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Abstract Topological self-stabilization is an important concept to build ro-
bust open distributed systems (such as peer-to-peer systems) where nodes can
organize themselves into meaningful network topologies. The goal is to de-
vise distributed algorithms where nodes forward, insert, and delete links to
neighboring nodes, and that converge quickly to such a desirable topology, in-
dependently of the initial network configuration. This article proposes a new
model to study the parallel convergence time. Our model sheds light on the
achievable parallelism by avoiding bottlenecks of existing models that can yield
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a distorted picture. As a case study, we consider local graph linearization—i.e.,
how to build a sorted list of the nodes of a connected graph in a distributed
and self-stabilizing manner. In order to study the main structure and proper-
ties of our model, we propose two variants of a most simple local linearization
algorithm. For each of these variants, we present analyses of the worst-case
and best-case parallel time complexities, as well as the performance under a
greedy selection of the actions to be executed. It turns out that the analysis is
non-trivial despite the simple setting, and to complement our formal insights
we report on our experiments which indicate that the runtimes may be better
in the average case.

Keywords Distributed algorithms · Distributed systems · Peer-to-peer
systems · Self-stabilization · Overlay networks · Performance

1 Introduction

Open distributed systems such as peer-to-peer systems are often highly tran-
sient in the sense that nodes join and leave at a fast pace. In addition to this
natural churn, parts of the network can be under attack, causing nodes to
leave involuntarily. Thus, robustness is a prime concern in the design of such
a system. Over the last years, researchers have proposed many interesting ap-
proaches to build robust overlay networks. A particularly powerful concept
in this context is (distributed) topological self-stabilization. A topological self-
stabilizing mechanism guarantees that:

1. By local neighborhood changes (i.e., by creating, forwarding and deleting
links with neighboring nodes), the nodes will eventually form an over-
lay topology with desirable properties from any initial (and in our case:
connected) topology; this is known as the convergence property. (The as-
sumption that the initial topology is connected is the fundamental minimal
requirement to manage any topology in a distributed manner, as no com-
munication is possible between disconnected components. In order to re-
establish connectivity, we assume an external mechanism such as trackers
or well-known bootstrap peers.)

2. The system will also stay in a correct configuration provided that no exter-
nal topological changes occur; this property is called the closure property.

In this article, we address one of the first and foremost questions in dis-
tributed topological self-stabilization: How to measure the parallel time com-
plexity? We consider a very strong adversary who presents our algorithm with
an arbitrary connected network. We want to investigate how long it takes until
the topology reaches a (to be specified) desirable configuration. While several
solutions have been proposed in the literature over the last years, these known
models are inappropriate to adequately model parallel efficiency: either they
are overly pessimistic in the sense that they can force the algorithm to work
serially, or they are too optimistic in the sense that contention or congestion
issues are neglected.
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Our model is aware of bottlenecks in the sense that nodes cannot perform
too much work per time unit. Thus, we consider our new model as a further
step to explore the right level of abstraction to measure parallel execution
times.

As a case study, we investigate the problem of graph linearization where
nodes—initially in a set of arbitrary connected graph components—are re-
quired to sort themselves with respect to their identifiers. As the most simple
form of topological self-stabilization, linearization allows to study the main
properties of our model. As we will see in our analysis, graph linearization
under our model is already non-trivial and reveals an interesting structure.

This article focuses on two natural linearization algorithms, such that the
influence of the modeling becomes clear. For our analysis, we will assume the
existence of some hypothetical schedulers. In particular, we consider schedulers
that, for each round, make one of the following selections for the actions/rules
(or synonymously: parallel (independent) steps) to execute: one scheduler al-
ways makes a best possible, one a random, and one a “greedy” selection. Since
the schedulers are only used for the complexity analysis of the protocols pro-
posed, for ease of explanation, we treat the schedulers as global entities and we
make no attempt to devise distributed, local mechanisms to implement them.1

1.1 Related Work

The first article to study self-stabilization in the context of distributed com-
puting was [11] by E. W. Dijkstra. After Dijkstra’s seminal work on the token
ring, researchers have investigated self-stabilization in many other domains
such as clock synchronization or fault containment. In 1991, Awerbuch and
Varghese [4] proved that every local algorithm can be made self-stabilizing
if all nodes keep a log of the state transitions until the current state. For a
general overview of the field, the reader is referred to [7,13,18].

Our article focuses on topological self-stabilization. The construction and
maintenance of a given network structure is of prime importance in many
distributed systems, for example in peer-to-peer computing [12,14,24]. In the
technical report of the distributed hash table Chord [25], stabilization proto-
cols are described which allow the topology to recover from certain degenerate
situations. Unfortunately, however, no algorithms are given to recover from
arbitrary states. Similarly, also skip graphs [2] can be repaired from certain
states, namely states which resulted from node faults and inconsistencies due
to churn.

In order to gain insights into how to construct or self-stabilize more complex
topologies such as hypercubic networks, in the last years, researchers started
to analyze line and ring networks. The Iterative Successor Pointer Rewiring

1 In fact, most likely no such local mechanism exists for implementing the worst-case and
best-case schedulers, while we believe that local distributed implementations that closely
approximate—within a constant factor of the parallel complexity—the randomized and
greedy schedulers presented here would not be hard to devise.
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Protocol [10] and the Ring Network [24] organize the nodes in a sorted ring. Un-
fortunately, both protocols have a large runtime. In [1], Angluin et al. present
an efficient asynchronous algorithm which takes an initially weakly connected
pointer graph and constructs a linked list with low contention. However, their
algorithm is not self-stabilizing. In a follow-up paper [3], a self-stabilizing al-
gorithm is given which assumes that nodes initially have out-degree 1.

The question of how to efficiently build a certain network structure is also
related to resource discovery [17], leader election [8], and parallel sorting [16]
problems. For instance, [17] analyzes how processes in a initial weakly con-
nected knowledge graph can learn the identities of all other processes, [8] gives
a deterministic algorithm for leader election in an initially connected knowl-
edge graph, and [16] proposes a sorting algorithm for a parallel pointer machine
that builds a binary tree.

The works closest to ours are by Onus et al. [23] and by Clouser et al. [9].
In [23], a local-control strategy called linearization is presented for converting
an arbitrary connected graph into a sorted list. However, the strategy allows a
node to communicate with an arbitrary number of its neighbors, which can be
as high as Θ(n) for n nodes and is not scalable. Clouser et al. [9] formulated
a variant of the linearization technique for arbitrary asynchronous systems
in which edges are represented as Boolean shared variables. Any node may
establish an undirected edge to one of its neighbors by setting the correspond-
ing shared variable to true, and in each time unit, a node can manipulate at
most one shared variable. If these manipulations never happen concurrently, it
would be possible to emulate the shared variable concept in a message passing
system in an efficient way. However, concurrent manipulations of shared vari-
ables can cause scalability problems because even if every node only modifies
one shared variable at a time, the fact that the other endpoint of that shared
variable has to get involved when emulating that action in a message passing
system implies that a single node may get involved in up to Θ(n) many of
these variables in a time unit.

