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Abstract—Today’s trend towards network virtualization and
software-defined networking enables flexible new distributed sys-
tems where resources can be dynamically allocated and migrated
to locations where they are most useful. This article proposes
a competitive analysis approach to design and reason about online
algorithms that find a good tradeoff between the benefits and
costs of a migratable service. A competitive online algorithm
provides worst-case performance guarantees under any demand
dynamics, and without any information or statistical assumptions
on the demand in the future. This is attractive especially in
scenarios where the demand is hard to predict and can be subject
to unexpected events.

As a case study, we describe a service (e.g., an SAP server
or a gaming application) that uses network virtualization to
improve the Quality-of-Service (QoS) experienced by thin client
applications running on mobile devices. By decoupling the service
from the underlying resource infrastructure, it can be migrated
closer to the current client locations while taking into account
migration costs. We identify the major cost factors in such
a system, and formalize the wide-area service migration problem.
Our main contribution are a randomized and a deterministic
online algorithm that achieve a competitive ratio of O(logn) in a
simplified scenario, where n is the size of the substrate network.
This is almost optimal. We complement our worst-case analysis
with simulations in different specific scenarios, and also sketch
a migration demonstrator.

I. INTRODUCTION

Virtualization is one of the main innovation motors in the
Internet. Essentially all cloud resources and datacenters are
highly virtualized today, and an unprecedented amount of
resources (typically in the form of Virtual Machines (VMs))
can be allocated on demand and for a limited time period
only. Naturally, in the network core, the virtualization trend is
slower, but also here we witness an evolution towards more
“virtualized” or “programmable” forms of networking, and
software-defined networking (SDN) and OpenFlow initiatives
attract attention also from the ISP side. Recently, Google
surprised the world with its announcement to have switched
their backbone to SDN.

We believe that within the next ten years, many ISPs will
shift towards more flexible forms of networking. For instance,
we expect ISPs to use network virtualization technologies to
improve the resource allocation or energy consumption in their
network, and to offer new services which are aware of and
adaptive to the users’ demand. Thus, ISPs can monetize their
infrastructure more effectively.

The flexibility introduced by network virtualization technol-
ogy raises interesting research challenges. For example, the
possibility to seamlessly move services closer to the users
can be exploited to improve Quality-of-Service/Quality-of-
Experience (QoS/QoE) parameters. However, as migration
comes at a certain cost, good strategies are required to decide
on when and where to move services. This article revolves
around this question and pursues an online algorithm and
competitive analysis approach which is attractive especially
when the user demand is hard to predict.

Concretely, we attend to a scenario where an ISP uses
network virtualization technology to offer an SAP or a game
server service to mobile thin clients. We assume that the ser-
vice request patterns change over time, e.g., due to commuting
users, due to timezone effects, or due to unexpected events
in sports or politics, rendering it worthwhile to migrate the
service to different locations. For instance, it can make sense
to transfer a service from China to Europe at night, to improve
the access to the service both in terms of latency as well as
cost (e.g., due to roaming) [18].

While moving services close to clients can improve access
latencies, migration comes at a cost. For example, the bulk-
data transfer imposes load on the network and may cause
a service disruption. One of the main parameters influencing
this cost is the available bandwidth along the migration path
in the substrate network [10]. If virtual networks (VNets)
are provisioned across administrative domains belonging to
multiple infrastructure providers, (inter provider) migration
can also entail certain transit (or roaming) costs.

Intuitively, the benefits from virtualization are higher the
lower the migration cost (relative to the latency penalty). Also,
a predictable access pattern may ease migration. However, if
user arrival patterns can be chaotic, uncertainty about future
arrivals has to be explicitly incorporated in the model. This
article seeks to gain insights into these tradeoffs.

The competitive analysis framework is the classic formal
tool to study algorithms that deal with a dynamic input (i.e.,
a dynamic demand) that is revealed in an online fashion and
cannot be predicted. In competitive analysis, the performance
or cost of a so-called online algorithm is compared to an opti-
mal offline algorithm that has complete knowledge of the input
in advance: the ratio of the two costs in the worst-case is called
the competitive ratio. The competitive ratio is a conservative



measure that does not rely on any statistical assumptions or
prediction models.

