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Abstract. This article studies the design of medium access control (MAC) protocols for wireless networks that
are provably robust against arbitrary and unpredictable disruptions, e.g., due to unintentional external interference
from co-existing networks or due to jamming. We consider a wireless network consisting of a set of n honest and
reliable nodes within transmission (and interference) range of each other, and we model the external disruptions
with a powerful, adaptive adversary. This adversary may know the protocol and its entire history and can use this
knowledge to jam the wireless channel at will at any time. It is allowed to jam a (1−ε)-fraction of the time steps, for
an arbitrary constant ε > 0 unknown to the nodes. The nodes cannot distinguish between the adversarial jamming
or a collision of two or more messages that are sent at the same time. We demonstrate, for the first time, that
there is a local-control MAC protocol requiring only very limited knowledge about the adversary and the network
that achieves a constant (asymptotically optimal) throughput for the non-jammed time periods under any adversarial
strategy above. The derived principles are also useful to build robust applications on top of the MAC layer, and we
present an exemplary study for leader election, one of the most fundamental tasks in distributed computing.

1. Introduction. The efficient use of a shared medium is arguable one of the most rel-
evant but also most complex problems in distributed computing. First, a wireless network
requires distributed access coordination mechanisms which minimize the internal interfer-
ence due to simultaneous transmissions from wireless devices in the same network. In ad-
dition, the availability of the wireless medium can vary significantly over time due to the
external interference, e.g., due to disturbances from other sources such as microwaves, due
to transmissions of co-existing (potentially mobile) networks, or due to intentional or even
adversarial interruptions. Adversarial attacks constitute a major threat especially since they
often do not require any special hardware and may be implemented by simply listening to the
open medium and broadcasting in the same frequency band as the network.

This article studies the design of distributed medium access schemes which are robust
even against a powerful adversary who can block the medium at arbitrary and unpredictable
times, and in an adaptive manner (i.e., depending on the protocol history). This adversarial
model is used to capture a wide range of interference scenarios. Despite the adversary’s
power, we show that provably robust medium access solutions exist in the sense that in the
time periods where the medium is available, there are many successful transmissions.

1.1. Our Model. We attend to a wireless network consisting of n reliable and honest
nodes within each other’s transmission (and interference) range. All of the nodes are continu-
ously contending for sending a packet on the wireless channel. We assume that time proceeds
in synchronous time steps and in each time step any node may decide to transmit a packet.
A node may either transmit a message or sense the channel at a time step, but it cannot do
both, and there is no immediate feedback mechanism telling a node whether its transmission

∗Preliminary versions of this article appeared at the 27th ACM Symposium on Principles of Distributed Comput-
ing (PODC 2008) [5] and at 12th ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2011) [36].
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was successful. A node which is sensing the channel may either (i) sense an idle channel (in
case no other node is transmitting at that time), (ii) sense a busy channel (in case two or more
nodes transmit at the time step), or (iii) receive a packet (in case exactly one node transmits
at the time step).

In addition to these nodes there is an adversary. We allow the adversary to know the
protocol and its entire history and to use this knowledge in order to jam the wireless channel
at will at any time (i.e, the adversary is adaptive). Whenever it jams the channel, all nodes
will notice a busy channel. However, the nodes cannot distinguish between the adversarial
jamming or a collision of two or more messages that are sent at the same time. We assume
that the adversary is only allowed to jam a (1− ε)-fraction of the time steps, for an arbitrary
constant ε > 0 unknown to the honest nodes.

We allow the adversary to perform bursty jamming. More formally, an adversary is called
(T, 1 − ε)-bounded for some T ∈ N and 0 < ε < 1 if for any time window of size w ≥ T
the adversary can jam at most (1− ε)w of the time steps in that window. A MAC protocol is
called c-competitive against some (T, 1− ε)-bounded adversary (with high probability1 or on
expectation) if, for any sufficiently large number of time steps, the nodes manage to perform
successful message transmissions in at least a c-fraction of the time steps not jammed by the
adversary (with high probability or on expectation).

Our goal is to design a symmetric local-control MAC protocol that is constant competi-
tive against any (T, 1−ε)-bounded adversary, i.e., there is no central authority controlling the
nodes, and the nodes have symmetric roles at any point in time. The nodes do not know ε, but
we do allow them to have a very rough upper bound of their number n and T . More specifi-
cally, we will assume that the nodes have a common parameter γ = O(1/(log T+log log n)).
Such an estimate leaves room for a superpolynomial change in n and a polynomial change in
T over time, so it does not make the problem trivial (as it would be the case if the nodes knew
constant factor approximations of n or T ).

1.2. Our Contributions. This article introduces techniques for the design of robust
medium access protocols. In particular, it presents the first MAC protocol that is constant
competitive w.h.p., under any (T, 1−ε)-bounded adversary, given that the protocol is executed
sufficiently long. The protocol does not need to know ε, and ε can be an arbitrarily small
constant. The developed principles can also be used to build robust applications on top of
the MAC layer. In this respect, we present a new solution to the leader election problem—an
evergreen in the distributed computing. Our solution is not only robust to interference, but it
is also self-stabilizing in the sense that it converges to a correct state from any initial state.
This is particularly interesting in dynamic environments. We are not aware of any similarly
robust solution to the leader election problem.

1.3. Related Work. Wireless network jamming has been extensively studied in the ap-
plied networking domain (e.g., [1, 8, 10, 26, 28, 29, 31, 32, 40, 42, 43, 44]). Mechanisms
for launching jamming attacks (e.g., [10, 26, 28, 44]) as well as defense mechanisms against
these attacks (e.g., [1, 10, 42, 28, 29, 31, 8, 44]) have been proposed and validated through
simulations and experiments.

Traditional defenses against jamming primarily focus on the design of physical layer
technologies, such as spread spectrum [29, 31, 38]. While widely spread frequencies could
potentially help in guarding against physical layer jamming, spread spectrum techniques can-
not be used effectively in the relatively narrow frequency bands used by the 802.11 standard.

More recent work has also focused on various MAC layer strategies in order to han-
dle jamming, including coding strategies [10], channel surfing and spatial retreat [45, 1], or

1“With high probability”, or short “w.h.p.”, means a probability of at least 1− 1/nc for any constant c > 0.
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mechanisms to hide messages from a jammer, evade its search, and reduce the impact of cor-
rupted messages [42]. Most of these strategies have only been evaluated experimentally and
would not help against the jammers considered in this article.

A recent study [6] shows both theoretically and experimentally that an adaptive jammer,
such as the one proposed here, can dramatically reduce the throughput of the standard random
backoff MAC protocol of the IEEE802.11 standard with only limited energy cost on the
adversary side (please also refer to [6] for other references on jamming in 802.11).

Adversarial jamming has also been studied theoretically. There are two basic approaches
in the literature. The first assumes that messages may be corrupted at random (e.g. [34]),
and the second bounds the number of messages that the adversary can transmit or disrupt due
to, for example, a limited energy budget (e.g. [16, 21]). In a single hop wireless network
(like ours), messages will not be corrupted independently at random (every time the jammer
transmits, all messages in that time step will be corrupted); moreover, an adaptive adversary
seems more powerful than one that jams uniformly at random [6]. Hence, we focus on the
second line of theoretical work since it is more relevant to the results in this article.

The latest results in [16, 21] address adversarial jamming at both the MAC and network
layers, where the adversary may not only be jamming the channel but also introducing ma-
licious (fake) messages (possibly with address spoofing). The results in [16] only consider
the scenario that the nodes have one message to transmit (e.g., a broadcast operation). When
translated to our continuous data stream scenario, the protocol presented in [16] would not be
able to sustain a constant-competitive ratio if the adversary is allowed to jam more than half
of the time steps (i.e., if ε < 1/2), given the fact that their single message broadcast algorithm
takes at least twice as many steps as the number of time steps utilized by the jammer. More-
over, [16] assumes that the nodes have knowledge of n and of the fact that the adversary has
a bounded number of messages it can transmit (in contrast, we only need the nodes to have
an estimate on log log n and log T ).

In [21], the authors consider a wireless network in which node positions form a grid
where multiple (at most t) adversarial nodes are allowed in the direct neighborhood of a
node. If t is at most a suitably small constant, then they give a protocol for reliable broadcast
of a single message given that there is a fixed bound on the number of time steps the adversary
is disrupting communication (if t is large, no broadcast protocol is guaranteed to terminate).
The authors only show that eventually the broadcast operation will be completed, but give no
bounds on how long that will take. Moreover, their algorithms will clearly deplete the energy
of the non-faulty nodes at a higher rate than that of the faulty nodes.

Most of the theoretical work on the design of efficient MAC protocols has focused on
random backoff protocols (e.g., [7, 11, 17, 18, 25, 35]) that do not take jamming activity into
account and therefore are not robust against it. MAC protocols have also been designed in
the context of broadcasting (e.g., [12]) and clustering (e.g., [23]). Most of them use random
backoff or tournaments in order to handle interference and thereby achieve a fast runtime.