Recently, Jacob et al. [20] generalized insights gained from graph lineariza-
tion [15] to two dimensions, and presented a self-stabilizing O(n3)-time con-
struction for Delaunay graphs. Moreover, for a local-checkable variant of a skip
graph, a polylogarithmic maintenance algorithm has been described in [22],
and a self-stabilizing variant of a Chord graph appears in [21]. These works
study a simpler model for the parallel runtime complexity that ignores con-
gestion.

1.2 Our Contributions

The contributions of this article are two-fold. First, we present an alterna-
tive approach to modeling scalability of distributed, self-stabilizing algorithms
that does not require synchronous executions like in [23] and also gets rid of
the scalability problems in [9,23] therefore allowing us to study the parallel
time complexity of the proposed linearization approaches. Concretely, in our
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model, an independent set of nodes participates in the parallel execution of
the different actions of the given round.

Second, we propose two variants of a simple, local linearization algorithm.
For each of these variants, we present extensive formal analyses of their worst-
case and best-case parallel time complexities, i.e., the number of (parallel)
steps until the nodes converge to a desired fixpoint topology, and study their
performance under a random and a greedy selection of the actions to be exe-
cuted. We also validate the behavior of these algorithms by experiments which
complement our formal findings, and indicate that the runtimes may in fact
be better in practice. Finally, this article discusses a particular situation that
illustrates how the new model compares to others proposed in the literature.

1.3 Organization

The remainder of this article is organized as follows. In Section 2, we describe
our setting and the graph linearization problem, and introduce our model for
the parallel time complexity. Section 3 presents a self-stabilizing algorithm
together with a formal analysis. We report on our simulation results in Sec-
tion 4. After discussing our approach and comparing our model to alternative
frameworks in Section 5, we conclude the article in Section 6.

2 Model

We are given a system consisting of a fixed set V of n nodes. Every node
has a unique (but otherwise arbitrary) and constant integer identifier. In the
following, if we compare two nodes u and v using the notation u < v or u > v,
we mean that the identifier of u is smaller than v or vice versa. For any node v,
pred(v) denotes the predecessor of v (i.e., the node u ∈ V of largest identifier
with u < v) and succ(v) denotes the successor of v according to “<”. Two
nodes u and v are called consecutive if and only if u = succ(v) or v = succ(u).

Connections between nodes are modeled as shared variables. Each pair
(u, v) of nodes shares a Boolean variable e(u, v) which specifies an undirected
adjacency relation: u and v are called neighbors if and only if this shared
variable is true.

The set of neighbor relations defines an undirected graph or network G =
(V,E) among the nodes. A variable e(u, v) ∈ E, a link between u and v (in
the following, sometimes simply referred to as an undirected link {u, v}), can
only be changed by u and v, and both u and v have to be involved in order to
change e(u, v). (More details on this will be given below.) For any node u ∈ V ,
let u.L denote the set of left neighbors of u—the neighbors which have smaller
identifiers than u—and u.R the set of right neighbors of u.

In this article, deg(u) = |u.L ∪ u.R| will denote the degree of a node u.
Moreover, the distance between two nodes dist(u, v) is defined as dist(u, v) =
|{w : u < w ≤ v}| if u < v and dist(u, v) = |{w : v < w ≤ u}| otherwise. The
length of an edge e = {u, v} ∈ E is defined as len(e) = dist(u, v).
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We consider distributed algorithms which are run by each node in the net-
work. The algorithm or program executed by each node consists of a set of
variables and actions (often also referred to as rules). An action has the form

< name > : < guard > → < commands >

where < name > is an action label, < guard > is a Boolean predicate over
the (local and shared) variables of the executing node and < commands > is a
sequence of commands that may involve any local or shared variables of the
node itself or its neighbors. Given an action A, the set of all nodes involved
in the commands is denoted by V (A). Every node that either owns a local
variable or is part of a shared variable e(u, v) accessed by one of the commands
in A is part of V (A). Two actions A and B are said to be independent if
V (A) ∩ V (B) = ∅. For an action execution to be scalable we require that the
number of operations involving interactions between the nodes (and therefore
|V (A)|) is independent of n.

An action is called enabled if and only if its guard is true. Every enabled
action is passed to some underlying scheduling layer (to be specified below).
The scheduling layer decides whether to accept or reject an enabled action. If it
is accepted, then the action is executed by the nodes involved in its commands.

We model distributed computation as follows. The assignments of all local
and shared variables define a system configuration. Since our algorithms con-
sider only variables that directly effect the topology, a configuration represents
a graph. Hence, in the following, we will often treat the terms graph, topology,
and configuration, as synonyms.

A computation or execution is a sequence of configurations, such that for
each configuration ci (a graph) at the beginning of (computation) step i, the
next configuration ci+1 (the next graph) is obtained after executing an action
that was selected by the scheduling layer in step i.

The concepts of sequences of configurations and of steps are useful to reason
about the correctness of the self-stabilizing algorithm. In order to study the
parallel time complexity, we additionally define the concept of a (parallel time)
round : In each round, the scheduling layer may select any set of independent,
enabled actions to be executed by the nodes, that is, a round consists of a
set of parallel steps. Indeed, for the runtime analysis, we may think of the
independent steps executed in parallel in a round as simultaneous.

Finally, the work performed (e.g., per round) is defined to the number of
actions selected by the scheduling layer (in that round).

The following definition summarizes these concepts.

Definition 1 (Step, Round, Work) An enabled rule which is chosen and
executed by the scheduler is called a (computation) step. The set of indepen-
dent rules selected and executed in parallel by the scheduler constitutes a
(parallel time) round (a set of parallel steps). The work performed in a round
is defined to the number of actions selected by the scheduling layer (e.g., in
that round).
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In this paper, we will typically think of the execution as a sequence of
configurations (i.e., topologies) following each as (computation) steps. In other
words, the configuration ci is obtained from ci−1 by the execution of step si−1.

The following definition summarized the self-stabilization requirements (see
also Chapter 2.2 in [13]).

