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Abstract. Peer-to-peer systems rely on a scalable overlay network that enables efficient routing between its
members. Hypercubic topologies facilitate such operations while each node only needs to connect to a small number
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weakly connected. This is an exponential improvement compared to previously known self-stabilizing algorithms
for overlay networks. In addition, individual joins and leaves are handled locally and require little work.
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1. Introduction. Peer-to-peer computing is one of the most intriguing networking
paradigms of the last decade. Numerous Internet applications make use of peer-to-peer tech-
nology, including file sharing, streaming and gaming tools. A distinguishing feature of these
networks is that they typically have an open clientele, allowing machines to join and leave
at any time and concurrently. If no countermeasures are taken, the dynamic membership
changes can degenerate the network, rendering central operations such as routing inefficient.
In an effort to gain deeper insights into (and deal with) these dynamics, researchers have stud-
ied different approaches. In theory, the dominating approach has been to make sure that an
overlay network never leaves a certain set of legal states so that at any time, information can
be efficiently exchanged between its members. This is mostly achieved through redundancy
in the overlay network topology, which can significantly increase its maintenance overhead,
so the rate of changes such networks can sustain might be rather limited. However, a high
change rate can happen due to heavy churn or join-leave attacks. Also, partitions of the un-
derlying physical network or DoS attacks may push the overlay network into some illegal
state. In this case, the overlay network may get into a state in which it is highly vulnerable
to further changes, so proper recovery mechanisms are needed to get it back into a legal state
as quickly as possible. Some results are known in this direction, but most of the proposed
protocols only manage to recover the network from a restricted class of illegal states (e.g.,
[AAC+05, AW07, SMK+01]). Those few results known for truly self-stabilizing networks
either just show eventual self-stabilization (e.g., [CNS08]) or do not provide sublinear bounds
on the convergence time (e.g., [GJR+08, ORS07]). Our work is the first that demonstrates
that sublinear, in fact, polylogarithmic recovery time is possible. More precisely, we present
a self-stabilizing algorithm for a proper extension of the skip graph [AS07] (as the original
skip graph is not locally checkable). Skip graphs are very useful for scalable overlay net-
works. They have logarithmic diameter and degree and constant expansion w.h.p. [AW05].
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Also, like in hypercubic networks, no extra routing tables have to be maintained for fast, low
congestion routing. Before we delve into the details of our solution, we discuss related work
and present our model.

1.1. Related Work. There is a large body of literature on how to maintain peer-to-peer
networks efficiently, e.g., [AS07, AS04, BKR+04, DR01, HJS+03, KSW05, MNR02, NW07,
RFH+01, SMK+01, SS09]. Recently, the first structured overlay networks have also found
their way into the practical world; for instance, the Kademlia [MM02] overlay is used in the
popular Kad network which can be accessed with eMule clients. An interesting and flexible
overlay structure are skip graphs [AS07, AS03, GNS06, HM04, HJS+03]. These networks
are based on the classical skip list data structure and allow for efficient, low-congestion rout-
ing while requiring a small node degree only. Due to the typically very dynamic nature of
peer-to-peer systems, there is a need to maintain the overlay topology or—in case of catas-
trophic events—recover it from arbitrary connected states. While many results are already
known on how to keep an overlay network in a legal state, not much is known about self-
stabilizing overlay networks.

In the field of self-stabilization, researchers are interested in algorithms that are guaran-
teed to eventually converge to a desirable system state from any initial configuration. The idea
of self-stabilization in distributed computing first appeared in a classical paper by E.W. Di-
jkstra in 1974 [Dij74] in which he looked at the problem of self-stabilization in a token ring.
Since Dijkstra’s paper, self-stabilization has been studied in many contexts, including com-
munication protocols, graph theory problems, termination detection, clock synchronization,
and fault containment. For a survey see, e.g., [BS00, Dol00, Her02].

Also general techniques for self-stabilization have been considered. Awerbuch and
Varghese [AV91] showed that every local algorithm can be made self-stabilizing if all nodes
keep a log of the state transitions until the current state; the convergence time equals the ex-
ecution time of the local algorithm, that is, any deterministic, synchronous local algorithm
whose running time is T synchronous communication rounds provides a self-stabilizing al-
gorithm that stabilizes in time T (see also the examples given in the survey paper by Lenzen
et al. [LSW09]). Since then several other methods have emerged including various local and
global checking and correction techniques [APSV91, CV96, KP93, Var92, Var94]. Also so-
called time-adaptive techniques [Her97, KPS97, KP95] as well as local stabilizers [AD02]
have been presented which can recover any distributed algorithm in O(f) time depending
only on the number f of faults. This, however, does not hold any more if faults include
changes in the topology. In this case, a single fault may require the involvement of all nodes in
the system and is therefore quite expensive to fix. Thus, people have also looked at so-called
superstabilizing protocols, which are protocols that can handle a single topology change as
well as arbitrary state faults with low overhead (e.g., [DH97]).

Interestingly, though much attention has been given to self-stabilizing distributed com-
puting, even in the context of dynamic networks, the problem of designing self-stabilizing net-
works has only been given very little attention. The general techniques mentioned above are
not applicable here as they have not been designed to actively perform local topology changes
(network changes are only considered as faults or dynamics not under the control of the al-
gorithm). Even though logging techniques such as [AV91] to convert non-self-stabilizing
algorithms into self-stabilizing algorithms can also be applied to self-stabilizing networks,
they usually need some non-local knowledge of the network (such as its size) to bound the
state space which can make self-stabilization very expensive. Our goal instead was to find
dedicated, much more light-weight algorithms for self-stabilizing networks.

Some preliminary work in this direction has already been done. In the technical report of
the Chord network [SMK+01], protocols are described which allow the topology to recover
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from certain degenerate states. Aspnes et al. [AW07] give a self-stabilizing algorithm to
construct a balanced search tree for the case that nodes initially have out-degree 1. It is also
known how to repair skip graphs from certain degenerate states [AS07] but the problem of
recovering them from an arbitrary connected state has remained open. This is not surprising
as the neighborhood information alone is not sufficient for the Chord network as well as skip
graphs to locally verify the correctness of the topology. Hence, additional information would
be needed, which significantly complicates the self-stabilization process.

In order to recover scalable overlays from any initial graph, researchers have started with
simple non-scalable line and ring networks. The Iterative Successor Pointer Rewiring Proto-
col [CF05] and the Ring Network [SR05] organize the nodes in a sorted ring. However, the
runtime of both protocols is rather large. Aspnes et al. [AAC+05] describe an asynchronous
protocol which turns an initially weakly connected graph into a sorted list. Unfortunately,
their algorithm is not self-stabilizing. In [ORS07], Onus et al. present a local-control strategy
called linearization for converting an arbitrary connected graph into a sorted list. However,
the algorithm is only studied in a synchronous environment, and the strategy may need a
linear number of communication rounds. Clouser et al. [CNS08] formulated a variant of the
linearization technique for asynchronous systems in order to design a self-stabilizing skip list.
Gall et al. [GJR+08] combined the ideas from [CNS08, ORS07] and introduced a model that
captures the parallel time complexity of a distributed execution that avoids bottlenecks and
contention. Two algorithms are presented together with an analysis of their distributed run-
time in different settings. No sublinear time bounds are shown there either. Recently, Jacob
et al. [JRSS09] generalized insights gained from graph linearization to two dimensions, and
presented a self-stabilizing O(n3)-time construction for Delaunay graphs.