In general terms, in a random backoff protocol, each node periodically attempts to trans-
mit a message starting with a certain probability p. In case the message transmission is
unsuccessful (due to interference), the node will retry sending the message in the next time
steps with monotonically decreasing probabilities (for example, p2, p4, p8, . . .) until the mes-
sage is successfully transmitted or the minimum allowable probability is reached. In a dense
network (as in our single-hop scenario), an adversary with knowledge of the MAC protocol
would simply wait until the nodes have reached transmission probabilities that are inversely
proportional to the number of close-by nodes to start jamming the channel, forcing the nodes
to lower their transmission probabilities by so much that a constant throughput is not achiev-
able.
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There is also a large body on the leader election application considered in this article.
Leader election is an evergreen in distributed algorithms research and there exist many theo-
retical and practical results [4, 14, 22, 27, 30, 33, 39, 41]. The following two book chapters
provide a good introduction: Chapter 3 in [3] and Chapter 8 in [19]. A leader election al-
gorithm should be as flexible as possible in the sense that a correct solution is computed
independently of the initial network state. For instance, the algorithm should be able to react
to a leader departure, or be able to cope with situations where for some reasons, multiple
nodes consider themselves leaders. Self-stabilization [13] is an attractive concept to describe
such self-repairing properties of an algorithm, and it has been intensively studied already, not
only in terms of eventual stabilization but also in terms of guaranteed convergence times (see
e.g., the works on time-adaptive self-stabilization such as [24]). Several self-stabilizing leader
election protocols have been devised, e.g., [2, 9, 20] (see also the fault-contained solutions
such as [15]). However, none of these approaches allows us to elect a leader in a wireless net-
work that is exposed to harsh interference or even adaptive jamming. But such interruptions
of communication are often unavoidable in wireless systems, and we believe that electing a
leader can be particularly useful in such harsh environments.

1.4. Organization. The remainder of this article is organized as follows. Section 2 in-
troduces the main principles of our approach and presents the robust medium access protocol
(Section 2.1). We prove competitive throughput in Section 2.2 and also show that the num-
ber of useless message transmission attempts in times of high external interference is small
(i.e., the protocol does not waste transmission energy). Section 3 then attends to the specific
application of leader election, and presents a protocol (Section 3.1) together with a proof of
the robustness properties (Section 3.2). Section 4 concludes the paper.

2. Robust Medium Access. In this section we present and analyze our MAC protocol.
We start with a description of our basic ideas behind the protocol, and then provide the formal
listing of the protocol and analyze its competitiveness.

Our MAC protocol is based on a simple idea. Suppose that each node v decides to send
a message at the current time step with probability pv with pv ≤ p̂ for some small constant
0 < p̂ < 1. Let p =

∑
v pv , q0 be the probability that the channel is idle and q1 be the

probability that exactly one node is sending a message. Then the following claim holds.
CLAIM 2.1. q0 · p ≤ q1 ≤ q0

1−p̂ · p.
Proof. It holds that q0 =

∏
v(1− pv) and q1 =

∑
v pv

∏
w 6=v(1− pw). Hence,

q1 ≤
∑
v

pv
1

1− p̂
∏
w

(1− pw) =
q0 · p
1− p̂ and q1 ≥

∑
v

pv
∏
w

(1− pw) = q0 · p .

Hence, if the nodes observe that the number of time steps in which the channel is idle
is essentially equal to the number of time steps in which exactly one message is sent, then
p =

∑
v pv is likely to be around 1. Otherwise, they know that they need to adapt their

probabilities. Therefore, if we had sufficiently many cases in which an idle channel or exactly
one message transmission is observed (which is the case if the adversary does not heavily jam
the channel and p is not too large), then one can adapt the probabilities pv just based on these
two events and ignore all cases in which the wireless channel is blocked (either because the
adversary is jamming it or at least two messages interfere with each other). Essentially, the
following strategy could be used at every node for some small enough γ > 0:
In each time step, every node v is sending a message with probability pv . If it decides not to
send a message, it checks the following two cases:

• If the wireless channel is idle, then pv := (1 + γ)pv .
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• If exactly one message is sent, then pv := (1 + γ)−1pv .
The beauty of the algorithm is that it ignores blocked time steps, which makes it more robust
against adversarial jamming: the access probabilities are maintained. However, there is a
catch to this strategy because it only works well as long as p does not get too high. If p is
initially very high or by chance gets very high, it will be extremely unlikely for the nodes to
observe one of the two cases above. Hence, further ideas are necessary.

Our idea is to use a threshold Tv for each node v that cuts its time into time intervals. If v
does not observe a successful message transmission for Tv many steps, then pv is decreased.
In this way, eventually p will become small. However, since the algorithm is not aware of T ,
the time window of the adversary, p may be decreased too quickly or too slowly in this way.
Hence, we need proper rules for adapting Tv over time. It turns out that the following rules
work: whenever v senses a successful transmission, Tv is decreased by 1, and whenever v
does not sense a successful transmission for Tv time steps, Tv is increased by 1 for the next
time interval considered by v. One may ask why Tv should not be decreased as well if an idle
channel is sensed, but interestingly this is not a good rule, as will come out in the analysis.
Next, we give a formal description of our MAC protocol.

2.1. Description of the MAC Protocol. In our MAC protocol, each node v maintains
a probability value pv , a threshold Tv and a counter cv . The parameter γ is the same for
every node and is set to some sufficiently small value in O(1/(log T + log log n)). Thus,
we assume that the nodes have some polynomial estimate of T and even rougher estimate
of n. Let p̂ be any constant so that 0 < p̂ ≤ 1/24. Initially, every node v sets Tv := 1,
cv := 1 and pv := p̂. Afterwards, the protocol works in synchronized time steps. We assume
synchronized time steps for the analysis, but a non-synchronized execution of the protocol
would also work as long as all nodes operate at roughly the same speed.

In each step, each node v does the following. v decides with probability pv to send a
message. If it decides not to send a message, it checks the following two conditions:

1. If v senses an idle channel, then pv := min{(1 + γ)pv, p̂}.
2. If v successfully receives a message, then pv := (1+γ)−1pv and Tv := max{1, Tv−

1}.
Afterwards, v sets cv := cv + 1. If cv > Tv then it does the following: v sets cv := 1, and
if there was no step among the past Tv time steps in which v sensed a successful message
transmission, then pv := (1 + γ)−1pv and Tv := Tv + 1.

2.2. Robustness. Let N = max{T, n}. In this section, we will prove the following
theorem.

THEOREM 2.2. For n ≥ 2 the MAC protocol is constant competitive w.h.p.
under any (T, 1 − ε)-bounded adversary if the protocol is executed for at least
Θ( 1

ε logN max{T, 1
εγ2 log3N}) many time steps.

Notice that for n = 1 a node will never experience a time step with a successful trans-
mission. Hence, it would just keep reducing its access probability in our protocol, thereby
reaching a dormant state, which is the best it can do in this case as there is no one else to
communicate with. Thus, it only makes sense to consider the case n ≥ 2.

The proof of the theorem will frequently use the following general form of the well-
known Chernoff bounds, which may be of independent interest. They are derived from Cher-
noff bounds presented in [37].

LEMMA 2.3. Consider any set of binary random variables X1, . . . , Xn. Suppose
that there are values p1, . . . , pn ∈ [0, 1] with E[

∏
i∈S Xi] ≤

∏
i∈S pi for every set S ⊆
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{1, . . . , n}. Then it holds for X =
∑n
i=1Xi and µ =

∑n
i=1 pi and any δ > 0 that

P[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e− δ2µ

2(1+δ/3)

If, on the other hand, it holds that E[
∏
i∈S Xi] ≥

∏
i∈S pi for every set S ⊆ {1, . . . , n}, then

it holds for any 0 < δ < 1 that

P[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ
)µ
≤ e−δ2µ/2

Let V be the set of all nodes. For the proof of the theorem we will consider all possible
decompositions of V into a single node v0 and U = V \ {v0}. Let pt(v) be node v’s access
probability pv at the beginning of the t-th time step. Furthermore, let pt =

∑
v∈U pt(v) (i.e.,

without node v0) and L = Ω( 1
ε logN max{T, 1

εγ2 log3N}) be the number of time steps for
which we study the competitiveness of the protocol. If L ≥ N , we will redefine N to N =
max{T, n, L} in order to cover long runtimes. If we can prove a constant competitiveness
for any such L, Theorem 2.2 follows.

We prove the theorem by induction over sufficiently large time frames. Let I be a time
frame consisting of αε logN subframes I ′ of size f = max{T, αβ2

εγ2 log3N}, where α and β
are sufficiently large constants. Let F = α

ε logN · f denote the size of I . We assume that at
the beginning of I , pt ≥ 1/(f2(1 + γ)2

√
f ) and Tv ≤

√
F/2 for every node v. Our goal is

to show that in this case the MAC protocol is constant competitive for I w.r.t. every subset
U = V \ {v0} and at the end of I , pt ≥ 1/(f2(1 + γ)2

√
f ) and Tv ≤

√
F/2 for every node v

with probability at least 1 − 1/N c for any constant c > 0 (which we will also call with high
probability or w.h.p. in the following). Since initially Tv = 1 and pv = p̂ for every v, this
implies that the MAC protocol achieves a constant competitiveness in the first time frame,
w.h.p., and due to the properties on Tv and pv , this also holds for polynomially many time
frames, w.h.p.

The proof for time frame I proceeds as follows. Consider some fixed subset U =
V \ {v0}. A time step t or subframe I ′ of I with starting time t is called good if pt ≤ 9.
Otherwise, it is called bad. First, we show that for any subframe I ′ in which initially
pt ≥ 1/(f2(1 + γ)2

√
f ), also afterwards pt ≥ 1/(f2(1 + γ)2

√
f ), w.h.p. (Lemma 2.4).