Definition 2 (Self-stabilizing Algorithm) A self-stabilizing distributed
algorithm can be started in any arbitrary configuration (topology) and will
eventually exhibit a desired legal (or safe) behavior. We define the desired
legal behavior as a set of legal executions LE (for a particular system and a
task). Every system execution should have the suffix that appears in LE. A
configuration c is safe with regard to a task LE and an algorithm if every fair
execution of the algorithm that starts from c belongs to LE; an algorithm is
self-stabilizing for a task LE if every fair execution of the algorithm reaches a
safe configuration with relation to LE (convergence) and stays there (closure).

Notice that our model can cover arbitrary asynchronous systems in which
the actions are implemented so that the sequential consistency model applies
(i.e., the outcome of the executions of the actions is equivalent to a sequential
execution of them) as well as parallel executions in synchronous systems. In a
round, the set of enabled actions selected by the scheduler must be indepen-
dent as otherwise a configuration transition from one round to another would,
in general, not be unique, and further rules would be necessary to handle
dependent actions that we want to abstract from in this article.

2.1 Linearization

In this article, we are interested in designing distributed algorithms that can
transform any connected component of an initial graph G0 = (V,E0) into
a sorted list (according to the node identifiers) using only local interactions
between the nodes.

A distributed algorithm is called (topologically) self-stabilizing, if for any
initial configuration or topology G0 = (V,E0), it eventually arrives at a con-
figuration GL = (V,EL) in which the nodes are each connected component
form a sorted list. In the following, for ease of presentation, we will typically
assume that G0 forms a single connected component: if a graph consists of
multiple connected components, G0 can be a placeholder for any of these con-
nected components. The components are treated completely independently by
our algorithms.

Definition 3 (Linear/Chain Graph GL) Given a set of nodes V , the lin-
ear/chain graph GL is defined as GL = (V,EL) such that {u, v} ∈ EL if and
only if

e(u, v) = 1 ⇔ u = succ(v) ∨ v = succ(u)

Once the self-stabilizing algorithm arrives at this configuration (the legal
configuration), it should stay there, i.e., the configuration is a fixpoint of the
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w v u wvu

Fig. 1 Left and right linearization: node u forwards the link to its neighbor without violating
connectivity.

algorithm. In the distributed algorithms studied in this article, each node
u ∈ V repeatedly performs simple linearization steps in order to arrive at that
fixpoint.

Note that for a given connected initial graph G0 = (V,E0), its linearized
graph is unique.

Lemma 1 GL = (V,EL) is uniquely defined for a given node set V .

Proof Definition 3 requires that e(u, v) = 1 if and only if u = succ(v) ∨ v =
succ(u). Since nodes V have unique identifiers, for any given node v ∈ V , its
successor is uniquely defined. ⊓⊔

Definition 4 (Linearization) A linearization algorithm is a distributed self-
stabilizing algorithm (according to Definition 2) where

1. an initial configuration c1 ⊆ C forms any (undirected) connected graph
G0 = (V,E0),

2. the only legal configuration L = {cl} ⊆ C is the linear topology GL =
(V,EL) on the nodes V (i.e., EL connects consecutive nodes, see Defini-
tion 3), and

3. actions only update the neighborhoods of the nodes (in our case, left and
right linearization steps).

Our linearization algorithms will be based on simple linearization rules.
A linearization involves three nodes u, v, and w with the property that u is
directly connected to v and w and either u < v < w or w < v < u. In both
cases, u may command the nodes to move the edge {u,w} to {v, w}. If u <
v < w, this is called a right linearization and otherwise a left linearization step
(see also Figure 1). Since only three nodes are involved in such a linearization
step, this can be formulated by a scalable action. In the following, we will also
call u, v, and w a linearization triple or simply a triple.

2.2 Schedulers

Our goal is to find linearization algorithms that spend as little time and work as
possible in order to arrive at a sorted list. In order to investigate their worst,
average, and best performance under concurrent executions of actions, we
consider different schedulers. Essentially, the scheduler chooses a set of enabled
actions from the fire-table and executes the corresponding steps in parallel,
thus defining on how configuration (or topology) ci becomes configuration
ci+1.
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1. Worst-case scheduler Swc: This scheduler must select a maximal inde-
pendent set of enabled actions in each round, but it may do so to enforce
a runtime (or work) that is as large as possible.

2. Randomized scheduler Srand: This scheduler considers the set of en-
abled actions in a random order and selects, in one round, every action
that is independent of the previously selected actions in that order.

3. Greedy scheduler Sgreedy: This scheduler orders the nodes according
to their degrees, from maximum to minimum. For each node that still has
enabled actions left that are independent of previously selected actions, the
scheduler picks one of them in a way specified in more detail later in this
article when our self-stabilizing algorithm has been introduced. (Note, that
‘greedy’ refers to a greedy behavior w.r.t. the degree of the nodes; large
degrees are preferred. Another meaningful ‘greedy’ scheduler could favor
triples with largest gain w.r.t. the potential function that sums up all link
lengths.)

4. Best-case scheduler Sopt: The enabled actions are selected in order to
minimize the runtime (or work) of the algorithm. (Note that ‘best’ in this
case requires maximal independent sets although there might be a better
solution without this restriction.)

The worst-case and best-case schedulers are of theoretical interest and allow
us to explore the parallel time complexity of the linearization approach. The
greedy scheduler is a concrete algorithmic selection rule that we mainly use in
the analysis as a lower bound on the performance under a best-case scheduler.

The randomized scheduler allows us to investigate the average case perfor-
mance when a local-control randomized symmetry breaking approach is pur-
sued in order to ensure sequential consistency while selecting and executing
enabled actions.

As noted in the introduction, for ease of explanation, we treat the sched-
ulers as global entities and we make no attempt to formally devise distributed,
local mechanisms to implement them (that would in fact be an interesting, or-
thogonal line for future work). The schedulers are used simply to explore the
parallel time complexity limitations (e.g., worst-case, average-case, best-case
behavior) of the linearization algorithms proposed. In practice the algorithms
LINall and LINmax to be presented below may rely on any local-control rule
(scheduler) to decide on a set of locally independent actions—which trivially
leads to global independence—to perform at any given time.

3 Algorithms and Analysis

We now introduce our distributed and self-stabilizing linearization algorithms
LINall and LINmax. Section 3.1 specifies our algorithms formally and gives
correctness proofs. Subsequently, we study the algorithms’ runtime.
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3.1 LINall and LINmax

Both algorithms LINall and LINmax are based on two simple linearization
rules: linearize right and linearize left. (Figure 1 visualizes the corresponding
commands of these rules.) However, the two algorithms differ in the precondi-
tions (i.e., the guards) when the rules are enabled.

