorphic, i′u,v 6= iu,v .

Let j = max(u,v)∈Φ(iu,v) be the index of the greatest word
embeddable on the substrate containing an inconsistency, and j′

be the index of the corresponding word detected by DICT.
(i) Assume j > j′: a lower order motif was erroneously

detected. Let J+ (and J−) be the set of dictionary entries that
are detected before (after) D[j] (if any) in S by DICT. Observe
that the words in J+ were perfectly detected by DICT, other-
wise we are in Case (ii). We can decompose S as an alternating
sequence of words of J+ and other words using Corollary 3 :
S = T1J1(a1)T2 . . . Tk with Ji(ai) ∈ (J+)? and attachment
points ai and Ti ∈ (J−)?. As the words in J+ are the same
in S′, we can write S′ = T ′1J1T

′
2 . . . T

′
k (using Corollary 3 as

well).
Let T be the sequence among T1, . . . , Tk that contains our

misdetected word D[j], and T ′ the corresponding sequence in
S′. Observe that T ′ 7→ T since the words Ji cut the sequences
of S and S′ into subsequences Ti, T ′i that are embeddable.
Observe that D[j] 7→ T since T contains it. Note that in the
execution of findMotifSequence() when D[j′] was detected the
higher indexed words had been detected correctly by DICT in
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previous executions of this subroutine. Hence, T< and T> can-
not contain any words leading to edges in Φ. We deduce that
j′ 6= argmaxx(D[x] 7→ T ) since j = argmaxx(D[x] 7→ T )

and j′ < j which contradicts Line 1 of findMotifSequence().

(ii) Now assume j′ > j: a higher order motif was erro-
neously detected. Using the same decomposition as step (i), we
define J ′+ as the set of words perfectly detected, and therefore
decompose S and S′ as sequences S = T1J ′1T2 . . . J

′
k−1Tk and

S′ = T ′1J
′
1T
′
2 . . . J

′
k−1T

′
k with J ′i ∈ (J ′+)? and the property

that each T ′i 7→ Ti.

Let T ′ be the sequence among T ′1, . . . , T
′
k that contains our

misdetected word D[j′], and T the corresponding sequence in
S. Since D[j′] ≺ T ′, D[j′] 7→ T ′. Recall that T ∈ V ?D\(J

′+)?.
We again consider two subcases: D[j′] ≺ T : T contains some
occurrences of the word D[j′], but DICT detected a wrong num-
ber of such occurrences. Using Corollary 3, we again decom-
pose T as T = R1D[j′]R2 . . . Rk with Ri ∈ (J ′−)?. Let R be
the sequence R1, . . . , Rk containing D[j]. We have D[j′] 7→ R

and R ∈ (J ′−)?, which contradicts the robustness property of
D. Now, consider that T has no occurrences of the word D[j′]:
T ∈ V ?D\(J

′+ ∪ {D[j′]})?, that is T ∈ (J ′−)? and D[j′] 7→ T ,
which again contradicts the robustness property of D.

The same arguments can be applied recursively to show that
conflicts in φ of smaller indices cannot exist either.

Expanded motif sequences. As a next step, we consider
graphs that have been extended by applying node insertions
(Rule 2) to motif sequences, so-called expanded motif se-
quences: we prove that if H is an expanded motif sequence
S, then algorithm DICT correctly discovers S. Given an ex-
panded motif sequence S, replacing all degree-2 nodes with an
edge connecting their neighbors unless a cycle of length three
would be destroyed, leads to a unique pure motif sequence T ,
T 7→ S. For the corresponding embedding mapping π it holds
that V (S) \ π(T ) is exactly the setR of removed nodes. Apply-
ing findMotifSequence() to an expanded motif sequence discov-
ers this pure motif sequence T by using the nodes in R as relay
nodes. All nodes in R are then discovered in edgeExpansion()
where the reverse operation node insertion is carried out as often
as possible. It follows that each node in S is either discovered in
findMotifSequence() if it occurs in a motif or in edgeExpansion()
otherwise.

Combining expanded sequences. Finally, it remains to
combine the expanded sequences. Clearly, since motifs describe
all parts of the graph which are at least 2-connected, the graph
remaining after collapsing motifs cannot contain any cycles: it is
a tree. However, on this graph DICT behaves like TREE, but in-
stead of attaching chains, entire sequences are attached to differ-
ent nodes. Along the unique sequence paths between two nodes,
DICT fixes the largest words first, and the claim follows by the
same arguments as used in the proofs for tree and cactus graphs.

G Proof of Lemma 7

The request complexity of Line 1 of In the depth-first traver-
sal, there is exactly one path between the chain C and a word
v = D[i] in VD . DICT issues a request for at most all the outgo-
ing neighbors of the nodes this path. After v has been found, the
highest j where H′v (T<) BF (vj) AF (T>) 7→ H has to be de-
termined. To this end, another j+1 requests are necessary. Thus
the maximum of cost(v) + j over all word v ∈ VD determines
the request complexity.

H Proof of Theorem 4

Each time Line 1 of findMotifSequence() is called, either at
least one new node is found or no other node can be embed-
ded between the current sequences (one request is necessary for
the latter result). If one or more new nodes are discovered, the
request complexity can be amortized by the number of nodes
found: If v is the maximal word found in Line 1 of findMotifSe-
quence(), then v is responsible for at most cost(v) requests due
to Lemma 7. If it occurs more than once at this position, only
one additional request is necessary to discover even more nodes
(plus one superfluous request if no more occurrences of v can be
embedded there). Amortizing the request number over the num-
ber of discovered nodes results in ∆ requests. All other requests
are due to edgeExpansion(e) where additional nodes are placed
along edges. Clearly, these costs can be amortized by the number
of edges in H: for each edge e ∈ E(H), at most two embed-
ding requests are performed (including a “superfluous” request
which is needed for termination when no additional nodes can
be added).
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