To the best of our knowledge, this is the first paper to describe a self-stabilizing algorithm
for a scalable overlay network (in our case, skip graphs) in sublinear time. In fact, the skip
graph construction terminates in a polylogarithmic number of communication rounds. In
addition to being able to recover quickly from an arbitrary connected state, we also show
that when the network forms the desired topology, our algorithm efficiently supports join
and leave events, which incur only a polylogarithmic amount of work to fix. This means (in
contrast to considering a completely new starting situation and recovering the structure in
polylogarithmic time) that only a small part of the nodes are involved in repairing the overlay
topology.

1.2. Model. We represent an overlay network as a directed graph G = (V,E), where
|V | = n. Each node is assumed to have a unique identifier (or short: ID) v.id ∈ U that is
immutable, where U is the (ordered) universe of all identifiers. At any time, each node can
inspect its own state and the state of its current neighbors. Beyond that, a node does not know
anything, including the current size n of the overlay network. Only local topology changes
are allowed, i.e., a node may decide to cut a link to a neighbor or ask two of its neighbors to
establish a link. The view and the influence of a node are essentially local. The decisions to
cut or establish links are controlled through actions (which we will also call rules). An action
has the form label : guard→ commands where guard is a Boolean predicate over the state
of the executing node and its neighbors and commands is a sequence of commands that may
affect the state of the executing node or request a new edge between two neighbors. This is
done via an insert(v, w) request by which a node asks its neighbor v to establish an edge to
neighbor w. An action is called enabled if and only if its guard is true.

For simplicity, we assume that time proceeds in rounds, and all requests generated in
round i are delivered simultaneously at the beginning of round i + 1. In other words, we
assume the standard synchronous message-passing model with the restriction that a node can
only communicate with nodes that it has currently links to. In each round, all actions that are
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enabled are executed by the nodes. If two actions executed by the same node are in conflict
with each other, any one of them may win and the other is discarded. Our goal is to minimize
the number of rounds needed in the worst case (over all initial states in which the network is
weakly connected) until the overlay network has reached its desired structure. We make this
a bit more precise by defining what we mean by self-stabilization.

When using the synchronous message-passing model, the global state of the system at
the beginning of each round is well-defined. A computation is a sequence of states such that
for each state si at the beginning of round i, the next state si+1 is obtained after executing
all actions that were fired in round i. In our context, we call a distributed algorithm self-
stabilizing if from any initial state (from which a legal state is still reachable) it eventually
reaches a legal state in which no more actions are enabled, i.e., once the overlay network
reaches its desired topology, it does not change anymore. Our goal will be to find a self-
stabilizing algorithm that needs as few rounds as possible for this.

1.3. Our Contributions. We present a variant of the skip graph, called SKIP+, that can
be locally checked for the correct structure. For this graph, we present a distributed self-
stabilizing algorithm that arrives at SKIP+ for any initial state in which the nodes are weakly
connected in O(log2 n) rounds. This is an exponential improvement over all previous results
on the number of communication rounds needed to arrive at a scalable overlay network. We
also show that a single join event (i.e., a new node connects to an arbitrary node in the system)
or leave event (i.e., a node just leaves without prior notice) can be handled by our algorithm
with polylogarithmic work, demonstrating that our algorithm is not just useful for the worst
case but also for the case where the overlay network is already forming the desired topology
(which is the standard case in the literature).

1.4. Paper Organization. In the rest of this paper we present and analyze our self-
stabilizing algorithm for SKIP+ graphs. The paper ends with a conclusion.

2. Algorithm. We first introduce the skip graph SKIP+ we want to construct and then
present our algorithm ALG+.

2.1. The SKIP+ Graph. We start with the definition of the skip graph. In skip graphs,
the identity of a node v consists of two components: v.id , a unique but otherwise arbitrarily
chosen identifier, and v.rs , a (pseudo-)random bit string of sufficient length that was uni-
formly chosen at random when the node entered the system. Both parts are assumed to be
immutable.

For a node v and a subsetW ⊆ V of nodes define the predecessor of v inW pred(v,W )
to be the node u ∈ W such that u.id = max{w.id | w ∈ W and w.id < v.id}. By the
assumption that no two nodes share the same id , this is well defined. If such a u does not
exist, set pred(v,W ) := ⊥ and define⊥.id = −∞. Similarly define the successor of v inW
succ(v,W ) to be u ∈ W such that u.id = min{w.id | w ∈ W and w.id > v.id}, or if
this does not exist succ(v, U) := > and define >.id = ∞. Here, −∞ and +∞ are resp. the
lowest and largest elements in the identifier space U not allowed as identifiers of real nodes.

The definitions needed for the ideal skip graph are marked by a superscript ∗ to dis-
tinguish them from analogous definitions used in the algorithm, which are all based on the
current local views of the nodes.

For any i ≥ 0, let prei(v) denote the first i bits of v.rs (i.e., the prefix of v.rs of
length i) and v.rs[i] represent the ith bit of v.rs . Now define the level-i predecessor of v
by pred∗i (v) := pred(v, {w | prei(w) = prei(v)}), and the level-i successor of v by
succ∗i (v) := succ(v, {w | prei(w) = prei(v)}).

DEFINITION 2.1 (Skip Graph). Assume we are given a set of nodes together with asso-
ciated IDs and random strings. In the corresponding skip graph, every node v is connected



SKIP+ GRAPHS 5

exactly to pred∗i (v) and succ∗i (v) for every i ≥ 0 (except for the case of ⊥ and >).
Given unique node identifiers, the skip graph is uniquely defined. It is not difficult to see

that the skip graph has logarithmic diameter and maximum degree and allows hypercubic-
style routing between any pair of nodes in O(log n) time, w.h.p. However, the nodes cannot
locally verify the correctness of the skip graph topology. Therefore, we propose a slight
extension of the skip graph that we call SKIP+.

The definition of SKIP+ requires us to also define (extended) predecessors and suc-
cessors on level i with a specific value in the next bit. For any i ≥ 0 and x ∈
{0, 1} define pred∗i (v, x) = pred(v, {w | prei+1(w) = prei(v) ◦ x}) and simi-
larly succ∗i (v, x) (where operator ◦ means concatenation of bit strings). Let low∗i (v) =
min{pred∗i (v, 0).id ,pred∗i (v, 1).id} and high∗i (v) = max{succ∗i (v, 0).id , succ∗i (v, 1).id},
and let v.range∗[i] ⊆ U be defined as [low∗i (v), high∗i (v)]. With this, the SKIP+ graph has
the neighbor set N∗i (v) of v at level i as the set of all nodes w with prei(w) = prei(v) and
w.id ∈ v.range∗[i].

DEFINITION 2.2 (SKIP+Graph). Assume we are given a set of nodes together with
associated IDs and random strings. In the corresponding SKIP+ graph every node v is
connected to exactly the nodes in N∗i (v) for all i ≥ 0, i.e., N(v) =

⋃
i≥0N

∗
i (v).