In LINall, each node v ∈ V enables the linearization rules for all possible
triples that are incident to v. More formally, for every node u, we have the
following rules for every pair of neighbors v and w:
linearize left(v,w): (v, w ∈ u.L ∧ w < v < u) → e(u,w) := 0, e(v, w) := 1
linearize right(v,w): (v, w ∈ u.R ∧ u < v < w) → e(u,w) := 0, e(v, w) := 1

LINmax is similar to LINall, but instead of proposing all possible triples
on each side to the scheduler, LINmax only proposes the triple which is the
furthest on the corresponding side.

In LINmax, every node u ∈ V uses the following rules for every pair of
neighbors v and w:
linearize left(v, w): (v, w ∈ u.L) ∧ (w < v < u) ∧ (@x ∈ u.L \ {w} : x < v)
→ e(u,w) := 0, e(v, w) := 1
linearize right(v, w): (v, w ∈ u.R)∧(u < v < w)∧(@x ∈ u.R\{w} : x > v)
→ e(u,w) := 0, e(v, w) := 1

We first show a basic property of LINall and LINmax.

Lemma 2 Let G0 = (V,E0) be an initial configuration (or graph), and let
Gt = (V,Et) be the graph computed by LINall or LINmax, in step t. Then, it
holds that if G0 is connected, also Gt is connected.

Proof We will prove the lemma by induction over the execution, i.e., over the
sequence of configurations and steps. Concretely, for the induction, we will
prove that if the configuration Gt describes a connected topology, then after
step t the configuration Gt+1 will again be connected.

Also note that while the rules of LINall and LINmax differ in their precondi-
tions (i.e., guards), their commands are the same and consist only of left and
right linearization steps. Thus, in order to study the system’s configuration
transitions, we can focus on the left and right linearization steps, and do not
have to differentiate between LINall and LINmax.

Initially, before step t = t0, the network is connected by our assumption
(connected configuration). We show that a linearization step of LINall and
LINmax at any time t > t0 will not disconnect the graph. Without loss of gener-
ality, consider a triple u, v, w ∈ V with u < v < w, {u, v} ∈ E, and {u,w} ∈ E
(cf Figure 1), which is right-linearized. (The proof for left-linearizations fol-
lows from symmetry arguments.) Clearly, the addition of a new edge cannot
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disconnect the network, and hence, it suffices to study the effect of removing
the edge e := {u,w} from E. Consider two arbitrary distinct nodes x, y ∈ V
that were connected before the linearization step. If there is a path between x
and y that does not use e, then this path also exists after the linearization step,
and connectivity is preserved. On the other hand, if all paths between x and y
use e, then x and y must still be connected as well, as e can be emulated by
the edges {u, v} and {v, w}. Thus, the resulting configuration (i.e., topology)
is connected again, and the claim follows. ⊓⊔

We can now prove that LINall and LINmax are correct in the sense that
eventually, a linearized graph will be reached.

Theorem 1 LINall and LINmax are self-stabilizing linearization algorithms.

Proof According to Definition 2, a self-stabilizing algorithm must guarantee
that starting from any configuration, (1) the system will eventually reach a
correct configuration (convergence), and (2) the system will also stay in a
correct configuration provided that no fault occurs (closure). In particular, a
linearization algorithm (Definition 4) converts any initially connected network
into a sorted chain.

Closure: We know from Lemma 1 that linearization specifies a single legal
configuration: the linear graph GL where consecutive nodes are connected
(Definition 4). To show the closure property, we must prove that the linear
graph constitutes a fixpoint of LINall and LINmax: in the legal configuration,
all actions are disabled and hence neighborhoods remain unchanged. Recall
that there only exist two types of rules for LINall and LINmax: linearize left
and linearize right. For the sake of contradiction, assume that at least one such
rule is still enabled in the unique legal configuration. Let us examine the two
actions in turn: If a linearize left rule is still enabled, there must exist a node u
having two neighbors v and w with v, w ∈ u.L where w < v < u. However,
this is a contradiction to the property that in a legal configuration, node u
can have at most one predecessor (|u.L| ≤ 1). Similarly, for a linearize right
rule, a node u needs two neighbors v and w with v, w ∈ u.R and u < v < w.
This contradicts the assumption of a linearized topology where u can have at
most one successor (|u.R| ≤ 1). All actions must hence be disabled, and the
linearized topology will remain unchanged.

Convergence: Let us now examine the convergence property. First note
that if the network is in a configuration where it is connected but it does not
constitute the linear chain graph yet, then there must exist a node having
at least two left neighbors or at least two right neighbors. Accordingly, the
linearize left or linearize right rule is enabled and will continue to change the
topology in this step.

To show eventual convergence to the unique legal configuration (the linear
graph), we will prove that after any execution of the linearize left or linearize
right rule, the topology will come “closer” to the linearized configuration, in
the following sense: we can define a potential function whose value is mono-
tonically decreased with each executed rule (and hence an arbitrary sequence
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of interleaved executions), and which is minimized for the linearized network
topology.

We consider the potential function Ψ that sums up the lengths (hop dis-
tances) of all existing links with respect to the linear ordering of the nodes,
i.e., Ψ =

∑
e∈E len(e). Due to our assumptions, in any initial configuration,

it holds that the network G0 is connected, and hence Ψ ≥ n− 1: a connected
graph consists of at least n− 1 edges.

Whenever an action is executed (in our case: a linearization step is per-
formed), the potential Ψ is reduced by at least the length of the shorter edge
in the linearization triple, i.e., by len({u, v}) ≥ 1 (see Figure 1): edge {u,w} is
removed and potentially an edge {v, w} inserted (if it does not exist already).
Thus, LINall and LINmax will eventually reach a topology of minimal poten-
tial Ψ , where all actions are disabled. We know from Lemma 2 that LINall or
LINmax will never disconnect an initially connected graph again. However, the
only connected topology with minimum Ψ (i.e., minimum edge lengths) is the
desired legal configuration (the line topology).

Thus, there is always an action enabled unless the graph reached the target
topology. Therefore, the network converges to a line in a finite number of steps,
and the claim follows. ⊓⊔

3.2 Runtime

We first study the worst case scheduler Swc for both LINall and LINmax.

Theorem 2 Under a worst-case scheduler Swc, LINmax terminates after
O(n2) work (single linearization steps), where n is the total number of nodes
in the system. This is tight in the sense that there are situations where under
a worst-case scheduler Swc, LINmax requires Ω(n2) rounds.