A. Our Contribution

This article proposes to study online service migration from
a competitive analysis perspective and provides a general
formalization of this problem. We initiate the rigorous analysis
of a simplified model where the migration costs mainly
depend on the available bandwidth along the migration path
rather than, e.g., the (hop) length. The available bandwidth
determines the service interruption time. Such interruptions
are still common especially in a wide-area context with limited
shared infrastructure.

We make the following technical contributions:

1) We introduce the service migration problem and formal-
ize it in the competitive analysis framework.

2) For a single server setting, we present a randomized on-
line algorithm M1X and a deterministic online algorithm
CEN that achieve a competitive ratio of O(logn) in the
worst case, i.e., without any knowledge of the future
demand, where n is the substrate size. While MIX is
a reincarnation of the randomized configuration change
algorithm known from Metrical Task Systems [19], CEN
exploits the graph properties by migrating the service to
a center of gravity.

3) We show that the competitive ratio of MIX and CEN are
almost optimal in the sense that we can prove that there
does not exist any online algorithm whose competitive
ratio is smaller than Q(logn/loglogn). As we will
discuss, the Q(logn) lower bound from the related
n-point uniform space metrical task system problem
does not apply here, and hence the question whether
online algorithms with a competitive ratio o(log n) exist
remains open.

4) We describe how a standard dynamic program can be
used to compute very general optimal offline solutions.
For example, these solutions can be used in our simula-
tions to empirically evaluate the “competitive ratios” (in
the context of a specific scenario, we will misuse the
term competitive ratio to simply denote the cost ratio
between the online and offline algorithm).

5) To complement the formal analysis, we report on our
simulation results in different settings. These results
indicate that our algorithms adapt well to moderate
request dynamics and correlation. The competitive ratio
may grow slower in the network size on average than
predicted by our formal analysis. For comparison with
the purely online algorithms, we also introduce the
TIMM algorithm that exploits the specific simulation
scenario, and discuss its benefits and limitations.

6) To show that our approach is relatively general and
that our techniques can be extended, we initiate the
discussion of more complex migration models capturing
multi-provider scenarios and scenarios where a service
is realized with redundant servers.

7) Finally, we describe the “proof-of-concept” migration
demonstrator we implemented in our own network vir-
tualization prototype. It shows how interactively added

users can change the center of gravity of demand and
trigger migration of the latency-sensitive streaming ser-
vice. Due to the scarce resources, the migration of the
streaming service entails additional migrations: already
embedded virtual networks need to be moved to other
machines to free up resources for the service.

B. Article Organization

This article is organized as follows. After a literature
review in Section II, Section III first introduces the envisioned
system architecture in our network virtualization prototype;
subsequently, the formal model is presented in detail. We
describe and analyze our competitive online algorithms in
Section IV. Moreover, using the general optimal offline algo-
rithm of Section V as a yardstick to evaluate performance,
we complement our formal insights by reporting on our
simulation results Section VI. We discuss extensions for our
algorithms in Section VII. Section VIII gives an overview of
our demonstrator. We conclude our contribution in Section IX.

II. RELATED WORK

Network Virtualization. There has been a significant inter-
est in virtual networks over the last years, which is manifested
in the various European (e.g., 4WARD or Trilogy), American
(e.g., Clean Slate or GENI) and Asian (e.g., AKARI) projects.
Network virtualization enables the co-existence of innovation
and reliability [29]. Virtual networks can be realized on differ-
ent layers and can be supported by new SDN technologies such
OpenFlow [23]. For a more detailed survey on the subject,
please refer to [13].

Embedding. A major challenge in network virtualization is
the embedding [24] of VNets, that is, the question of how to
efficiently and on-demand assign incoming service requests
onto the topology. Due to its relevance, the embedding prob-
lem has been intensively studied in various settings, e.g., for
an offline version of the embedding problem see [22], [28],
for an embedding with only bandwidth constraints see [16],
for heuristic approaches without admission control see [31],
or for a simulated annealing approach see [27]. Lischka and
Karl [21] present an embedding heuristic that uses back-
tracking and aims at embedding nodes and links concurrently
for improved resource utilization. Such a concurrent mapping
approach is also proposed in [12] with the help of a mixed
integer program. Finally, several challenges of embeddings in
wireless networks have been identified by Park and Kim [25].
The survey by Belbekkouche [4] provides a nice overview of
allocation and embedding algorithms.