Figure 2.1 illustrates the connections in SKIP+. The white (resp. black) nodes in the
figure illustrate the nodes v at level i for which v.rs[i + 1] = 0 (resp. v.rs[i + 1] = 1).
The total sorted order of the nodes according to their identifiers is shown at the bottom; the
SKIP+ structure at level 0 is depicted in the middle, whereas the top part of the figure (top
two connected components of black and white nodes) correspond to level 1. Note that skip
graph edges of level i+ 1 appear in the SKIP+ graph already on level i.

i=0

i=1

rs=0...

rs=1...

rs=01..

rs=00..

rs=10..

rs=11..

FIG. 2.1. Visualization of SKIP+ connections.

Since the skip graph is a subgraph of SKIP+ (on the same set of nodes), SKIP+ has
a logarithmic diameter and constant expansion. Also, it is not too difficult to see that the
maximum degree remains logarithmic w.h.p.

DEFINITION 2.3 (Height H ). The height HG of a SKIP+ graph G is defined as the
maximal number of non-trivial levels. A non-trivial level is a level which consists of more
than one node, that is, HG = max{|ρ| : |Vρ| ≥ 2} where Vρ = {v ∈ V | ρ = pre |ρ|(v)}.

As we expect O(1) nodes sharing a prefix of length Ω(log n), it follows from Chernoff
bounds that HSKIP+ ∈ O(log n) w.h.p.

The goal is to establish the SKIP+ graph as the target topology using bi-directed edges
(this is why the edges in Figure 2.1 are undirected), but during the construction, the network
has to deal with directed edges.
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2.2. The ALG+ Algorithm. In the description and analysis of our algorithm, we will
make use of the following definitions.

DEFINITION 2.4 (Graph Gρ). Given any directed graph G = (V,E) currently formed
by the nodes and any prefix ρ, the graph Gρ = (Vρ, Eρ) is a subgraph of G where Eρ =
{(u, v) ∈ E : u, v ∈ Vρ}. The nodes in Vρ are called ρ-nodes and the edges in Eρ are called
ρ-edges.

DEFINITION 2.5 (Connected ρ-Component). Given a prefix ρ, we will refer to a weakly
connected component of nodes in Gρ as a connected ρ-component. A pair of nodes in such a
component is called ρ-connected.

For any node v let N(v) be its current outgoing neighborhood and v.range[i] be its
current range at level i, which is based on its current view of predi(v, x) and succi(v, x),
where predi(v, x) is the node such that predi(v, x).id = max{w.id | w ∈ N(v) and w.id <
v.id and prei+1(w) = prei(v) ◦ x} and succi(v, x) is the node such that succi(v, x).id =
min{w.id | w ∈ N(v) and w.id > v.id and prei+1(w) = prei(v) ◦ x}. For each level i,
v.range[i] ⊇ v.range∗[i], i.e, the current range will always be a superset of the desired range in
the target topology (as defined in SKIP+). We will see that as long as no faults or adversarial
changes happen during the self-stabilization process, ALG+ monotonically converges to the
desired ranges for every i.

ALG+ distinguishes between stable edges and temporary edges. Node v considers an
edge (v, w) to be temporary if from v’s point of view (v, w) does not belong to SKIP+ and
so v will try to forward it to some of its neighbors for which the edge would be more relevant.
Otherwise, v considers (v, w) to be a stable edge and will make sure that the connection is bi-
directed, i.e., it will propose (w, v) to w. There is a binary flag v.F (w) for each neighbor w
that states whether the edge to it is stable. The flag turns out to be important when a stable
edge destabilizes (i.e., converts into a temporary edge) because this triggers the introduction
of several temporary edges that are needed for our proofs to go through. The other conversion,
from temporary to stable, essentially boils down to introducing also the other direction of the
edge. More details will be given later.

The intuition behind the ALG+algorithm is as follows. The algorithm has two main
phases: The first phase proceeds in a bottom-up (i.e., from level 0 upwards) fashion, forming
connected ρ-components for every prefix ρ. This will be accomplished by letting each node v
find another node w of the opposite color, i.e., such that prei(w) = prei(v) and v.rs[i+ 1] 6=
w.rs[i+ 1] for all levels i ≥ 0 (we will call w a buddy of v). We can show that once all nodes
in Vρ have formed a single connected component and have found a buddy, then connecting
all nodes which are at most three hops away in the ρ-component results in a single connected
ρ0- and ρ1-component. This will be accomplished by Rules 1 (where new nodes in the range
of a node are discovered and where ranges may be refined) and Rules 3 (where an efficient
variation of a local transitive closure is performed) below.

Once the connected ρ-components are formed, the second phase of the algorithm will
form a sorted list out of each ρ-component. This is accomplished in a top-down fashion by
merging the two already sorted ρ0- and ρ1-components into a sorted ρ-component until all
nodes in the bottom level form a sorted list.

Of course, this “division into phases”-intuition oversimplifies what is really going on in
our algorithm. Whereas for the sake of simplicity, we can think of the execution of the phases
of the algorithm as being perfectly synchronized, with all nodes waiting for the connected
components at level i to converge before the components at level i + 1 are formed in the
first phase, and with the sorting of the components at level i only starting after we have
successfully sorted the components at level i+ 1 in the second phase (and of course with the
second phase only kicking in after the first phase is completed), all actions in our algorithm
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may be enabled at any time, causing the phases to be intertwined in the real execution. Hence,
the main challenge in this paper is to show that nevertheless the actions transform any initially
connected graph into SKIP+ in O(log2 n) rounds.

Now we are ready to present ALG+. The local state of a node v consists of v.id , v.rs ,
N(v) (which imply the edges and ranges of v) and its flags. We assume that every node v
knows (besides its own local state) the current local state of all nodes w ∈ N(v). Hence, the
actions of a node v may be based on any local state information of v or its neighbors. Re-
call that we assume the synchronous message-passing model. At the beginning of a round i,
every node receives all the requests to establish an edge that were generated in the previous
round. After a preprocessing step in which each node updates its neighborhood and the state
information about its neighborhood, a set of three types of actions is processed, which we
also call rules here. For readability, we will present the rules in words, but transforming them
into the formal terminology of our model is straightforward. We note that the preprocessing
step is separated from the actions to ensure a deterministic state transition in the synchronous
message-passing model. In an asynchronous model, the preprocessing step would be contin-
uously performed in the background at any time. For each node u we do the following in a
round:

Preprocessing. First, a node u processes all insert(u, v) requests from the previous
round where v ∈ V \ ({u} ∪ N(u)) (the others would be thrown away, but our algorithm
avoids issuing such requests in the first place). This is done by adding v to N(u) and set-
ting its flag u.F (v) to 0 (temporary). Then u makes sure that its state is valid, i.e., the flags
carry binary values and N(u) is a set of nodes v 6= u that are all alive (otherwise, u removes
that node from N(u)). Now u determines for every i its current predecessors predi(u, 0)
and predi(u, 1) and its current successors succi(u, 0) and succi(u, 1) (within N(u)). This
allows u to update its range information. The updated local state is exchanged between the
nodes so that the rules below are based on up-to-date information.