Then we show that for any subframe I ′ with Tv ≤ (3/4)
√
F for every node v ∈ U at the

beginning of I ′, the subsequent subframe is good with probability at least 1 − 1/f c for any
constant c > 0 (which we will call with moderate probability or w.m.p.) (Lemma 2.7). Based
on the insights gained in the proof, we show that in a good subframe I ′, all non-jammed time
steps in I ′ are good w.m.p. (Corollary 2.11). After that, we prove that a constant fraction
of the time steps in such a subframe also have probabilities lower bounded by a constant
(Lemma 2.12), w.h.p., which implies that the MAC protocol is constant competitive for I ′

w.m.p. (Lemma 2.13). If at the beginning of frame I , Tv ≤
√
F/2 for every node v ∈ U ,

then during the first eighth of I , called J , Tv ≤ (3/4)
√
F , no matter what happens to the

nodes in J . This allows us to show that a constant fraction of the subframes of J are constant
competitive w.h.p., which implies that the MAC protocol is constant competitive for J w.h.p.
(Lemma 2.14). With that insight we can show that if at the beginning of J , Tv ≤

√
F/2

for every node v ∈ U , then this also holds at the end of J w.h.p. (Lemma 2.15). Hence,
all eighths of I have a constant competitiveness, w.h.p., which implies that I has a constant
competitiveness and at the end of I , Tv ≤

√
F/2 for every node v, w.h.p. Applying these

results inductively over all time frames I yields Theorem 2.2.
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At the end of this subsection, we also study the recovery properties of our MAC pro-
tocol (Theorem 2.16). It turns out that the MAC protocol can get quickly out of any set of
(pv, cv, Tv)-values, which implies that it also works well if the nodes enter the network at
arbitrary times and with arbitrary values instead of starting the protocol at the same time and
with the same values, which is not realistic in practice.

LEMMA 2.4. For any subframe I ′ in which initially pt0 ≥ 1/ (f2(1 + γ)2
√
f ), the last

time step t of I ′ satisfies pt ≥ 1/(f2(1 + γ)2
√
f ), w.h.p.

Proof. We start with the following claim about the maximum number of times nodes
decrease their probabilities in I ′ due to cv > Tv .

CLAIM 2.5. If in subframe I ′ the number of successful message transmissions is at most
k, then every node v increases Tv at most k +

√
2f many times.

Proof. Only successful message transmissions reduce Tv . If there is no successful mes-
sage transmission within Tv many steps, Tv is increased. Suppose that k = 0. Then the
number of times a node v increases Tv is upper bounded by the largest possible ` so that∑T 0

v+`

i=T 0
v
i ≤ f , where T 0

v is the initial size of Tv . For any T 0
v ≥ 1, ` ≤ √2f , so the claim is

true for k = 0. At best, each additional successful transmission allows us to reduce all thresh-
olds for v by 1, so we are searching for the maximum ` so that

∑T 0
v−k+`
i=T 0

v−k max{i, 1} ≤ f .
This ` is upper bounded by k +

√
2f , which proves our claim.

This claim allows us to show the following claim.
CLAIM 2.6. Suppose that for the first time step t0 in I ′, pt0 ∈ [1/(f2(1+γ)2

√
f ), 1/f2].

Then there is a time step t in I ′ with pt ≥ 1/f2, w.h.p.
Proof. Suppose that there are g non-jammed time steps in I ′. Let k0 be the number of

these steps with an idle channel and k1 be the number of these steps with a successful message
transmission. Furthermore, let k2 be the maximum number of times a node v increases Tv in
I ′. If all time steps t in I ′ satisfy pt < 1/f2, then it must hold that

k0 − log1+γ(1/pt0) ≤ k1 + k2

This is because no v has reached a point with pt(v) = p̂ in this case, which implies that
for each time step t′ with an idle channel, pt′+1 = (1 + γ)pt′ . Furthermore, at most
log1+γ(1/pt0) increases of pt due to an idle channel would be needed to get pt to 1/f2,
and then there would have to be a balance between further increases and decreases of pt in
order to avoid the case pt ≥ 1/f2. We know from Claim 2.5 that k2 ≤ k1 +

√
2f . Hence,

k0 ≤ 2 log1+γ f + 2
√
f + 2k1 +

√
2f

Suppose that 2 log1+γ f + 4
√
f ≤ εf/2, which is true if f = Ω(1/ε2) is sufficiently large

(resp. ε = Ω(1/ log3N)). Since g ≥ εf due to our adversarial model, it follows that we must
satisfy k0 ≤ 2k1 + g/2.

For any time step t with pt ≤ 1/f2,

P[≥ 1 message transmitted at t] ≤
∑
v

pv(t) = pt + p̂

≤ 1/f2 + p̂

where p̂ is due to node v0 not considered in pt. Hence, E[k0] ≥ (1 − 1/f2 − p̂)g and
E[k1] ≤ (1/f2 + p̂)g. In order to prove bounds on k0 and k1 that hold w.h.p., we can use the
general Chernoff bounds stated above. For any step t, let the binary random variable Xt be 1
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if and only if the channel is idle at step t or pt ≥ 1/f2. Then

P[Xt = 1] = P[channel idle and pt ≤ 1/f2] + P[pt > 1/f2]
= P[pt ≤ 1/f2] · P[channel idle | pt ≤ 1/f2] + P[pt > 1/f2]
≥ P[pt ≤ 1/f2](1− 1/f2 − p̂) + P[pt > 1/f2]
≥ 1− 1/f2 − p̂

and since this probability bound holds irrespective of prior steps and is independent of the
adversarial jamming decision at time t, it follows for any set S of time steps prior to some
time step t that

P[Xt = 1 |
∏
s∈S

Xs = 1] ≥ 1− 1/f2 − p̂

Thus, for any set of time steps S it holds that E[
∏
s∈S Xs] ≥ (1−1/f2− p̂)|S|. Together with

the fact that g ≥ εf ≥ α logN , the Chernoff bounds imply that, w.h.p., either k0 > 3g/4
(given that p̂ ≤ 1/24) or we have a time step t with pt ≥ 1/f2.

On the other hand, let the binary random variable Yt be 1 if and only if exactly one
message is sent at time t and pt ≤ 1/f2. Then

P[Yt = 1] = P[pt ≤ 1/f2] · P[one msg sent | pt ≤ 1/f2]
≤ 1/f2 + p̂

and it holds for any set S of time steps prior to some time step t that

P[Yt = 1 |
∏
s∈S

Ys = 1] ≤ 1/f2 + p̂

Thus, the Chernoff bounds imply that k1 < g/8, w.h.p. (given that p̂ ≤ 1/24). That, however,
would violate the condition that k0 ≤ 2k1 + g/2.

Note that the choice of g is not oblivious as the adversary may adaptively decide to set g
based on the history of events. Hence, we need to sum up the probabilities over all adversarial
strategies of selecting g in order to show that none of them succeeds, but since there are only
f many, and for each the claimed property holds w.h.p., the claim follows.

So suppose that there is a time step t in I ′ with pt ≥ 1/f2. If t belongs to one of the last
β logN non-jammed steps in I ′, then it follows for the probability pt′ at the end of I ′ that

pt′ ≥ 1
f2
· (1 + γ)−2β logN+

√
2f ≥ 1

f2(1 + γ)2
√
f

given that ε = Ω(1/ log3N) as at most β logN decreases of pt can happen due to a successful
transmission and at most β logN +

√
2f decreases of pt can happen due to exceeding Tv .

Suppose, on the other hand, that there is no time step t among the last β logN non-
jammed steps in I ′ with pt ≥ 1/f2. In this case, we assume that a specific step t in I ′

outside of these last steps is the last time step with pt ≥ 1/f2. When defining k0, k1 and
k2 as above but from that point on it follows that pt′ at the end of I ′ is still bounded from
below by 1/(f2(1 + γ)2

√
f ) as long as k0 ≥ k1. Our analysis above implies that this is true

w.h.p. (see Claim 2.8 for similar arguments in the other direction), which finishes the proof
of Lemma 2.4.

LEMMA 2.7. For any subframe I ′ with Tv ≤ (3/4)
√
F for all nodes v at the beginning

of I ′, the last time step t of I ′ satisfies pt ≤ 9 w.m.p.
8



Proof. We first show that there is a time step t in I ′ with pt ≤ 6, w.h.p. Let the time
steps in which the adversary does not jam the channel and at most one message is sent by the
nodes be called useful. Suppose that there are g useful time steps in I ′. Let k0 be the number
of these steps with an idle channel and k1 be the number of these steps with a successful
message transmission. In order to establish a relationship between k0 and k1 we need the
following claims.

CLAIM 2.8. If all time steps t ∈ I ′ satisfy pt > 6, then it holds for any g ≥ δ logN for
a sufficiently large constant δ that k1 ≥ k0 w.h.p.

Proof. Let q0(t) be the probability of an idle channel and q1(t) be the probability of a
successful message transmission at a useful step t. If pt > 6, then it follows from Claim 2.1
that

P[channel idle] =
q0(t)

q0(t) + q1(t)
≤ q0(t)
q0(t) + pt · q0(t)

≤ 1
1 + 6

=
1
7

irrespective of what happened at previous time steps. Hence, E[k0] ≤ g/7 under the assump-
tion that all useful time steps t satisfy pt > 6. Thus, our Chernoff bounds yield k0 ≤ g/2
w.h.p. (given that δ is a sufficiently large constant), which implies that k1 ≥ k0.