Migration and Online Algorithms. In this article, we study
the question of how to dynamically embed or migrate virtual
servers [26] in order to efficiently satisfy connection requests
arriving online at any of the network entry points, and thus use
virtualization technology to improve the quality of service for
mobile nodes. The relevance of this subproblem of the general
embedding problem is underlined by Hao et al. [18] who show
that under certain circumstances, migration of a Samba front-
end server closer to the clients can be beneficial even for bulk-
data applications. The possibility to migrate services without



service interruption and even live has interesting implications
and poses new challenges. For instance, see [11] for a recent
attempt to model tradeoffs (in the cloud).

To the best of our knowledge, [6] and [2] (for online
server migration), and [3], [15] (for online virtual network
embeddings) are the only works to study network virtual-
ization problems from an online algorithm perspective. The
formal competitive migration problem is related to several
classic optimization problems such as facility location, k-
server problems, or online page migration. All these problems
are a special case of the general Metrical Task System (e.g., [8],
[9]) for which there is, e.g., an asymptotically optimal deter-
ministic ©(n)-competitive algorithm, where n is the state (or
“configuration”) space; or a randomized O(log2 n-loglogn)-
competitive algorithm given that the state space fulfills the
triangle inequality: the randomized algorithm proceeds via
a (well separated) tree (or ultrametric) approximation for the
general metric space (in a preprocessing step) and subse-
quently solves the problem on this distorted space.

In particular, when considering networks with homogeneous
resources, our problem can be formulated as an n-point
uniform space metrical task system (where all distances are
equal). From this perspective, MIX is a reincarnation of the
randomized configuration change algorithm (see, e.g., [19]).
However, due to the topological constraints of the access
costs, our service migration problem can achieve a better
performance. Indeed, the center of gravity approach by CEN
exploits this topological structure which gives a deterministi-
cally logarithmic competitive ratio.

The page migration problem (e.g., [5]) occurs in managing
a globally addressed shared memory in a multiprocessor
system. Each physical page of memory is located at a given
processor, and memory references to that page by other proces-
sors are charged a cost equal to the network distance. At times,
the page may migrate between processors, at a cost equal to the
distance times a page size factor. The problem is to schedule
movements on-line so as to minimize the total cost of memory
references. In contrast to these page migration models, we
differentiate between access costs that are determined by
latency and migration costs that are determined by network
bandwidth.

Researchers have also initiated the study of online frame-
works that go beyond purely worst-case competitive analysis.
For example, prediction models for the future requests or
demand have been introduced, for example the so-called Re-
ceding Horizon Control or the Model Predictive Control. [20]
We, in this paper, also made a first step towards combining
purely online algorithms for our problem with algorithms that
exploit request patterns, namely the TIMM strategy. However,
a rigorous study of such extensions is left for future research.

Finally, as discussed in Section IV-C, there is a relationship
between server migration and online function tracking [7],
[30], which can be exploited to derive lower bounds.

III. A FLEXIBLE SERVICE PROVIDER

This section defines the scope of our work, and provides
an overview of the envisioned service and its operational cost.

A. Economic Roles and Migration

We envision a network virtualization environment where
services are offered and realized by different economic roles,
see [29] for a detailed discussion. In a nutshell, we assume that
the physical network, or more generally: the substrate network,
is owned and managed by one or several Physical Infrastruc-
ture Providers (PIP) while virtual network abstractions are
offered by so-called Virtual Network Providers (VNP). VNPs
can be regarded as resource brokers, buying and combining
resources from different PIPs. The virtual network is operated
by a so-called Virtual Network Operator (VNO). Finally, there
is a Service Provider (SP) specifying and offering a flexible
service.

We attend to a scenario where a Service Provider offers
a migratable service which is accessed by (mobile) terminals.
The terminals connect to the service via access points (of fixed
locations).

Depending on the specific use case and role, service cost
metrics and scopes can differ. For example, for a PIP, commu-
nication between access points (or terminals for that matter)
and the service entails a traffic load on the substrate links: the
access cost will depend on the topological distance traveled by
the requests. The migration cost will involve reconfiguration
costs as well as costs for actually moving the service. In a VNP
environment, hosting tariffs can be dynamic and depend on
the actual resource usage, or, if the VNP role is studied in
the context of a sub-structured provider, the PIP’s access costs
may translate into monetary costs on the VNP side. For VNPs,
both service level and resource usage costs can be abstracted
by contractual relationships. We deem it likely that a PIP
will simplify tariffs for migration by offering package prices
derived from its own (e.g., worst case) costs. The VNP may
incur additional costs in case of migrations across providers
(e.g., depending on the number of transit providers). Regarding
the VNO or SP, apart from usage-based hosting tariffs the
service may incur access costs in terms of latency the VNO
has to account for (which may also loosely relate to hosting
costs on the provider side). In this article, we will adopt this
as a prime motivator for migrations. Migration destinations
may be access points (e.g., position requirements), or chosen
transparently by providers as a function of link requirements
(e.g., latency constraints).