DEFINITION 2.6 (Stable Edges). Every edge (u, v) is considered stable,
• if its endpoints mutually fall on each other’s range at some level prei(u) = prei(v),

i.e., v.id ∈ u.range[i] and u.id ∈ v.range[i], for some i. In this case (u, v) is
defined to be stable on all levels j ≥ i with prej(u) = prej(v). Or

• v = predi(u, x) or u = predi(v, x), or v = succi(u, x) or u = succi(v, x), for
some level i and bit x ∈ {0, 1}. In this case (u, v) is stable only on level i.

This second kind of stable edges is needed to stay in touch with a “buddy” (see below),
in order to forward temporary edges. Our algorithm guarantees that once a node has a buddy
to the left (or to the right), it will always have such a buddy in the future.

DEFINITION 2.7 (Level of Temporary Edge). We define the level of a temporary edge
(u, v) as the length of the longest common prefix of u and v.

All of the rules below are only activated if the resulting action changes the graph or the
state, i.e., if the to be inserted edge does not already exist or the flag changes its value.

Rule 1a: Create Reverse Edges. For every stable edge (u, v), u sets F (v) = 1 (if it has
not already done so) and initiates an insert(v, u) request.

Rule 1b and Rule 1c: Introduce Stable Edges. For every stable neighbor v (the edge
(u, v) is considered stable as defined in Preprocessing) of a node u, for every i ≥ 0 and every
node w ∈ N(u), w 6= v with prei(v) = prei(w) and w.id ∈ v.range[i], node u initiates
insert(v, w) (Rule 1b) and insert(w, v) (Rule 1c).



8 JACOB ET AL.

Rule 2: Forward Temporary Edges. Every temporary edge (u, v) is forwarded to a stable
neighbor of u that has the largest common prefix with v.rs . (Such an edge exists because
otherwise (u, v) would be a stable edge.)

Rule 3a: Introduce All. For all nodes u ∈ V whose set of stable neighbors is different
from the previous round, u initiates insert(v, w) for all neighbors w of u. (In particular, if an
edge destabilizes, both incident nodes will introduce their neighbors.)

Rule 3b: Linearize. For every level i, u identifies the stable neighbors v1, . . . , vk with
v1.id < v2.id < . . . < vk.id that have exactly the first i bits in common with u.rs and
initiates insert(v1, v2), insert(v2, v3),. . ., insert(vk−1, vk) for them.

3. Analysis. We first analyze the bottom-up phase and then tackle the top-down phase.

3.1. Bottom-up Phase. LEMMA 3.1. Consider any bit string ρ ∈ {0, 1}∗. Suppose
that nodes a and b are ρ-connected at time t0. Then a and b are also ρ-connected at any time
t ≥ t0.

Proof. We prove the lemma by induction over the time steps. Consider any edge e =
(u, v) (temporary or stable) at time t ≥ t0 with u, v ∈ Vρ. The only rule that may remove
this edge is Rule 2, all other rules only create edges. If the edge e is forwarded by Rule 2 to
a node w, node w must have a shared prefix with u that extends ρ, and all three nodes u, v, w
remain connected in Gρ at the next time step.

In the following lemma, an edge (u, v) is said to be to the right (resp. left) if u.id < v.id
(resp. u.id > v.id ).

LEMMA 3.2. Assume a node u has a stable ρ-edge to the right (left) at time t0. Then at
any time t > t0, node u will have a stable ρ-edge to the right (left).

Proof. By induction over time. A stable ρ-edge (u, v) only destabilizes because the |ρ|-
range of u has become smaller, and there now is another ρ-node w stably connected to u, and
w is between u and v.

A ρ-buddy of a node u is a stable neighbor v (the edge (u, v) exists and is considered
stable) with pre |ρ|(u) = pre |ρ|(v) = ρ and u.rs[|ρ| + 1] 6= v.rs[|ρ| + 1]. Our algorithm
ensures that once a node has a left (or right) buddy at time t, then it will also have a left (or
right) buddy at all times t′ ≥ t. In the following, the V in V-linked does not refer to a set V
but to the V-shaped situation of two nodes being linked indirectly via precisely two edges to
a third node.

DEFINITION 3.3 (σ-V-link). Consider any ρ ∈ {0, 1}∗ and x ∈ {0, 1}. Assume there
are two nodes u, v with prefix ρx = σ and one node w with prefix ρx̄. If u, v ∈ N(w), we say
that u and v are σ-V-linked via w.

LEMMA 3.4. Assume that u and v are σ-V-linked via w at time t. Then, at time t+ 1 the
nodes u and v are σ-connected, i.e., in the same connected component of Gσ .

Proof. Assume (w.l.o.g.) that u, v have label σ = ρ1, and w has label ρ0. By Rule 3b,
all stable ρ1-neighbors of w are in the same ρ1-component C at time t + 1. If (w, u) is a
temporary edge, this is forwarded to one of the stable ρ1 neighbors of w, and hence u is also
in the ρ1-component C. By the same reasoning v is also in C at time t+ 1, which proves the
lemma.

LEMMA 3.5. Consider any ρ ∈ {0, 1}∗ and x ∈ {0, 1}. Let node a with label ρx be
a ρ-buddy of u at time t and b a ρ-buddy of u at time t′ ≥ t. Then a and b are in the same
ρx-component at time t′ + 1.

Proof. For the case that t = t′, this follows from Lemma 3.4. Otherwise the proof is
an induction over time. Let a = at, at+1, . . . , at′ = b be ρ-buddies of u at the respective
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times. With Lemma 3.1, it suffices to show that ai−1 and ai are in the same ρx-component
at time i + 1. Because no rule deletes or forwards stable edges, the edge (u, ai−1) exists at
time i and Lemma 3.4 can be applied.

Note that the σ in “σ-V-linked” refers to the nodes that are linked, not the node that is
providing the link. Similarly, we define a bridge by the prefix of the nodes that are connected
by this bridge, not by the nodes that provide the bridge.

DEFINITION 3.6 (Temporary/Stable Bridge). Consider two nodes a, b with prefix σ =
ρx that are in different connected components of Gσ . Then, for k ≥ 1, a and b are connected
by a (σ, k)-bridge if there is a node c with stable edge (c, a) and a node d with stable edge
(d, b), where c, d have prefix ρx̄ and have the edge (c, d) at level |ρ|+ k (i.e., pre |ρ|+k(c) =
pre |ρ|+k(d)). If (c, d) is stable, this is a stable bridge; if (c, d) is temporary, it is a temporary
bridge.

The following definition is needed to show connectedness moving up the levels by the
rules. It is central to the bottom-up proof that eventually for all prefixes ρ we have that Gρ
consists of only one connected component. In the process where the connectedness of Gρ0
follows fromGρ being connected, the bridges play an important role. First, as long as a bridge
is temporary, the level increases in every step, but then, once it becomes a stable bridge, the
level of the used bridges decreases.

DEFINITION 3.7 ((σ, k)-pre-component). Two nodes a and b, both with prefix σ = ρx
for some x ∈ {0, 1}, are (directly) (σ, k)-pre-connected if (1) Gρ is connected, if (2) every
node in Gρx knows at least one node from Gρx and vice versa (throughout this paper, · will
denote the logical negation), and if (3) there is an edge (irrespective of this being temporary
or stable), between a and b, or if they are σ-V-linked, or if there exists a stable (σ, k′)-bridge
with k′ ≤ k between them. The transitive closure of this (undirected) relation defines the
(σ, k)-pre-component.