Now we are ready for the following claim.
CLAIM 2.9. If all time steps in I ′ satisfy pt > 6, then it must hold w.h.p. that

k1 − 2 log1+γ N ≤ (5/4)k0

Proof. If exactly one message is sent at a step t, then pt+1 ≥ (1 + γ)−1pt and

pt+1 ≤ (1 + γ)−1(pt − p̂) + p̂ ≤ (1 + γ)−1pt + γ(1 + γ)−1p̂

because only the sending node does not decrease its probability, and for this node the maxi-
mum probability is p̂. For pt > 6 it follows that pt+1 ∈ [(1 + γ)−1pt, (1 + γ)−4/5pt]. From
Claim 2.8 we now that after the first δ logN useful steps, there must have been more steps
with a successful transmission than with an idle channel for any one of the remaining useful
steps, w.h.p, which implies that for each of them, pv < p̂ for all nodes v. Thus, whenever
there is an idle channel for these steps, pt+1 = (1 + γ)pt. Hence, if we start with pt = 6
after the first δ logN useful steps, then in order to avoid a step t′ with pt′ ≤ 6 in I ′ we must
have that k1 ≤ (5/4)k0. Since pt might be as high as p̂n initially, we can allow at most
(5/4) log1+γ N further events of a successful message transmission without having a step t′

with pt′ ≤ 6.
Since log1+γ N = ω(logN), it holds that

δ logN + (5/4) log1+γ N ≤ 2 log1+γ N

for a sufficiently large N , which implies the claim.
Also, k0 + k1 = g. Suppose that g ≥ δ log1+γ N for a sufficiently large constant δ. It

holds that

(g − k0)− 2g/δ ≤ (5/4)k0 ⇔ k0 ≥ (4/9)(1− 2/δ)g

We know from the proof of Claim 2.8 that for any useful step twith pt > 6, P[channel idle] ≤
1
7 . Hence, E[k0] ≤ g/7. Since random decisions are made independently in each step, our
Chernoff bounds imply that k0 < (4/9)(1− 2/δ)g w.h.p. if δ is sufficiently large.
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Thus, if I ′ contains at least δ log1+γ N useful steps, we are done. Otherwise, notice
that for every node v it follows from the MAC protocol and the choice of f and F that if
initially Tv ≤ (3/4)

√
F , then Tv can be at most

√
F during I ′. Let us cut I ′ into m intervals

of size 2
√
F each. It is easy to check that if β in the definition of f is sufficiently large

compared to δ, then m ≥ 3δ log1+γ N . If there are less than δ log1+γ N useful steps, then at
least 2δ log1+γ N of these intervals do not contain any useful step, which implies that pv is
reduced by at least (1 + γ)−1 by each v in each of these intervals.

Hence, altogether, every pv gets reduced by a factor of at least (1+γ)−2δ log1+γ N during
I ′. The useful time steps can only raise that by (1 + γ)δ log1+γ N , so altogether we must have
pt ≤ 6 at some time point during I ′, w.h.p.

In the following, let t0 denote any time in I ′ with pt0 ≤ 6. We finally prove the following
claim.

CLAIM 2.10. For any useful time step t after a step t0 in I ′ with pt0 ≤ φ for some φ ≥ 6
and any constant δ > 0 it holds that

P[pt ≥ (1 + δ)φ] ≤ 8 · (1 + δ)−1/(6γ)

Proof. Suppose that t0 is the last useful time step before step t in I ′ with pt0 ≤ φ.
Let g be the number of useful time steps from t0 to t. Then g ≥ ln(1 + δ)/ ln(1 + γ)
because otherwise it is not possible that pt ≥ (1 + δ)φ. Recall that for any useful step r with
pr ≥ 6, P[pr+1 = (1 + γ)pr] ≤ 1/7. If exactly one message is sent at a useful step, then
pr+1 ∈ [(1 + γ)−1pr, (1 + γ)−4/5pr]. Let k0 be the number of useful steps with an idle
channel and k1 be the number of useful steps with a successful message transmission. It must
hold that k0 ≥ (4/5)k1 + ln(1 + δ)/ ln(1 + γ) so that pt ≥ (1 + δ)φ. Also, k0 + k1 = g.
Hence, k0 ≥ (4/9)g + (5/9) ln(1 + δ)/ ln(1 + γ) ≥ max{(4/9)g, ln(1 + δ)/ ln(1 + γ)}. It
holds that E[k0] ≤ g/7, so the Chernoff bounds imply that

P[k0 ≥ (4/9)g] ≤ P[k0 ≥ (1 + 2)g/7]

≤ e−[22/(2(1+2/3))](g/7) = e−g/6

Hence,

P[pt ≥ (1 + δ)φ] ≤
∑

g≥ ln(1+δ)
ln(1+γ)

P[k0 ≥ (4/9)g] ≤
∑

g≥ ln(1+δ)
ln(1+γ)

e−g/6

≤ 8(1 + δ)−
1

6 ln(1+γ) ≤ 8(1 + δ)−1/(6γ)

Since we assume that γ = O(1/ log f), it follows that w.m.p., pt ≤ (1 + δ)6 for any
particular time step t after t0, resulting in the lemma with δ = 1/2.

Claim 2.10 with φ = 9 and δ = 1/3 implies the following result.
COROLLARY 2.11. For any good subframe I ′, all non-jammed time steps t of I ′ satisfy

pt ≤ 12 w.m.p.
We also need to show that for a constant fraction of the non-jammed time steps in a good

subframe, pt is also lower bounded by a constant. Recall that p̂ ≤ 1/24.
LEMMA 2.12. For any subframe I ′ in which initially pt ≥ 1/ (f2(1 + γ)2

√
f ), at least

1/8 of the non-jammed steps t satisfy pt ≥ p̂, w.h.p.
Proof. Let G be the set of all non-jammed time steps in I ′ and S be the set of all steps t

in G with pt < p̂. Let g = |G| and s = |S|. If s ≤ 7g/8, we are done. Hence, consider the
case that s ≥ 7g/8.
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Suppose that pt must be increased k0 many times to get from its initial value up to a
value of p̂ and that pt is decreased k1 many times in S due a successful message transmission.
Furthermore, let k2 be the maximum number of times a node v decreases pv due to cv > Tv
in the MAC protocol. For S to be feasible (i.e., probabilities can be assigned to each t ∈ S
so that pt < p̂) it must hold for the number ` of times in S in which the channel is idle that

` ≤ k0 + k1 + k2

For the special case that k0 = k2 = 0 this follows from the fact that whenever there is a
successful message transmission, pt is reduced to pt+1 ≥ (1 + γ)−1pt. On the other hand,
whenever there is an idle channel, it holds that pt+1 = (1 + γ)pt because of pt < p̂. Thus,
if ` > k1, then one of the steps in S would have to have a probability of at least p̂, violating
the definition of S. k0 comes into the formula due to the startup cost of getting to a value of
p̂, and k2 comes into the formula since the reductions of the pt(v) values due to cv > Tv in
the MAC protocol allow up to k2 additional increases of pt for S to stay feasible.

First, we bound `. If pt < p̂, then P[idle channel at step t] ≥ 1 − p̂ − p̂ (where the
second p̂ is due to node v0), irrespective of prior time steps, Hence, E[`] ≥ (1 − 2p̂)s. For
p̂ ≤ 1/24 our Chernoff bounds imply (because of s ≥ 7g/8 ≥ (7/8)εf ) that ` ≥ s/2 w.h.p.
If at the beginning of I ′, pt ≥ 1/(f2(1 + γ)2

√
f ) then k0 ≤ 2 log1+γ f + 2

√
f . Moreover,

k2 ≤ g/8 + k1 +
√

2f because of Claim 2.5. Hence, k0 + k1 + k2 ≤ 2 log1+γ f + 2
√
f +

2k1 + g/8 +
√

2f , which must be at least s/2 so that ` ≤ k0 + k1 + k2 (given that ` ≥ s/2).
Suppose that 2 log1+γ f + 4

√
f ≤ εf/16 (which is true if f = Ω(1/ε2) is large enough).

Then for this to be true it must hold that

2k1 + g/8 + g/16 ≥ (7g/8)/2 ⇔ k1 ≥ g/8

If k1 ≥ g/8 then also k1 ≥ s/8, so our goal will be to show that k1 < s/8 w.h.p.
If pt < p̂, then P[successful message transmission at step t] ≤ 2p̂, irrespective of prior

time steps. Hence, E[k1] ≤ 2p̂s. Furthermore, for p̂ ≤ 1/24 our Chernoff bounds imply
because of s ≥ 7g/8 ≥ (7/8)εf that k1 < s/8 w.h.p. Since there are at most f2 ways (for
the adversary) of choosing g and s, this holds for any combination of g and s, which yields
the lemma.

Combining the results above, we get:
LEMMA 2.13. For any good subframe I ′ the MAC protocol is constant competitive in I ′

w.m.p.
Proof. From Corollary 2.11 and Lemma 2.12 we know that in a good subframe at least

1/8 of the non-jammed time steps t have a constant probability value pt w.m.p. For these
steps there is a constant probability that a message is successfully sent. Using the Chernoff
bounds results in the lemma.

Consider now the first eighth of frame I , called J .
LEMMA 2.14. If at the beginning of J , p ≥ 1/(f2(1 + γ)2

√
f ) and Tv ≤

√
F/2 for all

nodes v, then we also have p ≥ 1/(f2(1 + γ)2
√
f ) at the end of J and the MAC protocol is

constant competitive for J , w.h.p.
Proof. The bound for p at the end of J directly follows from Lemma 2.4. Suppose,

as a worst case, that initially Tv =
√
F/2 for some v. Clearly, Tv assumes the maximum

possible value at the end of J if Tv is never decreased in J . Since Tv can be increased at
most (F/8)/(

√
F/2) =

√
F/4 many times in J , Tv can reach a maximum value of at most

(3/4)
√
F inside of J , so we can apply Lemma 2.7.

Recall that J consists of k = α
8ε logN many subframes, numbered I1, . . . , Ik. For each

Ii, let the binary random variableXi be 1 if and only if Ii is good. From Lemma 2.7 it follows
11



that for any i ≥ 1 and any set S ⊆ {1, . . . , i− 1},

P[Xi = 1 |
∏
j∈S

Xj = 1] ≥ 1− 1/f c

for some constant c that can be made arbitrarily large. Hence, for any set S ⊆ {1, . . . , k},
E[
∏
i∈S Xi] ≥ (1 − 1/f c)|S|. Our Chernoff bounds therefore imply that at most

(α/24ε) logN of the subframes in J are bad, w.h.p, if α is sufficiently large. According
to Lemma 2.13, each of the good subframes is constant competitive w.m.p., where the prob-
ability bounds are only based on events in the subframes themselves and therefore hold irre-
spective of the other subframes (given that each of them is good). So the Chernoff bounds
imply that at most (α/24ε) logN of them do not result in a constant competitiveness of the
MAC protocol, w.h.p. The remaining (α/24ε) logN subframes in J achieve constant com-
petitiveness, which implies that the MAC protocol is constant competitive on J , w.h.p.