Proof Upper Bound: In order to study the evolution of the configurations
(i.e., topologies) over time (i.e., over the execution), we define a potential
function over the topology. Let ζl(v) denote the length of the longest edge out
of node v ∈ V to the left and let ζr(v) denote the length of the longest edge
out of node v to the right. If node v does not have any edge to the left, we set
ζl(v) = 1

2 , and similarly for the right. We consider the potential function Φ
which is defined as

Φ =
∑
v∈V

ζl(v) + ζr(v).

Let Φi denote the value of Φ after i time steps. Observe that initially, Φ0 ≤
n2, as ζl(v) + ζr(v) ≤ n for each node v. We show that after i linearization
steps, the potential is at most Φi ≤ n2 − i

2 . Since LINmax terminates (cf
also Theorem 1) with a potential Φj > 0 for some j (the term of each node
is positive), the claim follows. In order to see why the potential is reduced
by at least 1

2 in every step, consider a triple u, v, w which is right-linearized
and where u < v < w, {u, v} ∈ E, and {u,w} ∈ E. (Left-linearizations are
similar and not discussed further here.) During the linearization step, {u,w} is



A Note on the Parallel Runtime of Self-Stabilizing Graph Linearization 13

removed from E and the edge {v, w} is added if it did not already exist. We are
interested in the change of the value, of Φ, i.e.,∆Φ = ∆ζr(u)+∆ζr(v)+∆ζl(w).
Since the rightmost neighbor of u changes from w to v, we know ∆ζr(u) =
dist(u, v) − dist(u,w) = −1. Further, we know that ζr(v) changes its value
only if there was no edge {v, w} before the linearization step. Thus, we have
∆ζr(v) ≤ dist(v, w) − 1

2 = 1 − 1
2 = 1

2 . Since w had a left neighbor (u) before
the linearization, the value of ζl(w) cannot increase, i.e., ∆ζl(w) ≤ 0. This
implies ∆Φ = ∆ζr(u) +∆ζr(v) +∆ζl(w) ≤ −1 + 1

2 + 0 = − 1
2 . Since at least

one triple can be linearized in every round, this concludes the proof.

Lower Bound: We consider a simple network over a set of nodes V =
{1, . . . , n}, and show that there is a scheduling strategy for this network that
creates a large number of blocked nodes in each round, ending up with only
constant work per round and a quadratic number of rounds. Our sample net-
work resembles a complete bipartite graph where the first half of all nodes is
completely connected to the second half (see Figure 2). In addition, all nodes
are adjacent to their predecessors and successors, i.e., all links of the desired
linearized topology are already present. (During linearization, one link will
disappear in each step.)

Now consider a node having an incident edge which is a longest link for
some other node. Note that initially, only the leftmost and the rightmost node
(if nodes are ordered with respect to their IDs) fulfill this property (the longest
edges of the nodes on the right all end at the leftmost node, and vice versa). In
the following, we will count the number of longest left and right links incident
at a node v ∈ V and will denote such a link a (left-link or right-link) pebble.
For instance, in Figure 2, node 1 has the longest left-link pebbles of nodes
n/2 + 1, . . . , n, whereas node n has the longest right-link pebbles of nodes
1, . . . , n/2. In the first round, the scheduler decides to (left-)linearize node
n/2 + 1 (which automatically involves nodes 1 and 2 according to LINmax)
and to right-linearize node n/2 (which automatically involves nodes n − 1
and n). Observe that these two actions block all other linearization steps since
any other triple would involve some non-blocked node having a pebble, but
nodes 1 and n are the only nodes with pebbles and are blocked. Therefore,
in the first round, the edges {n/2, n} and {1, n/2 + 1} are removed, and the
longest left-link pebble of node n/2 + 1 is moved from node 1 to node 2 and
the longest right-link pebble of node n/2 is moved from node n to node n− 1.

In the next round, the scheduler decides to left-linearize node n/2+ 2 and
to right-linearize node n/2 − 1. Again, this involves nodes 1 and 2, as well
as nodes n − 1 and n. Therefore all nodes with pebbles are blocked which
prevents any further action. Besides removing the respective edges the effect
of the round is that the longest left-link pebble of node n/2 + 2 moves from
node 1 to node 2 and the longest right-link pebble of node n/2−1 moves from
node n to node (n − 1). This procedure is repeated until all longest left-link
pebbles (except the one of node n) have moved from node 1 to node 2 and all
longest right-link pebbles (except the one of node 1) have moved from node
n to node n− 1. The length of this first phase is n/2 rounds. Note that there
are always exactly two linearization triples in each round (except for the last
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Fig. 2 Bad case for linearizing a complete bipartite network. See the proof of Theorem 2
for explanations.

two rounds, where only one triple is linearized). At the end of this first phase,
there is one link left from node 1 to node n, which is later linearized in parallel
to the next phase. At this point, the scheduler has created again a complete
bipartite network, which is smaller by one node on both sides.
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In applying the same method recursively, the scheduler implements a series
of phases where in each phase all longest left-link pebbles (except one) move
one node to the right and all longest right-link pebbles (except one) move one
node to the left (one left-pebble and one right-pebble per round). At the end of
the phase, only one triple of the inner part can be linearized. At this time, the
single outer edge is also linearized (in all rounds before, both of the outmost
nodes of the inner part are blocked, therefore this large edge persists until
then). Such a Phase i takes n/2+ 1− i rounds. The total number of rounds is
thus at least

n/2∑
i=1

(n
2
+ 1− i

)
=

n/2∑
i=1

i ∈ Ω(n2).

⊓⊔

For the LINall algorithm, we obtain a slightly higher upper bound, as we
will show next. In the analysis, we need the following helper lemma.

Lemma 3 Let Ψ be any positive potential function, where Ψ0 is the initial
potential value and Ψi is the potential after the ith round of a given algorithm
ALG. Assume that Ψi ≤ Ψi−1 ·(1−1/f) and that ALG terminates if Ψj ≤ Ψstop

for some j ∈ N. Then, the runtime of ALG is at most O(f · log (Ψ0/Ψstop))
rounds.

Proof From Ψi ≤ Ψi−1 · (1− 1/f), it follows that Ψj ≤ Ψ0 · (1− 1/f)j .
Now consider j = f ·ln Ψ0

Ψstop
, which leads to (using ln(1+x) ≤ x for all x > −1)

Ψj ≤ Ψ0 · (1− 1/f)
f ·ln Ψ0

Ψstop = Ψ0e
f ·

(
ln

Ψstop
Ψ0

)
·ln (1−1/f)

≤ Ψ0e
f ·

(
ln

Ψ0
Ψstop

)
·(−1/f)

= Ψ0e
− ln

Ψ0
Ψstop = Ψstop

⊓⊔

Theorem 3 LINall terminates after O(n2 log n) many rounds under a worst-
case scheduler Swc, where n is the network size.