Requirements (1) and (2) will be made precise in the subsequent analysis and especially
Lemma 3.14 where the connectivity of Gρ is proved by induction. Note that for k = 0, the
σ-links and the (σ, 0)-pre-component (but without stable bridges) yield the transitive hull of
the σ-V-links. Figure 3.1 illustrates the situation.

ρ1τ ρ1τ
ρ1

ρ0

FIG. 3.1. The shaded nodes belong to the same (ρ0, k)-pre-component. In this figure, |τ | = k− 1, temporary
edges are dashed and stable edges are solid.

LEMMA 3.8. Assume nodes a, b are in the same (σ, k)-pre-component at time t0, k ≥ 1.
Then a and b are in the same (σ, k)-pre-component at any time t > t0.

Proof. Assume w.l.o.g. σ = ρ1. By induction over time, and the definition of the pre-
component being a transitive closure, it is sufficient to argue that nodes a, bwith prefix ρ1 that
are directly (σ, k)-pre-connected at time t are in the same (σ, k)-pre-component at time t+1.

If a, b are directly linked, we can employ Lemma 3.1, and the case that they are σ-V-
linked is due to Lemma 3.4. The remaining (and only interesting) case is that a and b have a
(σ, k)-bridge via a stable edge e = (u, v) (then there are also stable edges (u, a) and (v, b))
at time t. Let a′ and b′ be σ-nodes that are stable neighbors of u and v respectively. Then
a and a′ are σ-V-linked and are in the same σ-component at time t + 1 by Lemma 3.4. The
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same reasoning shows that b and b′ are in the same σ-component at time t + 1. If e remains
stable, a′ and b′ have a (σ, k)-stable bridge also at time t+1. Otherwise e destabilizes and by
Rule 3a a temporary edge (v, a′) or (u, b′) is present at time t+ 1, so a′ and b′ are σ-V-linked
via v or u, and hence in the same (σ, k)-pre-component at time t+ 1.

LEMMA 3.9. Assume that nodes a, b are in the same (σ, k)-pre-component at time t,
k > 1. Then, a and b are σ-connected at time t+ 4.

Proof. If a and b are in the same (σ, k)-pre-component (assume again that σ = ρx for
some x ∈ {0, 1}), there must exist a path a = p1  p2  ...  p` = b where pj is
connected to pj+1 either directly, via a σ-V-link, or via a stable (σ, k)-bridge. We only allow
a bridge between pj and pj+1 if these two nodes are not in the same (σ, 0)-pre-component.

Consider this path and assume pj and pj+1 are connected by a bridge over an edge
e = (u, v) of length λ (w.r.t. node identifiers, u and v having prefixes of the form ρxτy
where |τ | = k − 1 and y ∈ {0, 1}). Then, whenever possible, we replace e by two edges via
an intermediate node w if for the lengths it holds that |(u,w)| < λ and |(w, v)| < λ. Thus, in
our path, a new node p∗—w’s buddy—is inserted, maintaining our “path property”. Note that
this process terminates (the number of “turning points”—the local extrema of the identifiers
along the path—does not increase).

Consider a bridge edge (u, v) on this path with shortest bridges. First, consider the
case that (u, v) is unilaterally stable because of the nearest neighborhoods. That is, w.l.o.g.
assume v is u’s nearest neighbor but for some level, u is not in v’s range. Then, it holds
that v must know two closer nodes than u (due to the range definition), one of which will be
proposed to u in the next round (hence (u, v) will no longer be stable), triggering Rule 3a at
t+ 2, from which the claim follows.

From now on it remains to consider the case where u and v mutually include each other
in their ranges on some level. First assume that (u, v) is stable on a level > |σ|—the other
case where (u, v) is stable on level |σ| is treated later. Let us refer to the lowest level where
(u, v) is stable as i+ 1, that is, where prei+1(u) = prei+1(v) but either u.id /∈ v.range[i] or
v.id /∈ u.range[i] (or both, cf Definition 2.6), so |σ|+ k ≥ i+ 1 > |σ|. W.l.o.g., assume that
u.id /∈ v.range[i]. Due to the definition of the ranges, v must have both a stable predecessor
(relatively to the current neighborhood) with last bit 0 and a predecessor with last bit 1 that
lie between u and v: w0 = predi(v, 0) and w1 = predi(v, 1). Let w ∈ {w0, w1} such that
prei+1(u) = prei+1(w) = prei+1(v). See Figure 3.2.

p
j

w=w
1

w
2

u

p
j+1

ρ0τ1

ρ0τ0
w’

ρ1

v

u.range[i+1]

v.range[i]

v.range[i+1]
u.range[i]

FIG. 3.2. Situation for i+ 1 > |σ| in proof of Lemma 3.9 at time t. Here we use x = 0.

However, (w, u) 6∈ E at time t, due to our selection of the shortest bridge path: (u,w)
and (w, v) would imply a path (see your “path property” described before) with shorter
bridges. Thus, at time t + 1, (u,w) is created by Rule 1b. Now, we will show that this
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u v

c

xρ

xρ ρx

xρ

uw
µ

v

w’

FIG. 3.3. The two situations for i+ 1 = |σ| in proof of Lemma 3.9.

triggers u to fire Rule 3a at t + 2, either because (u,w) becomes stable or because (u, v)
becomes instable. (Note that (u, v) must be stable at time t, since the edge forms a bridge.)
Observe that it is not possible that (u, v) remains stable and (u,w) is instable, since both are
within u’s range on level i + 1, as u and w have a common prefix ρ = prei+1(w). Thus, at
time t+ 1, Rule 3a is triggered at u, and thus, at t+ 2, a and b are σ-V-linked and connected
in round t+ 3.

Observe that if w has a buddy w′ closer to u, see Figure 3.2, the same arguments apply,
as w′ will be introduced to v, which triggers Rule 3a at v.

It remains to study the case where (u, v) is stable on level i = |σ| (see Figure 3.3).
Assume u is stably connected to pj and v is stably connected to pj+1 (u, v ∈ Gρx). We
distinguish two cases: Either there is a node c ∈ Gρx between u and v or not. First, assume
there is such a node c, and w.l.o.g., assume c is stably connected to v on level |ρ|. (Observe
that due to our path selection, c /∈ Gρx, and hence it holds that c ∈ Gρx.) We will show
that in this case, a new connection (u, c) is proposed. Thus, there cannot be both edges (u, c)
and (c, v), otherwise the bridge would not be necessary, as the nodes must be in the same
(σ, 0)-pre-component. Therefore, either (u, v) destabilizes at time t + 1, triggering Rule 3a
at t+ 2, or (u, c) or (c, v) must be proposed according to Rule 1b. By the same reasoning as
above, the claim follows for time t+ 4 in this case.