We finally need the following lemma that bounds Tv . The proof of this lemma requires
considering all possible decompositions of V into a node v0 and U = V \ {v0} so that every
node experiences many successful transmissions.

LEMMA 2.15. If at the beginning of J , Tv ≤
√
F/2 for all v, then it holds that also

Tv ≤
√
F/2 at the end of J , w.h.p.

Proof. We know from Lemma 2.14 that for any node v our protocol is constant competi-
tive for V \{v}w.h.p. Hence, every node v notices Ω(ε|J |) successful message transmissions
in J w.h.p. Tv is maximized at the end of J if all of these successful transmissions happen at
the beginning of J , which would get Tv down to 1. Afterwards, Tv can raise to a value of at
most t for the maximum t with

∑t
i=1 i ≤ |J |. Since such a t can be at most

√
2|J |, it follows

that Tv can be at most
√

2F/8 =
√
F/2 at the end of J , w.h.p.

Inductively using Lemmas 2.13 and 2.15 on the eighths of frame I implies that our
MAC protocol is constant competitive on I and at the end of I , pv ≥ 1/(f2(1 + γ)2

√
f )

and Tv ≤
√
F/2 for all v w.h.p. Hence, our MAC protocol is constant competitive for

L many time steps, w.h.p., for any L = Ω( 1
ε logN max{T, 1

εγ2 log3N}), which implies
Theorem 2.2.

Finally, we show that our protocol can quickly recover from any setting of the
(Tv, cv, pv)-values.

THEOREM 2.16. For any pt0 and T̂ = maxv Tv it takes at most O( 1
ε log1+γ(1/pt0) +

T̂ 2) many time steps, w.h.p., until the MAC protocol satisfies again pt ≥ 1/(f2(1 + γ)2
√
f )

and maxv Tv ≤
√
F/2 for the original definitions of F and f above.

Proof. Suppose that pt0 < 1/(f2(1 + γ)2
√
f ) for some time point t0. Then it fol-

lows from the constraints of the adversary and the Chernoff bounds that it takes at most
δ/ε log1+γ(1/pt0) steps for some sufficiently large constant δ to get the system from pt0 up

to p1/2
t0 , w.h.p. (in fact, with a probability of at least 1 − pct0 for any constant c, irrespective

of T̂ ). Another δ
2ε log1+γ(1/pt0) steps will then get the system from p

1/2
t0 to p1/4

t0 , w.h.p. (in

fact, with probability at least 1− (p1/2
t0 )c for any constant c). Continuing these arguments in

order to get from p
1/2i

t0 to p1/2i+1

t0 it follows that altogether at most 2δ
ε log1+γ(1/pt0) steps

are needed to get the system from pt0 to a probability pt ≥ 1
f2(1+γ)2

√
f , w.h.p. (or more

precisely, with probability at least 1− 1/N c).
It remains to bound the time to get Tv down to

√
F/2 for every v. It holds that T̂ ≤√

F/2 if and only if F ≥ 4T̂ 2. Hence, consider a time frame I of size F ′ = max{F, 4T̂ 2}
for the old definition of F above, where I starts at the point at which the probabilities pv have
recovered to pt ≥ 1/(f2(1 + γ)2

√
f ). Then all the proofs above go through and imply that I
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is constant competitive. Moreover, when cutting I into pieces of size |I|/32 instead of |I|/8,
the proof of Lemma 2.15 implies that at the end of the first 1/32-piece J of I , Tv ≤

√
F ′/4,

w.h.p. Hence, the time frames of the nodes shrank by a factor of at least 2 in J . Inductively
using this bound, it follows that also at the end of I , Tv ≤

√
F ′/4 for all v, w.h.p. This allows

us to reduce F ′ by a factor of 2 for the next frame I . Also for this F ′, we get Tv ≤
√
F ′/4

for all v, w.h.p., so we can keep shrinking I by a factor of 2 until |I| = F for the original
F considered in our proofs above. Altogether, the recovery to T̂ ≤ √F/2 for all v takes at
most O(T̂ 2) time.

Combining the two upper bounds for the recovery time yields the theorem.
Interestingly, we can show that our MAC protocol is also efficient under adversarial

attacks in terms of transmitted messages. The first lemma follows directly from our earlier
insights.

LEMMA 2.17. For any time frame I of size F as defined above, the total number of
transmitted messages by all the nodes is bounded by O(F ) w.h.p.

If the adversary performs permanent jamming, the number of message transmissions
converges, i.e., our MAC protocol reaches a dormant stage.

LEMMA 2.18. Consider any time step t0 with
∑
v pv ≤ p and maxv Tv ≤ T̂ for some

values p > 0 and T̂ ≥ 1/γ. Then for any continuous jamming attack starting at t0 the total
number of message transmissions during the entire attack is at most O(p · T̂ /γ + logN)
w.h.p.

Proof. First, we determine the expected number of transmissions of a single node v.
Let pv(t) be the probability that v transmits a message in round t0 + t. Due to our MAC
protocol, pv(t) decreases by (1 + γ)−1 at latest for t = T̂ , then another time after T̂ + 1
further steps, another time after T̂ + 2 further steps, and so on. Hence, the total expected
number of transmissions of v for any continuous jamming attack is at most∑

Tv≥T̂
Tv · pv(t0)(1 + γ)Tv−T̂

= pv(t0)
∑
i≥0

(T̂ + i)(1 + γ)−i

≤ 1 + γ

γ
· T̂ · pv(t0) +

(
1 + γ

γ

)2

· pv(t0)

= O(pv(t0)T̂ /γ)

Summing up over all nodes, we obtain a total of O(p · T̂ /γ) transmissions. Since all trans-
mission decisions are done independently at random, the Chernoff bounds imply a total of at
most O(p · T̂ /γ + logN) w.h.p.

In our MAC protocol, beyond f steps after any initial choice of the access probabilities,
p = O(logN), w.h.p. This is due to the proof of Lemma 2.7 and the fact that for p ≥ c logN ,
the probability that an idle channel is experienced is at most 1/N c, so further increasing p has
a polynomially small probability. Furthermore, T̂ = O(log2N/γ) w.h.p. for any constant
ε given that all nodes v start with Tv = 1. Hence, the total number of transmissions of
our MAC protocol under a permanent attack that starts after f steps would be bounded by
O(log3N/γ2) w.h.p.

3. An Application to Leader Election. Robust medium access techniques can consti-
tute an important building block for many robust applications. In this section, we provide an
exemplary application to the classic leader election problem where n nodes need to agree on
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a single leader among them. Concretely, our goal is to design a leader election protocol that
is self-stabilizing despite adversarial jamming.

Following the usual notation in the self-stabilization literature, the system state is deter-
mined by the state of all variables in the system. That is, the protocol and any constants used
by the protocol are assumed to be immutable and not part of the system state. A system is
called self-stabilizing if and only if (1) when starting from any state, it is guaranteed to even-
tually reach a legal state (convergence) and (2) given that the system is in a legal state, it is
guaranteed to stay in a legal state (closure), provided that there are no faults or membership
changes in the system. In our case, roughly speaking, the legal state is the state in which we
have exactly one leader.

We will define the set of legal states more formally when we introduce our protocol.
While our protocol is randomized and the leader election has to be performed under adversar-
ial jamming, our protocol is still guaranteed to eventually elect exactly one leader from any
initial state.

3.1. The SELECT Protocol. Our leader election algorithm (called SELECT for SElf-
stabilizing Leader EleCTion) is based on the ideas introduced for the medium access protocol.
Again, each node v maintains a parameter pv which describes v’s probability of accessing the
medium at a given moment of time. The nodes adapt and synchronize their pv values over
time in a multiplicative increase multiplicative decrease manner, i.e., the value is lowered in
times of high interference or increased during times where the channel is idling. However, pv
will never exceed p̂, for some constant 0 < p̂ < 1.

In addition, each node maintains two variables, a threshold variable Tv and a counter
variable cv . Again, Tv is used to estimate the adversary’s time window T : a good estimation
of T can help the nodes recover from a situation where they experience high interference in
the network. In times of high interference, Tv will be increased and the sending probability
pv will be decreased.

Initially, every node v sets cv := 1 and pv := p̂. Note however that while we provide
some initial values for the variables in our description, our protocol is self-stabilizing and
works for any initial variable values, as we will show in our proofs.

SELECT distinguishes between two node roles: follower and leader. We use sv to indi-
cate the role of the node: sv = 1 means that node v is a leader, whereas sv = 0 means v is
a follower. The basic idea of our protocol is to divide time into intervals of a small number
of rounds specified by the constant parameter b > 5 (we use the variable mc as a modulo
counter); in the following, we will refer to a sequence of rounds between two consecutive
mc = 0 events as a b-interval. (Of course, it can happen that all b slots of an interval are
jammed.)

Our protocol is based on the concept of so-called leader slots, special rounds—in each b-
interval through which SELECT cycles—in which leaders are obliged to send an alive message
(a so-called leader message) and in which followers keep silent. The idea is that the followers
learn that the leader has left in case of an idling medium during a leader slot (of course, the
leader slots may be jammed!) and a new election is triggered automatically.

SELECT uses four leader slots:2 ls1, ls2, ls3 and ls4. Of course, in the beginning, all
nodes may have different ls values and may disagree on which slots during the b-interval
are leader slots. However, over time, the nodes synchronize their states and a consistent view
emerges. For the synchronization, five temporary variables ls′0, ls′1, ls′2, ls′3, and ls′4 are used,
which store future ls values.