Proof We consider the potential function

Ψ =
∑
e∈E

len(e) with Ψ0 ≤
(
n

2

)
(n− 1) < n3

We show that in each round, this potential is multiplied by a factor of at most
1−Ω(1/n2).

Consider an arbitrary triple u, v, w ∈ V with u < v < w which is right-
linearized by node u. (The case of left-linearizations is similar and not discussed
further here.) During a linearization step, the sum of the edge lengths is re-
duced by at least one. So what is the amount of blocked potential in a round
due to the linearization of the triple (u, v, w) (cf also the proof of Theorem 4)?
Nodes u, v, and w have at most deg(u) + deg(v) + deg(w) < n many inde-
pendent neighbors, and hence, in the worst case, when the triple’s incident
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edges are removed (the blocked potential is at most O(n2)), these neighbors
fall into different disconnected components which cannot be linearized further
in this round; in other words, the remaining components form sorted lines. The
blocked potential amounts to at most Θ(n2). Thus, together with Lemma 3
(using Ψ0 < n3, Ψstop ∈ O(n), f = n2), the claim follows. ⊓⊔

Note that Theorem 3 suggests that allowing to linearize any neighbor (like
LINall) in the independent sets may yield higher runtimes than restricting the
selection to the maximal neighbor.

Besides Swc, we are interested in the following type of greedy scheduler. In
each round, both for LINall and LINmax, Sgreedy orders the nodes with respect
to their remaining (total, i.e., left plus right) degrees: after a triple has been
fired, the three nodes’ incident edges are removed. For each node v ∈ V selected
by the scheduler according to this order (which still has enabled actions left
which are independent of previously selected actions), the scheduler greedily
picks the enabled action of v which involves the two most distant neighbors
on the side with the larger remaining degree. (If the number of remaining
left neighbors equals the number of remaining neighbors on the right side,
then an arbitrary side can be chosen.) The intuition behind Sgreedy is that
neighborhood sizes are reduced quickly in the linearization process.

Under this greedy scheduler, we get the following improved bound on the
time complexity of LINall.

Theorem 4 Under a greedy scheduler Sgreedy, LINall terminates in O(n log n)
rounds, where n is the total number of nodes in the system.

Proof Again, we consider the potential function Ψ =
∑

e∈E len(e). As before,
Ψ0 ≤ n(n − 1)2/2. At the end we have Ψstop = n − 1. We will prove that in
each round, the potential is multiplied by a factor of at most 1 − 1/(24 · n),
i.e., f(n) ≤ 24n. Given this factor bound and Ψ0/Ψstop < n2, Lemma 3 implies
that the total number of rounds is in O(n log n).

It remains to prove that the potential is indeed reduced by a factor of
1 − Θ(1/n) in each round. First, observe that firing a triple reduces the po-
tential Ψ , but prevents other triples from being fired in the same round. For
our analysis, we want to bound this blocked potential. Recall our definition of
the greedy scheduler Sgreedy which always chooses the node with the largest
remaining degree and selects for the linearization operation the two neighbors
which are furthest away from this node on the side of larger degree. Consider
any triple v1, v2, v3 ∈ V of nodes with v1 < v2 < v3 and {v1, v3}, {v1, v2} ∈ E
which is right-linearized (left-linearizations are similar and not described fur-
ther here). As we will see, removing the edge {v1, v3} and adding (if nec-

essary) edge {v2, v3} reduces Ψ by at least d̂eg(v1)/4, where d̂eg(v1) is the
number of neighbors of v1 if the edges incident to the already processed nodes
in this round by the greedy scheduler are removed: Note that by removing
{v1, v3} and possibly adding {v2, v3}, the potential is reduced by at least
dist(v1, v3) − dist(v2, v3) = dist(v1, v2). Since the potential decreases by at

least 1, we know for the special cases of d̂eg(v1) = 2 and d̂eg(v1) = 3 that Ψ
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decreases by more than d̂eg(v1)/4. Furthermore, according to Sgreedy, v1 has
at least as many remaining neighbors on the right as it has on the left, i.e., we

have that dist(v1, v2) ≥ d̂eg(v1)/2−1 (since v2 and v3 are the two most distant
neighbors on the side having at least half of the neighbors). This implies for

d̂eg(v1) ≥ 4 that Ψ decreases by at least d̂eg(v1)/2− 1 ≥ d̂eg(v1)/4.
By firing the triple, we may lose the option to linearize other nodes. In

order to bound the blocked potential by this linearization step, we consider
the components that remain after nodes v1, v2 and v3 (plus incident edges)
have been removed. Let w be an arbitrary neighbor of vi, for i ∈ {1, 2, 3}.
Consider the connected component after vi has been removed which includes
w. We distinguish two different cases.

Case 1: If this connected component forms a line where nodes are ordered,
the nodes in the component cannot be linearized or scheduled further in this
step. Thus, the component blocks the potential contained in this line, which
is however at most n. Moreover, we lose the edge {vi, w} which also has a
potential of at most n, yielding a total potential of at most 2n.

Case 2: If the component has any other form, there must exist triples in it
that can still be fired later in this round, and hence, the blocked potential is
accounted for similarly during the linearization of another triple. Thus, we only
have to take into account the blocked potential due to the lost edge incident
to the triple which is at most n.

The total amount of blocked potential is therefore at most 6 · d̂eg(v1) ·n: As

Sgreedy chooses the node with largest remaining degree, it holds that d̂eg(v1) ≥
max{d̂eg(v2), d̂eg(v3)}. Since we have at most a blocked potential of 2n per

neighbor of vi, for i ∈ {1, 2, 3}, the blocked potential is at most 3 · d̂eg(v1) ·2n.
Since d̂eg(v1)/2− 1 ≥ d̂eg(v1)/4, we have that Ψi ≤ (1− 1/(24 · n))Ψi−1 =

(1−Θ(1/n))Ψi−1, and the claim follows. ⊓⊔

Finally, we have also investigated an optimal scheduler Sopt.

Theorem 5 Even under an optimal scheduler Sopt, both LINall and LINmax

require at least Ω(n) rounds in certain situations.