If there is no such node c, consider the buddy of u or v closest to position µ = (u.id +
v.id)/2. That is, let B denote the set of all buddies of u and v on level i, i.e., B = (N(u) ∪
N(v))∩Gρx. Let w ∈ B be the buddy which minimizes |µ−w|. Without loss of generality,
assume w is the buddy of u. Now let w′ be the buddy of v which is located on the same side
of µ as w. Observe that v.range[i] is defined by w′ due to our assumption that c does not
exist and since w′ is further away from µ and hence also from v. Therefore, w ∈ v.range[i].
On the other hand, if no such w′ exists, then v.range[i] is not bounded, and the claim follows
trivially. Thus, a and b are σ-V-linked in round t + 2. Therefore, the claim also follows for
the case i+ 1 = |σ|, which concludes the proof.

LEMMA 3.10. A temporary edge (u, v) of level ` at time t is either transformed into a
stable edge or forwarded and changed by this into a temporary edge of level at least `+ 1.

Proof. Let ρ be the common prefix of u and v with |ρ| = `, and assume w.l.o.g. that u
has label ρ0 and v has label ρ1. If (u, v) is temporary, it either becomes stable by Rule 1a
or there must be a stable ρ1-node w ∈ N(u) between u and v In this case, Rule 2 replaces
(u, v) with (w, v) for such a w, which is a temporary edge of level at least `+ 1.

The following lemma follows from the previous one because no temporary edge has a
level higher than the height H .

LEMMA 3.11. Every temporary edge becomes stable after H time steps.
Next, the case of temporary bridges is investigated.
LEMMA 3.12. Assume two ρx-nodes a, b for some x ∈ {0, 1} are directly connected

by a temporary ρx-bridge, i.e., there is a temporary edge (u, v) and stable edges (u, a) and
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(v, b). Then, for k = H − |ρ|, a and b are (ρx, k)-pre-connected at time t+ k.
Proof. W.l.o.g. let x = 1. By the rules of temporary edges, the destination v never

changes. Let bi be a ρ-buddy of v, i.e., the stable edge (v, bi) exists at time t+ i, b0 = b. At
time t + i + 1, there is at least the temporary edge (v, bi), and bi and bi+1 are ρ1-V-linked,
and hence, by Lemma 3.8, bi is (ρ1, k)-pre-connected with b also at time t+ k.

Let ui be the starting point of the temporary edge at time t + i, i.e. (ui, v) be the
temporary edge, and let ai (with a0 = a) be some stable neighbor of ui at that time, i.e., the
stable edge (ui, ai) exists at time t+ i. At time t+ i the stable edge (ui, ui+1) exists (because
the temporary edge was forwarded along this edge). Further, let ci be some stable neighbor
of ui+1 at time t + i. If this does not exist, set ci = ai, and note that at time t + i + 1 the
stable edge (ui+1, ai) must exist because of Rule 1b. By definition, ai and ci have a stable
(ρ1, k′)-bridge for k′ ≤ k and are hence (ρ1, k)-pre-connected. At time t+ i+ 1 at least the
temporary edge (ui+1, ci) exists, and hence ci and ai+1 are ρ1-V-linked, so by Lemma 3.8 ai
is (ρ1, k)-pre-connected with a at time t+ k.

By Lemma 3.10 the level of (ui, v) is at least |ρ| + i. Hence for some j ≤ k the stable
edge (uj , v) exists at level smaller than H at time t + j. Hence, at time t + j the nodes
aj and bj are (ρ1, k)-pre-connected, and we can conclude from Lemma 3.8 that a and b are
(ρ1, k)-pre-connected at time t+ k.

LEMMA 3.13. Consider any bit string ρ ∈ {0, 1}∗. Suppose thatGρ is weakly connected
at time t0. Then every node u ∈ Vρ will have a neighbor in Vρ0 and Vρ1 within O(log n)
rounds.

Proof. Consider any node u that does not have a neighbor in Vρ0 or Vρ1. In this case,
u.range[i] = U for i = |ρ|, which implies together with Rule 1b and Rule 1c that every node
v ∈ N(u)∩Vρ with missing ρ-buddy will introduce every nodew ∈ N(v)∩Vρ to u. Suppose
w.l.o.g. that u is still missing a node in Vρ0. Then the neighbor introduction of Rule 1b and
Rule 1c implies that the distance of u in Gρ to the closest node in Vρ0 is cut in half in each
round. Thus, it takes at most O(log n) rounds into a node in Vρ0 is a direct neighbor of u,
which implies the lemma.

Lemma 3.13 can also be proved by observing that in every round, due to the “pointer
doubling” operations, the diameter of the connected component formed by nodes without a
buddy is cut in half.

LEMMA 3.14. Assume Gρ is connected at time t. Then, at time t+(H−|ρ|)+O(log n)
the graph Gρ0 is connected and so is Gρ1.

Proof. Define k = H − |ρ|. At time t0 = t+ O(log n), by Lemma 3.13, every ρ0 node
has a stable connection to a ρ1 node and vice versa. Let a and b be two ρ1 nodes. BecauseGρ
is connected at time t, it is so at time t0, and there is a path a = u1, u2, . . . , um = b in Gρ at
time t0. If ui is a ρ0 node, define vi to be one of its ρ1 buddies, otherwise set vi = ui. Then,
by definition, at time t0 the nodes vi and vi+1 are either directly connected, or connected by
a temporary (ρ1, k)-bridge. Hence, by Lemma 3.12 (or Lemma 3.1), at time t0 + k the nodes
vi and vi+1 are in the same (ρ1, k)-pre-component, and by Lemma 3.9, Lemma 3.8, and
Lemma 3.1 vi and vi+1 are in the same connected component of Gρ1 at time t0 + k +O(1).
With this and the symmetric argument for Gρ0 the claim of the lemma follows.

3.2. Top-down Phase. In the previous section, it has been shown that in O(log2 n)
rounds, all nodes sharing a given prefix ρ have discovered each other and are connected (via
other nodes with prefix ρ). In addition, each node is connected—on each level—to at least
one “buddy” having the opposite last bit of the corresponding prefix. We now prove that after
these properties have been achieved, the final SKIP+topology is established in only O(log n)
rounds.

The analysis of the top-down phase is done by induction overloading. For our induction
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step, we need the concept of finished levels.
DEFINITION 3.15 (i-Finished). We say that a graph is i-finished if and only if

1. ∀ρ with |ρ| = i, it holds that Gρ contains all edges of the SKIP+-graph as stable
edges;

2. ∀u ∈ V let ρ = prei(u) and ∀j < i: if v is a level j right-buddy of u (current
closest node on the right with prej(v) = prej(u) and v.rs[j + 1] 6= u.rs[j + 1]),
then for all ∀w with prei(w) = ρ (i.e., w ∈ Gρ) and w lying between u and v, i.e.,
w.id ∈ [u.id , v.id ], it holds that u and w are connected by a stable edge. If there
is no such buddy v, then u is connected to all nodes to the right of u in Gρ; and
similarly to the left.

Figure 3.4 shows an example.

=σ=ρ1...u.rs

rs=ρ...
ρ0...

FIG. 3.4. Visualization of the i-finished concept: node u is connected to all nodes having prefix ρ between its
buddies on level i. Note that the distances to the buddies may not decrease monotonously towards lower levels!