Depending on whether the node is of type follower or leader, the leader slots are updated

2It is an open question whether a protocol with less leader slots can be devised.

14



Algorithm 1 Leader Election: Follower
1: mc := cv mod b
2: if mc = 0 then
3: ls1 := ls′0, ls2 := ls′1, ls3 := ls′2, ls4 := ls′3
4: sv := s′v
5: end if
6: if (ls3 = undefined) or (mc 6= ls1 and mc 6= ls2 and
mc 6= ls3 and mc 6= ls4) then

7: v decides with pv to send a follower message
8: if v sends a follower message then
9: the message contains:

10: cc1 := ls′0, cc2 := ls′1, cc3 := ls′2, cc4 := ls′3,
cnew := cv , Tnew := Tv , pnew := pv

11: end if
12: end if
13: if v does not send a follower message then
14: v senses the channel
15: if channel is idle then
16: if mc = ls3 then
17: s′v := 1
18: pv := p̂
19: else
20: pv := min {(1 + γ)pv, p̂}
21: end if
22: else if v receives ‘LEADER’ then
23: s′v := 0
24: ls3 := undefined
25: ls′2 := undefined
26: else if v receives a tuple of {cc1, cc2, cc3, cc4, cnew,

Tnew, pnew} then
27: Tv := Tnew

28: pv := (1 + γ)−1pnew

29: cv := cnew

30: ls′0 := random(0, b− 1)
31: ls′1 := cc1, ls′2 := cc2, ls′3 := cc3, ls′4 := cc4
32: end if
33: end if
34: cv := cv + 1
35: if cv ≥ b · Tv then
36: cv := 0
37: if (not CONDITION) then
38: pv := (1 + γ)−1pv , Tv := Tv + 1
39: ls′0 := undefined, ls′1 := undefined,

ls′2 := undefined, ls′3 := undefined,
ls′4 := undefined

40: else
41: Tv := max{Tv − 1, 4}
42: end if
43: end if

Algorithm 2 Leader Election: Leader
1: mc := cv mod b
2: if mc = 0 then
3: ls1 := ls′1, ls2 := ls′2, ls3 := ls′3, ls4 := ls′4
4: end if
5: if mc = ls1 or mc = ls2 or mc = ls3 or mc = ls4

then
6: v sends the leader message ‘LEADER’
7: else
8: v decides with pv to send ‘LEADER’
9: if v does not send ‘LEADER’ then

10: v senses the channel
11: if channel is idle then
12: pv := min {(1 + γ)2pv, p̂}
13: else if v receives a message then
14: pv := (1 + γ)−1pv

15: if message is ‘LEADER’ then
16: sv := 0, s′v := 0
17: ls3 := undefined, ls′2 :=

undefined
18: else if message is a follower message,

i.e., a tuple of {cc1, cc2, cc3, cc4, cnew,
Tnew, pnew} then

19: cv := cnew, Tv := Tnew

20: ls′1 := cc1, ls′2 := cc2, ls′3 := cc3,
ls′4 := cc4

21: end if
22: end if
23: end if
24: end if
25: cv := cv + 1
26: if cv ≥ b · Tv then
27: cv := 0
28: if (not CONDITION) then
29: pv := (1 + γ)−1pv , Tv := Tv + 1
30: ls′0 := undefined, ls′1 := undefined,

ls′2 := undefined, ls′3 := undefined,
ls′4 := undefined

31: else
32: Tv := max{Tv − 1, 4}
33: end if
34: end if
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Algorithm 1 Leader Election: Follower
1: mc := cv mod b
2: if mc = 0 then
3: ls1 := ls′0, ls2 := ls′1, ls3 := ls′2, ls4 := ls′3
4: sv := s′v
5: end if
6: if (ls3 = undefined) or (mc 6= ls1 and mc 6= ls2 and
mc 6= ls3 and mc 6= ls4) then

7: v decides with pv to send a follower message
8: if v sends a follower message then
9: the message contains:

10: cc1 := ls′0, cc2 := ls′1, cc3 := ls′2, cc4 := ls′3,
cnew := cv , Tnew := Tv , pnew := pv

11: end if
12: end if
13: if v does not send a follower message then
14: v senses the channel
15: if channel is idle then
16: if mc = ls3 then
17: s′v := 1
18: pv := p̂
19: else
20: pv := min {(1 + γ)pv, p̂}
21: end if
22: else if v receives ‘LEADER’ then
23: s′v := 0
24: ls3 := undefined
25: ls′2 := undefined
26: else if v receives a tuple of {cc1, cc2, cc3, cc4, cnew,

Tnew, pnew} then
27: Tv := Tnew

28: pv := (1 + γ)−1pnew

29: cv := cnew

30: ls′0 := random(0, b− 1)
31: ls′1 := cc1, ls′2 := cc2, ls′3 := cc3, ls′4 := cc4
32: end if
33: end if
34: cv := cv + 1
35: if cv ≥ b · Tv then
36: cv := 0
37: if (not CONDITION) then
38: pv := (1 + γ)−1pv , Tv := Tv + 1
39: ls′0 := undefined, ls′1 := undefined,

ls′2 := undefined, ls′3 := undefined,
ls′4 := undefined

40: else
41: Tv := max{Tv − 1, 4}
42: end if
43: end if

Algorithm 2 Leader Election: Leader
1: mc := cv mod b
2: if mc = 0 then
3: ls1 := ls′1, ls2 := ls′2, ls3 := ls′3, ls4 := ls′4
4: end if
5: if mc = ls1 or mc = ls2 or mc = ls3 or mc = ls4

then
6: v sends the leader message ‘LEADER’
7: else
8: v decides with pv to send ‘LEADER’
9: if v does not send ‘LEADER’ then

10: v senses the channel
11: if channel is idle then
12: pv := min {(1 + γ)2pv, p̂}
13: else if v receives a message then
14: pv := (1 + γ)−1pv

15: if message is ‘LEADER’ then
16: sv := 0, s′v := 0
17: ls3 := undefined, ls′2 :=

undefined
18: else if message is a follower message,

i.e., a tuple of {cc1, cc2, cc3, cc4, cnew,
Tnew, pnew} then

19: cv := cnew, Tv := Tnew

20: ls′1 := cc1, ls′2 := cc2, ls′3 := cc3,
ls′4 := cc4

21: end if
22: end if
23: end if
24: end if
25: cv := cv + 1
26: if cv ≥ b · Tv then
27: cv := 0
28: if (not CONDITION) then
29: pv := (1 + γ)−1pv , Tv := Tv + 1
30: ls′0 := undefined, ls′1 := undefined,

ls′2 := undefined, ls′3 := undefined,
ls′4 := undefined

31: else
32: Tv := max{Tv − 1, 4}
33: end if
34: end if

2

FIG. 3.1. Algorithm for followers (left) and leaders (right).

differently: At the beginning of a new b-interval, a leader copies its ls′i values to the lsi values.
A follower on the other hand copies the ls′ values “diagonally” in the sense that ls′i is copied
to ls′i+1 for i ∈ {0, 1, 2, 3}. As we will see, this mechanism ensures that an elected leader
covers the leader slot ls3 of each follower. (SELECT guarantees that the adaptive adversary
has no knowledge about the ls3 slots at all until it is already too late to prevent a successful
election.) Another special slot besides ls3 is ls′0 which is a random seed to mix the execution
for increased robustness.

In Figure 3.1 we give the detailed formal description of the follower and the leader pro-
tocol, respectively. Recall that our algorithms can tolerate any initial values of mc, pv , Tv ,
cv , sv , s′v , ls1, ls2, ls3, ls4, ls′0, ls′1, ls′2, ls′3, ls′4. For instance, in the beginning, all nodes v
may be leaders and for all v, sv = 1. However, the fixed parameters used by the algorithms,
namely p̂, γ, or b, are assumed to be immutable.

Both the follower and the leader algorithm consist of three main parts. The b-interval
15



wise update (Lines 2− 4) makes sure that ls values are refreshed frequently. Lines 6− 33 (in
case of a follower) and Lines 5− 24 (in case of a leader) are used for medium access in order
to synchronize the nodes’ states (by a message that includes cv , Tv , and pv values) and give
nodes the chance to become or remain leader (by a ‘LEADER’ message). The last sections
of the algorithms are used to react to high interference (by reducing pv) and to reset leader
slots. The reason for checking whether ls3 is undefined in Line 6 of the follower protocol
is to keep the leader slots hidden from the adaptive adversary until it is already too late to
prevent a successful leader election.3

Both the follower and the leader protocol depend on the following crucial CONDITION.
DEFINITION 3.1 (CONDITION). We define CONDITION (Line 37 for followers, and Line

28 for leaders) as the event that at least one ‘LEADER’ message was received during the past
b · Tv steps.

The idea is that if CONDITION is fulfilled, we know that the protocol is already in a good
state. Moreover, we will see that the adversary cannot prevent CONDITION to become true
for a long time as the Tv values would continue to increase.

Finally, also note that leaders increase pv faster (i.e., by larger multiplicative factors)
during idle rounds than followers. With this mechanism, SELECT improves the likelihood
that a ‘LEADER’ message gets through and hence that a unique leader is elected.

3.2. Analysis. This section shows that the randomized SELECT protocol is guaranteed
to eventually reach a situation where there is exactly one leader and n − 1 followers. Con-
cretely, we will derive the following theorem.

THEOREM 3.2. Given an arbitrary initial configuration and in the absence of state
faults, our leader election protocol reaches a state where there is exactly one leader and
n− 1 followers, despite an adaptive (T, 1− ε)-bounded jammer, for any T and any constant
ε > 0.