While especially PIP level cost factors can vary, the knowl-
edge and capability to find good approximations for projected
costs are fundamental to every business. We will assume that
the entity applying our online algorithms is capable of finding
reasonable generic approximations of migration costs.

B. Formal Model

This section introduces our formal model. The model is
presented relatively generally, while the main algorithmic
contribution of this article will be dedicated to a single server
and single PIP scenario.

Our formal model considers a substrate network G = (V, E)
managed by one or multiple substrate providers (PIPs). Each
of the n substrate nodes v € V has a certain capacity w(v)
associated with it (e.g., the number of CPU cores, the memory



size, or the bus speed). Similarly, each link e = (u,v) € E,
with u,v € V, is characterized by a latency A(e) and the
available bandwidth for migration, denoted by the capacity
w(e).

In addition to the substrate network, there is a set 1" of
external machines (the mobile thin clients or simply ferminals)
that access the network G by issuing requests to a virtualized
service hosted on (up to) k virtual servers S. (This article will
mainly focus on a single-server scenario, i.e., k = 1. Hence we
will often use the terms service and server interchangeably.) In
order for the terminals 7" to access the service, a fixed subset
of nodes A C V serve as Access Points where machines in T'
can connect to G.

Due to the mobility and on/off dynamics of the terminals,
the request patterns of the access points can change frequently,
which may trigger the migration algorithm. We define o, to
be the multi-set of (arbitrary) requests at time ¢ where each
element specifies an access point a € A from which the
request originates. We will assume that requests are always
routed to the closest server.

The service access cost Cost,.. for a request r € o; from
access point a € A to server s € S (along path p,. : a ~ s) at
time ¢ is given by the delay delay(r) = >_ ., A(e), and the
server load load(s) = h(w(s),7n(s,t)) induced by the number
of concurrent requests 7(s, t) served by s at time ¢, i.e.,

Costyec(t) = Z f (delay(r), load(s))

rEot

The migration cost Costy;g of a server s is composed of the
opportunistic cost of service outage time, bulk data transfer
cost, or roaming costs (e.g., the number of transit providers
along the migration path). Thus the cost depends on the
available bandwidth w(pmig) along the migration path ppig,
the size size(s) of server s, the length ¢ (e.g., in terms of
hops) of the path py;s, and the transit costs relating to the
number z of transit PIPs on the path. Assuming some function
g combining these costs, we can write for the migration cost
of a server s € S:

CoStimig(t) = g(w(Pmig), size(s), L, x)

We, in this paper, particularly emphasize the service outage
time: During a long migration period, the users may not
experience an optimal service (e.g., can only access stale data),
or no service at all. For instance, in our network virtualization
prototype implementation [29], a live stream is interrupted
during the movement of the streaming server. (See also the
discussion in the demonstrator section (Section VIII).)

If £ > 1 redundant servers are hosted, the number of
running servers may also be optimized. Assuming a running
cost of Costyy,, we can trade off the service quality with the
operational costs. Basically, a server may be in three different
states: not in use, inactive, and active. If a server is not in use,
there are no costs. An inactive server comes at a certain cost
Cin per time: this cost includes storing the application software
(e.g., a game) plus certain maintenance costs. The running cost
of an active server C) is larger, as it also includes CPU costs,
state maintenance cost (e.g., RAM state), or bandwidth costs.
In order to startup a server which is not in use, a fixed creation

cost ¢ will be assumed. For instance, this cost captures the
installation of the Linux box and the template (copy if already
on disk or download from an NFS share), configuration of the
template (e.g., setting up IP addresses manually or via DHCP),
starting the server etc. We assume that the cost of changing
from inactive to active state is negligible.

C. Dynamic Demand

Our model so far lacks one additional ingredient, the request
dynamics: How are the requests o distributed over time?