Proof Let v1, v2, . . . , vn ∈ V denote the nodes in sorted order, i.e., v1 < v2 <
. . . < vn. Consider the following initial topology G0 = (V,E0) where ∀i such
that 0 < i < n − 1: {vi, vi+1} ∈ E0. Additionally, E0 contains a long edge
e := {v1, vn} ∈ E0. In the beginning, edge e has length of len(e) = n − 1.
Observe that in each round, both for LINall and LINmax, the length of e is
reduced by one. Thus, by induction, it takes at least a linear number of rounds
to sort G0, as the execution is inherently sequential. ⊓⊔

3.3 Degree Cap

It is desirable that the nodes’ neighborhoods or degrees do not increase much
during the sorting process. We investigate the performance of LINall and
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LINmax under the following degree cap model. Observe that during a lineariza-
tion step, only the degree of the node in the middle of the triple can increase
(see Figure 1). We do not schedule triples if the middle node’s degree would
increase, with one exception: during left-linearizations, we allow a degree in-
crease if the middle node has at most one left neighbor, and during right-
linearizations we allow a degree increase to the right if the middle node has at
most one right neighbor. In other words, we study a degree cap of two.

We find that both our algorithms LINall and LINmax still terminate with
a correct solution under this restrictive model.

Theorem 6 With degree cap, LINmax terminates in at most O(n2) many
rounds under a worst-case scheduler Swc, where n is the total number of
nodes in the system. Under the same conditions, LINall requires at most O(n3)
rounds.

Proof Bound for LINmax: The claim follows from the same arguments as used
in Theorem 2. It only remains to prove that in each round there exists a triple
which can be right or left linearized. In order to see that at least one triple can
be linearized, consider the node u of largest order which has two neighbors to
the right. (If there does not exist any node with two neighbors that can be
right-linearized, we apply the same argument to the left. If there is no node
with two left neighbors that can be left-linearized, this implies that the graph
is already sorted.)

Let v and w be u’s two neighbors to the right, where v < w. The triple
consisting of the three nodes u, v and w can definitely be right-linearized
without violating the degree cap constraint: v is the only node whose degree
increases during the linearization step. However, v’s degree to the right cannot
be more than two after linearization, otherwise we have a contradiction to our
assumption that u is the largest node with two neighbors to the right.

Bound for LINall: We consider again the potential function Ψ =∑
e∈E len(e) summing up all edge lengths in the graph. Note that initially,

Ψ0 < n3, and each linearization step reduces Ψ by at least one. When the
graph is sorted, Ψ < n. Therefore, for the O(n3) bound, it remains to prove
that the system cannot deadlock and there is progress in every round. How-
ever, this holds for the same reasons as discussed above for the LINmax bound.

⊓⊔

Interestingly, as we will see in the experimental section (Section 4), the
runtime of LINall and LINmax is typically better than shown in Theorem 6.
Moreover, it turns out that even without imposing a degree cap, LINall and
LINmax do not increase the maximal degrees during their computations.

4 Experiments

In order to improve our understanding of the parallel complexity and the be-
havior of our algorithms, we have implemented a simulation framework which
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allows us to study and compare different algorithms, topologies and schedulers.
In this section, some of our findings will be described in more detail.

We will consider the following graphs. We chose these graphs as they ap-
peared to be good representatives for easy, average, and difficult problem in-
stances.

1. Random graph: Any pair of nodes is connected with probability p, i.e.,
if V = {v1, . . . , vn}, then P[{vi, vj} ∈ E] = p for all i, j ∈ {1, . . . , n}. If
necessary, edges are added to ensure connectivity.

2. Bipartite backbone graph (k-BBG): For n = 3k for some positive
integer k define the following k-bipartite backbone graph on the node set
V = {v1, . . . , vn}. All n nodes are connected to their respective successors
and predecessors (except for the first and the last node). This structure is
called the graph’s backbone. Additionally, there are all (n/3)2 edges from
nodes in {v1, . . . , vk} to nodes in {v2k+1, . . . , vn}.

3. Spiral graph: The spiral graph G = (V,E) is a sparse graph forming a
spiral, i.e.,
V = {v1, . . . , vn} where v1 < v2 < . . . < vn and
E = {{v1, vn}, {vn, v2}, {v2, vn−1}, {vn−1, v3}, . . . , {v⌈n/2⌉, v⌈n/2⌉+1}}.

4. k-local graph: This graph avoids long-range links. Let V = {v1, . . . , vn}
where vi = i for i ∈ {1, . . . , n}. Then, {vi, vj} ∈ E if and only if |i− j| ≤ k.

We will constrain ourselves to two schedulers here: the greedy scheduler Sgreedy

which we have already considered in the previous sections, and a randomized
scheduler Srand which among all possible enabled actions chooses one uniformly
at random at a time, deletes all conflicting actions, and repeats until a maximal
non-conflicting set of actions is chosen.

Many experiments have been conducted to shed light onto the parallel
runtime of LINall and LINmax in different networks. Figure 3 (top) depicts
some of our results for LINall. As expected, in the k-local graphs, the execution
is highly parallel and yields a “constant” runtime—independent of n. The
sparse spiral graphs appear to entail an almost linear time complexity, and also
the random graphs perform better than our analytical upper bounds suggest.
Among the graphs we tested, the BBG network yielded the highest execution
times. Figure 3 (bottom) gives the corresponding results for LINmax.

A natural yardstick to measure the quality of a linearization algorithm—
besides the parallel runtime—is the node degree. For instance, it is desirable
that an initially sparse graph will remain sparse during the entire linearization
process. It turns out that LINall and LINmax indeed maintain a low degree.
Figure 4 shows how the maximal and average degrees evolve over time both
for LINall and LINmax on two different random graphs. Note that the aver-
age degree cannot increase because the rules only move or remove edges. The
random graphs studied in Figure 4 have a high initial degree, and it is in-
teresting to analyze what happens in case of sparse initial graphs. Figure 5
plots the maximal node degree over time for the spiral graph. While there is
an increase in the beginning, the degree is moderate at any time and declines
again quickly.
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Fig. 3 Top: Parallel runtime of LINall for different graphs under Srand: two k-local graphs
with k = 5, k = 10 and k = 20, two random graphs with p = .1 and p = .2, a spiral graph
and a n/3-BBG. Bottom: Same experiments with LINmax. (Due to high execution times,
BBG is only shown up to a network size of roughly 200 nodes.)
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Fig. 4 Top: Maximum and average degree during a run of LINall and LINmax on a random
graph with edge probability p = .1. Bottom: The same experiment on a random graph with
p = .2.
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Fig. 5 Evolution of maximal degree on spiral graphs under a randomized scheduler Srand.