We make use of the following definitions. First, we define the system state.
DEFINITION 3.3 (State and System State). The state of node v is determined by the state

of the variables pv , Tv , cv , sv , s′v , mc, ls′0, ls1, ls′1, ls2, ls′2, ls3, ls′3, ls4 and ls′4. The state
of the system is the set of the states of all nodes.

We use the following LSL set to describe the union of all possible leader slot values
present in the system.

DEFINITION 3.4 (The LSL State Set). For any given system state, let LSL = {ls1(v),
ls2(v), ls3(v), ls4(v) |v is leader} \{undefined}.

The system can be in several special states which are formalized next: follower states,
pre-leader states, and leader states. Let [b] = {0, . . . , b− 1}.

DEFINITION 3.5 (Follower State). A state S is called a follower state, denoted by
S ∈ FOLLOWER, if all the following conditions hold. (i) All nodes are followers
(∀v ∈ V : sv = 0); (ii) for every node v: ls1(v), ls2(v), ls3(v), ls4(v) ∈ [b]∪{undefined},
ls′1(v), ls′2(v), ls′3(v), ls′4(v) ∈ [b]∪{undefined}, ls′0(v) ∈ [b]; (iii) the follower nodes can
be partitioned into two sets {v} and V \ {v}, according to their ls′ values (v is the node
that successfully sent the last follower message); for each w ∈ V \ {v}: ls′1(w) = ls′0(v),
ls′2(w) = ls′1(v), ls′3(w) = ls′2(v), ls′4(w) = ls′3(v), and ls2(w) = ls1(v), ls3(w) = ls2(v),
and ls4(w) = ls3(v); (iv) for any pair of follower nodes v, w ∈ V with ls′2(v) ∈ [b] and
ls3(v) ∈ [b], cv = cw and Tv = Tw.

We use the concept of so-called pre-leader states, i.e., states that result from follower
states before some nodes become leaders.

3This check allows the adversary to be even reactive.
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DEFINITION 3.6 (Pre-leader State). A state S is called a pre- leader state, denoted by
S ∈ PRE− LEADER, if it is a follower state, and at least one follower node v has s′v = 1.

While in the beginning, the leader sets may be large as each node regards different slots
during the b-interval as the “leader slots”, over time the values synchronize and the LS sets
become smaller. This facilitates a fast leader (re-) election.

DEFINITION 3.7 (Leader State). A state S is called a leader state, denoted by S ∈
LEADER, if all the following conditions are satisfied:

(i) There is at least one leader, i.e., |{v|v ∈ V : sv = 1}| ≥ 1; (ii) for every
node v, ls1(v), ls2(v), ls3(v), ls4(v) ∈ [b] ∪ {undefined}, ls′1(v), ls′2(v), ls′3(v), ls′4(v) ∈
[b] ∪ {undefined}, ls′0(v) ∈ [b]; (iii) let v be any follower and let w be any fol-
lower or leader, then ls3(v) ∈ {ls1(w), ls2(w), ls3(w), ls4(w)} ∪ {undefined}, ls′2(v) ∈
{ls′0(w), ls′1(w), ls′2(w), ls′3(w)} ∪ {undefined}; (iv) |LSL| ≤ 5; (v) for every follower w
with ls3(w) ∈ [b] or ls′2(w) ∈ [b], cw = cv and Tw = Tv for any leader v.

So in a leader state, it holds that any follower’s ls3 and ls′2 slots are covered by either
another follower’s ls and ls′ slots, or a leader’s ls and ls slots (cf Condition (iii)).

Finally, it is useful to define safe and legal states.
DEFINITION 3.8 (Safe and Legal State). A system state S is called safe (denoted by

S ∈ SAFE) if S ∈ FOLLOWER or S ∈ LEADER, and legal (denoted by S ∈ LEGAL) if
S is safe and there is exactly one node v with sv = 1.

Thus, according to our definitions, any legal state is also a safe state. In the following,
let S be the set of all possible system states, SAFE ⊂ S be the set of all safe system states
and LEGAL ⊂ SAFE be the set of all legal system states.

The proof of Theorem 3.2 unfolds in a number of lemmas. An interesting property of our
randomized algorithm is that it is guaranteed to be correct, in the sense that deterministically
exactly one leader is elected; only the runtime is probabilistic (i.e., depends on the random
choices made by SELECT).

First, we study leader messages.
LEMMA 3.9. For any network state it holds that if a leader successfully transmits a

‘LEADER’ message, the system will immediately enter a legal state.
Proof. When a node (either follower or leader) receives a ‘LEADER’ message, it sets

ls3 and ls′2 to undefined (Lines 22− 25 in Figure 3.1 left; after Lines 15− 17 of Figure 3.1
right), and considers itself a follower. Thus, in the new state, there is exactly one leader (the
sender of the ‘LEADER’ message) and n− 1 followers. The state is also a safe state, namely
a leader state: Conditions (i) and (ii) are fulfilled trivially. Condition (iv) also holds as there
is only one leader that has four slots. Condition (iii) is fulfilled because nodes receiving
a ‘LEADER’ message reset their slots ls3 and ls′2; since ls3 and ls′2 are undefined for a
follower, also Condition (v) holds.

We next consider what happens if nodes hear a message sent by a follower.
LEMMA 3.10. For any network state it holds that when a follower successfully transmits

a message, the system is guaranteed to enter a safe state at the beginning of the next b-
interval.

Proof. First note that if a leader message gets through before the next b-interval, the
claim holds trivially due to Lemma 3.9.

Otherwise we distinguish two cases: (A) For every node v, s′v = 0 (not pre-leader) and
sv = 0 (not leader) by the end of current b-interval. (B) There is at least one node v with
either s′v = 1 (pre-leader) or sv = 1 (leader) by the end of current b-interval.

In Case (A), after the follower message has been successfully sent, there are still n fol-
lowers and no leaders or pre-leaders. We will show that the system enters the follower state
at the beginning of the next b-interval. Let us refer to the follower node that sent the mes-
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sage by v and to any remaining node by w. When w receives the message from v (Lines
26 − 32 in Figure 3.1 left), it sets ls′1(w) := ls′0(v), ls′2(w) := ls′1(v), ls′3(w) := ls′2(v),
and ls′4(w) := ls′3(v). The c values become the same (cw = cv), and Tw := Tv . The
new state therefore fulfills the follower state conditions: Clearly, Conditions (i), (ii), and
(iv) are fulfilled immediately, and Condition (iii) holds as well, as for all followers w that
did not send a message and follower v which sent a message, at the beginning of the next
b-interval: ls3(w) = ls′2(w) = ls′1(v) = ls2(v), ls3(v) = ls′2(v) = ls′3(w) = ls4(w), and
ls1(v) = ls2(w) = ls′0(v) = ls′1(w).

For Case (B), observe that during the remainder of the b-interval the number of pre-
leader nodes with s′v = 1 cannot decrease, and hence there will be at least one leader at the
beginning of the next b-interval. We now show that the new state will indeed be a leader
state as nodes “synchronize” with the follower node that sent the message. Without loss of
generality, assume that node u is the last follower that successfully sent a follower message in
the current b-interval. Let us refer to the other follower nodes by v1 and to the leader nodes or
the pre-leader nodes (i.e., the followers v with s′v = 1) by v2. Again, Conditions (i) and (ii)
are fulfilled trivially. As for Condition (iii), we need to consider two sub-cases:

(Case 1) No node experienced an idle channel in its ls3 slot after the message has been
successfully sent. If this is the case and follower u is not a pre-leader, it holds that for follower
v1: ls′2(v1) = ls′2(v2) = ls′1(u) in the current b-interval, and ls3(v1) = ls2(v2) = ls2(u)
at the beginning of the next b-interval; on the other hand, if follower u is a pre-leader, then
in the current b-interval it holds that for follower v1: ls′2(v1) = ls′2(v2) = ls′1(u), and
ls3(v1) = ls2(v2) = ls1(u) at the beginning of the next b-interval. Hence, Condition (iii)
holds. Regarding the cardinality of the leader set LSL, observe that at the beginning of the
next b-interval, if u is not a pre-leader, all leaders will have ls1 = ls′0(u), ls2 = ls′1(u), ls3 =
ls′2(u), ls4 = ls′3(u), and hence LSL = {ls′0(u), ls′1(u), ls′2(u), ls′3(u)}, therefore |LSL| ≤
5; otherwise, if u is a pre-leader, then LSL = {ls′0(u), ls′1(u), ls′2(u), ls′3(u), ls′4(u)}, there-
fore |LSL| ≤ 5.

(Case 2) One or more nodes experienced an idle channel in their ls3 slots after the mes-
sage has been successfully sent. In the following, we prove this case correct assuming that u
is a follower and not a pre-leader. If u is a pre-leader, the proof is analogous.

1. If v1 experienced the idle channel at its ls3 time slot, and became a pre-leader:
Note that a node v1 may experience an idle channel after receiving the message
from u and hence become a pre-leader, however Condition (iii) is still satisfied, as
it holds that for follower u: ls′2(u) = ls′3(v2) = ls′3(v1) in the current b-interval
and ls3(u) = ls3(v2) = ls3(v1) at the beginning of the next b-interval. As for the
cardinality of the leader set LSL, observe that at the beginning of the next b-interval,
all leaders will have ls1 = ls′0(u), ls2 = ls′1(u), ls3 = ls′2(u), ls4 = ls′3(u), and
hence LSL = {ls′0(u), ls′1(u), ls′2(u), ls′3(u)}, therefore |LSL| ≤ 5.