Observe that after the bottom-up phase, the “top label” is finished trivially: This label
forms a graph Gρ with more than one node, whereas Gρ1 and Gρ0 are trivial, i.e., consist
of a single node. Clearly, for a top label ρ the graph Gρ consists of precisely two nodes. In
addition, once the graph Gρ is connected, it contains all edges of the SKIP+-graph as stable
edges.

The following reasoning shows that the levels will finish one after the other starting from
the highest level (hence this phase’s name), where each level takes constant time only.

LEMMA 3.16. Assume at time t the graph is i-finished. Then, at time t+ 3, the graph is
(i− 1)-finished

Proof. Figure 3.5 illustrates the situation. We consider a node u. We will show that at
time t+ 1, u knows its closest level-i neighbor w in the direction of the old buddy (that must
exist due to Lemma 3.14 of the bottom-up phase). Having established this, it follows directly
that at time t + 2, w will inform u about all other neighbors in the desired region (Rule 1b
and Rule 1c). At time t+ 3, node u will be informed about its neighbors on the opposite side
of the level i− 1 interval by the corresponding buddy, establishing our induction invariant.

In order to prove that u knows its closest neighbor w at time t + 1, we distinguish three
cases. From the bottom-up phase, we know that u already has a buddy on one side. Without
loss of generality, assume this buddy is on the right of u. Let this buddy node be denoted by
v.

Case I: If v is already the closest node to the right, the claim holds trivially (v = w).
We know that w also has a buddy, which can either be on the right (Case II) or on the left

(Case III) of w (and hence also u). Let w’s buddy (take any if w has two) be denoted by w′.
Case II: Assume w′ is also on the right of w. We distinguish two cases: Either v is left

of w′ or right of w′. If v is left of w′, by our induction hypothesis, w must have a stable edge
to node v. By Rule 1b and Rule 1c, v will introduce w to u at t + 1 (edge (w, u)), and the
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Case I
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FIG. 3.5. Proof of Lemma 3.16.

claim follows. The case where v is right of w′ is analogue: the roles of v and w′ are simply
switched.

Case III: Now assume w has a buddy w′ on the left. We distinguish two cases. If u has
another buddy u′ on the left as well, the same arguments as in Case II show that either u′ or
w′ will introduce the corresponding neighbors at time t+ 1. If, on the other hand, u does not
have a buddy on the left, then by our induction hypothesis, w′ must have a stable edge to u,
over which u is introduced to w in the next round as well.

Finally, observe that after all levels are finished, all non-SKIP+ edges must be temporary.
They will be forwarded towards the highest level and disappear in logarithmic time (in H
rounds). Therefore, we conclude that the top-down phase takes logarithmic time only.

3.3. Combining Bottom-up and Top-down. From the previous discussion, we can
draw the following conclusions. From Lemma 3.14, by summing up over all levels, it follows
that the bottom-up phase lasts for at most O(log2 n) rounds w.h.p. The subsequent top-down
phase takes time O(log n) (cf Lemma 3.16) w.h.p. Thus, we have derived the following
theorem.

THEOREM 3.17. Given an arbitrary weakly connected graph, the self-stabilizing algo-
rithm ALG+ constructs SKIP+ in O(log2 n) rounds, w.h.p.

4. Node Join/Leave. In this section we study the amount of work it takes to handle a
node departure (leave) or the inclusion of a new node (join). We show that once we reach a
valid SKIP+ graph, our algorithm can efficiently support any single join or leave operation
in O(log4 n) work and O(log n) rounds w.h.p. For proving this result, we first need to bound
the degree of a node in SKIP+.

LEMMA 4.1. The degree of a node v in SKIP+ is O(log n) w.h.p.
Proof. Recall the definition of a SKIP+ graph and consider any node v. For any level i,

let the random variable XR
i be defined as

XR
i = max{|{w ∈ N∗i (v) | w.id > v.id}| − 1, 0}.

In order to bound the probability that XR
i = k for some k > 0, we consider three cases. If v

does not have k + 1 nodes in N∗i (v) to the right of it, then Pr[XR
i = k] = 0. If v has exactly

k+1 nodes inN∗i (v) to the right of it, thenXR
i = k if and only if for the k closest successors

w of v in N∗i (v) it holds that w.rs[i + 1] = succ∗i (v).rs[i + 1], so Pr[XR
i = k] = 1/2k−1.

Finally, if v has more than k+ 1 nodes in N∗i (v) to the right of it, then XR
i = k if and only if

the closest k successorsw of v in level i have the property thatw.rs[i+1] = succ∗i (v).rs[i+1]
and the (k + 1)th closest successor of v, w′, satisfies w′.rs[i + 1] 6= succ∗i (v).rs[i + 1], so
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Pr[XR
i = k] = 1/2k. In any case, Pr[XR

i = k] ≤ 1/2k−1 for any k > 0, and this
probability bound holds independently of the other levels. Hence, for XR =

∑H
i=1X

R
i ,

where H = Θ(log n) is an upper bound on the number of levels that holds w.h.p., it follows
that

Pr[XR = d] ≤
(
d

H

)
1

2d−H
.

If d = c ·H , we get (
d

H

)
1

2d−H
≤ (ec)H

2cH−H
≤ 1
nc′

for some constant c′ that can be made arbitrarily large if the constant c is sufficiently large.
Hence, the number of v’s neighbors to the right is at mostO(log n) w.h.p. A similar argument
applies to the left neighbors of v, which implies the claim.

THEOREM 4.2. When a node v leaves the system, it takes O(log n) rounds of the al-
gorithm and O(log4 n) total work w.h.p. for the graph to converge back to a valid SKIP+

structure.
Proof. Certainly, only the nodes that were directly connected to node v will need to

adapt their current set of neighbors upon the departure of v (since the departure of v could not
possibly alter the neighborhoods or ranges of other nodes, given that v is directly connected
to all nodes in its range for all levels). By Lemma 4.1, the size of the entire neighborhood
of node v (across all levels) is O(log n) w.h.p., so only O(log n) nodes need to change their
neighborhood.

In order to show that these O(log n) nodes can quickly adapt their neighborhoods, we
distinguish between several cases for every level i. In these cases, let Vl (resp. Vr) be the set of
all left (resp. right) neighborsw ∈ N∗i (v) withw.rs[i+1] = v.rs[i+1] and letWl (resp.Wr)
be the set of all left (resp. right) neighbors w ∈ N∗i (v) with w.rs[i + 1] 6= v.rs[i + 1].
Certainly, Vl ∪ Vr ∪Wl ∪Wr = N∗i (v). Let vl, vr, wl and wr be the closest neighbors in Vl,
Vr, Wl and Wr to v. Let us assume for now that vl, vr, wl and wr exist.

Case 1: wl.id < vl.id < vr.id < wr.id. In this case, all neighborhoods are correct once
v has been removed, so no further edges are needed by the nodes.

Case 2: vl.id < wl.id < vr.id < wr.id. In this case, all nodes in {vl} ∪Wl \ {wl} have
to learn about vr and vice versa to update the neighborhoods. The other nodes just have to
remove v from their neighborhood. Since wl has edges to all nodes in {vl, vr} ∪Wl, a single
round of applying Rule 3a suffices to update all neighborhoods correctly.