Finally, we have studied the behavior of LINall and LINmax under a de-
gree cap constraint, where triples can only be linearized if the center node’s
degree does not grow to more than a certain threshold in the corresponding
direction. Figure 6 (top) indicates that all the runtime remains roughly linear
even for a degree cap of two. For degree caps larger than two, the perfor-
mance is better. However, interestingly, it seems that the number of rounds
does not decrease monotonously with larger caps—rather, a lower degree cap
might help to speed-up the linearization process under certain circumstances.
Figure 6 (bottom) shows the runtimes under a BBG graph; here, the greedy
scheduler requires much more (and even super-linear) time compared to the
other settings, which indicates that this configuration together with the BBG
graph is a particularly challenging one.

5 Discussion and Model Comparison

This section provides a short discussion and also compares our approach to the
alternative models, e.g., to the so-called critical path model introduced in [5,
6].

One may wonder whether our actions (left and right linearization) really
have to be executed in an independent way in order to maintain sequential
consistency. Here, it would be sufficient if each node initiates a new lineariza-
tion only after its previously initiated linearization has been completed (or
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canceled), however, for a model for concurrent executions of actions to be
scalable, only a bounded number of executions of actions should be allowed
to overlap at any node at any time. In order to come up with a simple and
general model taking this into account, we decided to constrain the scheduling
layer to independent sets of actions in each round.

An alternative model to study parallel complexity is the worst-case critical
path [5,6] (i.e., the longest possible sequence of action executions that depend
on each other) of a distributed execution of our linearization approach. How-
ever, it turns out that one can identify critical paths of length up to Θ(n3)
for our linearization approach, which is so far away from its real performance
that the critical path notion seems to be too conservative and not meaningful
in our context.

The critical path model can be defined in our framework in the following
way. Consider a worst case scheduler that schedules one action (triple) per
round. These triples form the nodes of a directed acyclic graph (DAG). An
edge from an action A to a later action B is present, if and only if a connection
that B requires to be present (or absent) was created (deleted) by A.

A simple graph family where the differences of the models become clear
are the k-BBG graphs (cf Section 4). In the critical path model, LINall needs
Θ(n3) rounds to linearize the n/3-BBG, while in our model, LINall needs at
most O(n2 log n) rounds in the worst case (cf Theorem 3). In the following,
we will show a lower bound for LINall on the n/3-BBG.

Theorem 7 There is a graph, where a worst case scheduler Swc for LINall

needs time Ω(n2) to finish.

Proof Consider the following graph: the (even) nodes v2, v4, . . . , vk−2, vk have
all edges to the nodes v2k+1, . . . , v3k. A worst case scheduler can transform
this graph in k rounds of LINall into the graph where the (odd) nodes
v3, v5, . . . , vk−1, vk+1 have all edges to the nodes v2k+1, . . . , v3k: In the first
round, node triple (v2, v3, v2k+1) “moves” the “first” edge of node v2 to node v3,
simultaneously with (v4, v5, v2k+2) and so on, the ith even node “moving” its
ith edge. More generally, in the jth round, the ith even node “moves” its (i+ j
mod k)th edge to its right odd neighbor. After k such rounds the above de-
scribed second graph is reached. The actions of one round form a maximal
independent set because all long edges end at positions v2, . . . , vk+1, and are
hence blocked by one of the described triples.

In total, a worst case scheduler can perform the above k rounds k times
by exchanging odd for even and shifting the left side further to the right.
Additionally it uses a left shifted version of the above k rounds to transform
the n/3 bipartite backbone graph into the described initial graph. ⊓⊔

Figure 6 (bottom) plots the performance of LINall and LINmax on the BBG
under different schedulers. Unfortunately, as some simulations require much
computing resources, we have only generated experimental data up to certain
network sizes. However, we can already see that while LINall is slow under
Sgreedy, the other times are comparable and roughly linear.
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For the critical path model, the picture looks quite different.

Theorem 8 Under the critical path model, LINall needs time Θ(n3) for the
n/3-BBG.

Proof Note that a single long edge {v1, vn} will take n− 1 linearization steps
using backbone edges—edges between consecutive (w.r.t. IDs) nodes—before
it is deleted. There are many such reduction sequences, one of them has as a
last edge {v1, v3}, another one has {vn−2, vn}. The gist of the construction is
to force all long edges to be deleted in this way at least between vk and v2k+1,
and to make all these sequences depend on each other to form a long critical
path.

More precisely, consider the long edges in order of increasing length (and
for example increasing left endpoint). In this order, the edges get alternating
colors red and blue. The semantics of the colors is that red edges are reduced
to {vk, vk+2}, whereas blue edges are reduced to {v2k−1, v2k+1} before they
get deleted in one step.

Every edge is first changed to {vk, v2k+1} using the backbone (these actions
will not be part of the critical path). Because there are no shorter long edges,
the edge does not become parallel to another long edge (which would mean it
gets deleted). Then a red edge is reduced to {vk, v2k−1} using the previous blue
edge, and then this blue edge is deleted. Similarly, a blue edge is reduced to
{vk+2, v2k+1} using the previous red edge, and then this red edge is deleted.
Then, in k − 3 steps, a red edge is reduced to {vk, vk+2}, a blue edges to
{v2k−1, v2k+1}.

In the critical path model, the shrinking of one edge along the middle part
of the backbone depends on the previous edge already being reduced to an edge
of length two. In total, this yields a sub-path of length k − 3 on the critical
path for every long edge, i.e., a critical path of length k2(k − 3) ∈ Θ(n3). ⊓⊔

Finally, it remains to mention that in the model studied in [23], an adapted
version of LINall would reduce the number of links in the n/3-BBG network
from Θ(n2) to O(n) in only three rounds—performing a linear work per node
and round, and thus ignoring the large contention. Subsequently, the lineariza-
tion process requires a linear number of rounds until the graph is completely
linearized. We believe that this behavior is not intuitive and that the insights
that can be obtained with this model are limited.

6 Conclusion

This article has investigated the parallel complexity of self-stabilizing graph
linearization. We have proposed a new model which we believe is more ap-
propriate and intuitive than existing frameworks, and we provided a first
analysis of the parallel time complexity of two most simple and archetypical
self-stabilizing algorithms. We also conducted simulations of the algorithms
proposed to complement our formal insights, and our experimental results
indicate that our upper bounds may be too pessimistic.
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We consider this work as a first step, and hope that our model will spark
discussions and future research in the community. Indeed, we have started our-
selves to consider 2-dimensional linearization problems [20] as well as scalable
skip graphs [19]. However, both results are based on a simpler execution model
that ignores node congestions. Moreover, it turns out that the 2-dimensional
constructions require geometric reasoning that renders the analysis more com-
plex, and it remains an open question how to apply our parallel runtime model
in these more difficult settings.
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