2. If u experienced the idle channel at its ls3 time slot, and became a pre-leader:
If node u experienced an idle channel after successfully sending the message, u
became a pre-leader, and we have for a follower v1, ls′2(v1) = ls′2(v2) = ls′1(u)
in the current b-interval and ls3(v1) = ls2(v2) = ls1(u) at the beginning of
the next b-interval. Hence, Condition (iii) is satisfied. As for |LSL|, observe
that at the beginning of the next b-interval, for a leader v2, ls1 = ls′0(u), ls2 =
ls′1(u), ls3 = ls′2(u), ls4 = ls′3(u), while for the remaining leader u, it holds that
ls1 = ls′1(u), ls2 = ls′2(u), ls3 = ls′3(u), ls4 = ls′4(u). Hence, also in this case, we
have that |LSL| ≤ 5.

Finally, Condition (v) is true for both of the sub-cases, because the cv and Tv values are
“synchronized” when the follower message is received (Lines 27 and 29 in Figure 3.1 left;
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Line 19 in Figure 3.1 right).
An important property of SELECT is that once it is in a safe state, it will remain so in

future (given that there are no external changes). Similar properties can be derived for other
states, as we will see.

LEMMA 3.11. Once the system is in a safe state, it will remain in a safe state in the
future.

Proof. We study what can happen in one round, and show that in each case, the safety
properties are maintained. In a round, (A) either a ‘LEADER’ message is successfully sent,
(B) a follower message is successfully sent, (C) there are collisions or the channel is jammed,
or (D) there is an idle channel.

In Case (A), the claim directly follows from Lemma 3.9 and from the fact that safe states
are a super set of the legal states (SAFE ⊃ LEGAL). In Case (B), the claim follows from
Lemma 3.10 and by the fact that the system is in the safe state already.

In Case (C), if the channel is blocked, follower nodes (even those which sent a message
in this round) do not change their state except for the synchronized rounds in Lines 35− 43,
and similarly for the leaders in Lines 26− 34. Our protocols guarantee that the leaders have
the same cv and Tv values as the followers when ls3 and ls′2 are valid, and since the leaders
experience the same number of successful transmissions and idle time steps as the followers
do (single-hop network), the claim follows.

If there is an idle channel (Case (D)), all nodes v for which ls3(v) = mc will set s′v = 1
in the current b-interval, while other values remain the same. It is clear that from this point
on until the end of the current b-interval, the claim holds. Moreover, as we show next, the
claim is still true at the beginning of next b-interval. If ls3(v) is undefined, then the claim
holds trivially, as no states will change in this case. If ls3(v) = mc for any node v and the
nodes experience an idle channel, there is no leader since, if there was a leader, according
to Condition (iii) of the leader state definition (Definition 3.7), a follower’s ls3 slot would
always be covered by a leader slot of a leader, which yields the contradiction. Hence, the
current safe state must be a pre-leader state. Let v denote the followers that have s′v = 0
(i.e., they are not pre-leaders); let u denote the followers with s′u = 1 (pre-leaders). In
the current b-interval, we have ls′2(v) ∈ {ls′0(u), ls′1(u), ls′2(u), ls′3(u)} ∪ {undefined},
which is true according to Condition (iii) of the follower state definition (Definition 3.5).
Then, at the beginning of next b-interval, u will become a leader, and hence we have
ls3(v) = ls′2(v), ls1(u) = ls′1(u), ls2(u) = ls′2(u), and ls3(u) = ls′3(u). This implies
that ls3(v) ∈ {ls′0(u), ls1(u), ls2(u), ls3(u)}, which satisfies Condition (iii) of the leader
state Definition 3.7. Conditions (i) and (ii) are clearly satisfied. Condition (iv) holds sim-
ply because we have shown (in Lemma 3.10, Case (B)), when there is an idle time step,
|LSL| ≤ 5. Condition (v) is true because we always synchronize the cv and Tv values.

LEMMA 3.12. Once a system is in a leader state, it will remain in a leader state in the
future.

Proof. Lemma 3.11 tells us that the system will never leave a safe state. Therefore, it
remains to prove that there will always be at least one node v with sv = 1. This clearly holds
as the only way a leader can become a follower again is by receiving a ‘LEADER’ message
(see Lines 15− 17), which of course implies that another leader is still active and remains to
be a leader. Also, since we are in a leader state, Condition (v) holds and it further implies
that leaders will never invalidate their ls slots before the followers. This guarantees that the
protocol will never get out of a leader state.

LEMMA 3.13. Once a system is in a legal state, it will remain in a legal state in the
future.

Proof. By Lemma 3.11, we know that our system will never leave a safe state again,
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and hence, we only need to prove that there will always be exactly one node v with sv =
1. This is true because in the safe state, a follower node w can never become a leader,
as its ls3(w) slot is covered by the leader v: ls3(w) ∈ {ls1(v), ls2(v), ls3(v), ls4(v)} and
ls′2(w) ∈ {ls′0(v), ls′1(v), ls′2(v), ls′3(v)} (Condition (iii) of leader state). Since a follower
will never send a ‘LEADER’ message, v will remain a leader forever, which proves the claim.

Regarding convergence, note that the system quickly enters a safe state, deterministically.
LEMMA 3.14. For any initial system state with T̂ = maxv Tv , it takes at most b · T̂

rounds until the system is in a safe state.
Proof. We distinguish three cases: if a leader message gets through sometimes in these

rounds, then the claim holds by Lemma 3.9; if a follower message gets through, then the
claim holds by Lemma 3.10. If within maxv Tvb rounds neither a follower message nor a
leader message gets through, all nodes will have to reset their ls slots (since CONDITION in
Line 37 (Figure 3.1 left) resp. Line 28 (Figure 3.1 right) is not met). This however constitutes
the safe state (all conditions fulfilled trivially), which is maintained according to Lemma 3.11.

Armed with these results, we can prove convergence.
LEMMA 3.15. For any safe state, SELECT will eventually reach a legal state.
Proof. We divide the proof in two phases: the phase where the protocol transitions to the

leader state from the follower state, and the phase where it transitions to the legal state from
the leader state.

1. Follower state to leader state
If CONDITION is fulfilled, we know that a ‘LEADER’ message got through and the
system is in a legal state (and hence also in a leader state). As long as CONDITION is
not fulfilled, Tv is increasing for each node v. So eventually, T̂ = maxv Tv ≥ 2T/b.
We can also provide a lower bound on the cumulative probability p. W.l.o.g. suppose
that T ≥ (3/ε) log1+γ n (a smaller T will only make the jammer less flexible and
weaker). Suppose that p is at most ε/4 throughout some T -interval I . Then it
follows from the standard Chernoff bounds that there are at most εT/3 busy steps
in I with high probability. If this is true, then no matter how the adversary jams
during I , at least (1 − ε/3)T − (1 − ε)T = 2εT/3 non-jammed steps will be idle,
which implies that the cumulative probability at the end of I will be by a factor of
at least (1 + γ)εT/3 ≥ n3 higher than at the beginning of I . Using this insight, it
follows that eventually a T -interval is reached with p > ε/4. Once such a T -interval
has been reached, it is easy to show that p will not get below 1/n2 any more w.h.p.
so that for every T -interval afterwards there is a time point t with p > ε/4 w.h.p.
So infinitely often the following event can take place with some lower-bounded,
positive probability:
Consider two consecutive T -intervals I1 and I2 starting at a time when cv = 0 for
every node v. Suppose that I1 just consists of busy steps and I2 just consists of idle
time steps. Then the adversary has to leave εT busy time steps in I1 non-jammed
and εT idle time steps in I2 non-jammed. For I1, there is a positive probability
in this case that exactly 3 messages from different nodes are successfully sent in 3
different b-intervals. In this case, all but one follower respect the leader slots (as
their ls3-value is defined) while the follower that sent the last successful message
may still send out messages at all time steps (as its ls3-value is still undefined, see
Line 6 of the follower protocol). Thus, it is indeed possible that all time steps in I1
are busy. Up to that point, the adversary has not learned anything about the leader
slots. In I2, there is also a positive probability that none of the followers transmits a
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message throughout I2 so that all time steps are idle. As the adversary does not know
which of them is a leader slot and has to leave εT non-jammed, there is a positive
probability that ls3 is non-jammed, and some of the followers become pre-leaders
and then leaders.
Thus, the expected time to get from a follower to a leader state is finite.

2. Leader state to legal state
If there is only one leader in the leader state, the system is already in a legal state
by definition. If there is more than one leader, then we distinguish between the fol-
lowing cases. If CONDITION is fulfilled, we know that a ‘LEADER’ message got
through and the system is in a legal state. Otherwise, the leaders will invalidate all
of their ls slots once their cv values are reset to 0. At this point there is a positive
probability that for the next T steps a ‘LEADER’ message is successfully sent. As
the adversary has to leave εT time steps non-jammed, at least one ‘LEADER’ mes-
sage will be successfully transmitted within these T steps so that the system reaches
a legal state.
Analogous to the followers in the previous case, one can lower bound the cumulative
probability of the leaders (in fact, the leaders will eventually reach a time point
with a cumulative probability of Ω(ε) as they increase their probabilities in case of
an idle channel more aggressively than the followers) so that the chance above of
successfully transmitting a ‘LEADER’ message repeats itself infinitely often with a
lower-bounded positive probability. Thus, the expected time to get from a leader to
a legal state is finite as well.

From these cases, the lemma follows.

4. Conclusion. This article presented the first medium access scheme robust to a wide
range of interference types which even include adaptive jamming, together with a rigorous
analysis proving an asymptotically optimal, constant competitive throughput. We regard this
result as an important step towards a better understanding of more complex protocol or physi-
cal models for signal propagation. Moreover, as we have shown for the case of leader election,
such a protocol can also serve as a basis for robust applications. Another important direction
for future research regards the study of dynamical aspects, e.g.: How can a MAC algorithm
adapt to join and leave behavior or mobility of the nodes, and which rate is sustainable with-
out losing a constant competitiveness?
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