Case 3: wl.id < vl.id < wr.id < vr.id. This case is just the reverse of Case 2.
Case 4: vl.id < wl.id < wr.id < vr.id. In this case, all nodes in {vl} ∪Wl have to

learn about Wr ∪ {vr} and vice versa. Since wl knows {vl} ∪Wl ∪ {wr} and wr knows
{wl} ∪Wr ∪ {vr}, after one round of applying Rule 3a, all nodes in {vl} ∪Wl learn about
wr and all nodes in Wr ∪ {vr} learn about wl. Since the stable neighborhoods of wl and wr
just got updated, wl and wr will trigger another round of ”introduce all” by Rule 3a, so nodes
in {vl} ∪Wl ∪Wr ∪ {vr} will have updated their neighborhoods by the second round.

The other cases when some of the nodes vl, vr,wl andwr do not exist are very similar and
dropped here. Hence, after at most two rounds, all (stable) neighborhoods have been updated.
Since onlyO(log n) nodes need to change their neighborhood, and each of these nodes inserts
at mostO(log2 n) edges due to Rule 3a in each round, at mostO(log3 n) edges are inserted in
total. These either merge with stable edges, become a new stable edge or become a temporary
edge. Each of the temporary edges will need at most O(log n) applications of Rule 2 until it
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merges with a stable edge. Hence, altogether the time is bounded by O(log n) and the work
is bounded by O(log4 n).

THEOREM 4.3. Assume a new node v joins the system by establishing an edge to a
node u which is currently in SKIP+. It will take O(log n) rounds of the algorithm and
O(log4 n) total work w.h.p. for the graph to converge back to a valid SKIP+ structure.

Proof. Upon learning about node u, node v immediately considers edge (v, u) as stable
(since u is currently the only predecessor or successor node v knows). That will prompt the
insertion of edge (u, v) by Rule 1a. If u considers (u, v) as a temporary edge, then it forwards
the edge via Rule 2 to a node u′ with a longer prefix match with v than u. This leads, after
at most H steps, to a stable edge (w, v). Till then, v keeps inserting the edge (u, v) in each
round (as it considers u to be a stable neighbor), so there will be a string of temporary edges
moving upwards from u. Besides Rule 2, no other rule will be applied at this point by the old
nodes in SKIP+.

Suppose that w is the first node that considers the edge (w, v) to be stable. Let i be the
maximum level such that prei(v) = prei(w). Let Vl (resp. Vr) be the set of all nodes to the
left (resp. right) of v in SKIP+ of maximum cardinality so that for allw′ ∈ Vl (resp.w′ ∈ Vr),
prei+1(w′) = prei+1(v) and there is no node w′′ in between the nodes of Vl (resp. Vr)
with maximum common prefix equal to i with v. Moreover, let Wl (resp. Wr) be the set
of all nodes to the left (resp. right) of v of maximum cardinality so that for all w′ ∈ Wl

(resp. w′ ∈ Wr), the maximum common prefix with v is equal to i and there is no node w′′

in between the nodes of Wl (resp. Wr) with maximum common prefix more than i with v.
Let vl, vr, wl and wr be the closest neighbors in Vl, Vr, Wl and Wr to v. Let us assume for
now that vl, vr, wl and wr exist. Recall that w considers v to be a stable neighbor. Suppose
w.l.o.g. that v is to the right of w. We distinguish between the following cases.

Case 1: wl.id < vl.id < vr.id < wr.id. In this case, all nodes in {wl}∪Vl ∪Vr ∪{wr}
have to connect to v and vice versa, and besides these, no other connections are needed to
fully integrate v into level i. Since w = wl and w therefore knows all nodes in Vl∪Vr∪{wr}
by the SKIP+ definition, one round of applying Rule 3a (which is caused by (w, v)) suffices
to fully integrate node v into level i.

Case 2: vl.id < wl.id < vr.id < wr.id. In this case, all nodes in {vl}∪Wl ∪Vr ∪{wr}
have to learn about v and vice versa to fully integrate v into level i. Since w is a node in Wl,
w has links to all nodes in {vl} ∪Wl ∪ Vr ∪ {wr}, so again one round of applying Rule 3a
suffices to fully integrate node v into level i.

Case 3: wl.id < vl.id < wr.id < vr.id. In this case, all nodes in {wl}∪Vl∪Wr ∪{vr}
have to learn about v and vice versa to fully integrate v into level i. Since w = wl, w has
links to all nodes in Vl ∪ {wr}. Hence, one round of Rule 3a introduces v to the nodes in
Vl ∪ {wr} and vice versa. Afterwards, wr will apply Rule 3a since its stable neighborhood
changed due to v, so wr will introduce v to Wr ∪ {vr} and vice versa, which completes the
integration of v into level i.

Case 4: vl.id < wl.id < wr.id < vr.id. In this case, all nodes in {vl}∪Wl∪Wr ∪{vr}
have to learn about v and vice versa to fully integrate v into level i. As w is any node in Wl,
w knows about {vl} ∪Wl ∪Wr ∪ {vr}, so one round of applying Rule 3a suffices to fully
integrate node v into level i.

The remaining cases in which vl, vr or wr do not exist are similar and dropped here.
Hence, it takes at most two rounds to fully integrate v into level i.

Once v is fully integrated into a level i, it knows the closest predecessor and successor
w in SKIP+with maximum prefix match at least i+ 1 (if it exists). Since each of these nodes
will consider v to be a stable neighbor in level i + 1, we can use similar case distinctions as
above to show that v will be fully integrated into level i + 1 in at most two further rounds.
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Node v also knows its closest predecessor and successor w in SKIP+with maximum prefix
match at least i. Since each of these nodes will consider v to be a stable neighbor in level
i−1, we can also use similar case distinctions as above to show that v will be fully integrated
into level i− 1 in at most two further rounds. Using these arguments inductively implies that
v will be fully integrated into the SKIP+ graph in O(log n) time. It remains to bound the
work. The first part, i.e., 1 just consumes O(log2 n) work. Each time a node destabilizes,
O(log2 n) new edges are created. Certainly, only nodes that will consider v to be their stable
neighbor (and vice versa) will destabilize, and we know from Lemma 4.1 that the degree of v
in SKIP+ will be O(log n) in the end w.h.p. Hence, altogether at most O(log3 n) new edges
are created. These either merge with stable edges, become a new stable edge or become a
temporary edge. Each of the temporary edges will need at most O(log n) applications of
Rule 2 until it merges with a stable edge. This yields the claim.

5. Conclusion. This paper described the first self-stabilizing algorithm that quickly es-
tablishes a scalable peer-to-peer topology out of any state in which this is in principle possi-
ble. We were able to show a O(log2 n)-time convergence bound, but our simulation results
indicate that the actual runtime may even be O(log n) with high probability. Our work opens
many important directions for future research. In particular, so far, we do not have a poly-
logarithmic bound on the enabled actions per node and round. Hence, we want to explore
the corresponding complexities further and come up with the necessary algorithmic modifi-
cations. Moreover, it remains to study our algorithms “in the wild”; in particular, it will be
interesting to explore the performance of different applications such as routing algorithms on
our topology in the presence of high churn levels.
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