The service access pattern can change for various reasons,
including time-zone effects, user mobility, or more unexpected
events. Of course, the extent to which a system can benefit
from virtual network support and migration depends on the
request dynamics: the more correlated the demand, the better
it can be served. Given rapid changes it may be best to place
the server in the middle of the network and leave it there. On
the other hand, if the changes are slower or can be predicted, it
can be worthwhile to migrate the server to follow the mobility
pattern. This constitutes the trade-off motivating this article.

Note that even if a dynamic access pattern may be due
to user mobility, and users travel relatively slowly between
access points, these geographical movements may not translate
to (and hence be reflected in) the topology of the substrate
network: the substrate topology may only loosely correlate
with the geography.

Thus, we, in the theoretical part of this article, take a con-
servative standpoint and will assume arbitrary request sets o,
where o, is completely independent of o;_;. However, in our
simulations, we will consider a “move with the sun” scenario
which features topological and temporal dependencies.

D. Objective: The Competitive Ratio

This article proposes an online algorithm and competitive
analysis approach to the service migration problem. We will
describe online algorithms which at any time ¢y, have to take
migration decisions without any knowledge of requests oy
arriving at time ¢ > tg. In order to evaluate the performance
of an online algorithm ON, we compare its cost to an optimal
offline algorithm OFF, in the worst case. This is known as the
competitive ratio p:

Definition III.1 (Competitive Ratio p). The competitive ratio
p of an online algorithm ON is defined as the worst-case
cost ratio, overall possible input sequences o, compared to
an optimal offline algorithm OFF that knows o in advance:

Costox(0)
= max ————=%
P o Costors(0)

An online algorithm is p-competitive if its competitive ratio is
at most p.

It is standard in the metrical task system literature to assume
a I-lookahead model: the online algorithm is allowed to make
its migrations after learning the requests of the current time
step, but before actually serving them. We will make use of
this model also in our article. (Note that under the reasonable
assumption that the migration cost is larger than any access



cost of a single time step, performing a migration after serving
requests does not change the competitive ratio much.)

IV. COMPETITIVE ONLINE ALGORITHMS

We will first investigate the service migration problem in
the most basic model: we assume that the service is realized
with only one server (kK = 1) and within a single PIP, that the
migration cost 3 is given by the available bandwidth along the
migration path which we assume to be constant, and that the
access cost is given by the latency along the access path to the
service. More formally, we will assume that Costyie(t) = 3
and that Costaec(t) = )., d(r), where d(r) is the sum of
link latencies on the shortest path between the server and the
request 7.

This section presents two competitive service migration
algorithms for this scenario: the randomized algorithm MIX
and the deterministic algorithm CEN. We will also formally
prove an almost tight lower bound, showing that the algorithms
and analyses are almost optimal.

Before presenting our algorithms and formal proofs in
detail, let us first provide some intuition. The underlying idea
of both MIx and CEN is to strike a balance between access
and migration cost. (This is a standard principle in the online
algorithm design.) That is, we try to migrate only if the
migration cost is “amortized” with respect to access costs.
Both Mix and CEN migrate the service to locations which
were better (w.r.t. access costs) than the current location in
the recent past (i.e., in the last so-called time epoch). At first
sight the strategy to migrate to locations that were good in
the past might look counter-intuitive. However, the rationale
is that the cost of any (even optimal offline) algorithm ALG
cannot be much lower than the cost incurred by our strategy:
either ALG does not migrate during a small set of epochs,
but then it must incur a high access cost as well, or ALG
incurs migration costs. In other words, if the distribution of
the demand does not change much over time, our strategy
will correctly predict the best server location and move there
quickly. However, if the demand changes, any algorithm must
have either high access or migration costs, and our algorithms
are again close to optimal.

With these intuitions in mind, we can present our algorithms
in more formal detail. Table I summarizes the main variables
and parameters used in this and subsequent sections.

o sequence of requests

n number of substrate nodes
n1 size of largest PIP

k number of redundant servers
size(s) | service size

B migration cost

CoG center of gravity

number of time zones
request duration
request correlation
transit provider cost
diameter of PIP graph
a configuration

TABLE I: Important Variables

SN ELCIPAY

A. Randomized Migration

Let us first consider a scenario with constant bandwidth
capacities, i.e., w(e) = w Ve € E and let 8 = size(s)/w
be the corresponding migration cost. Let ¢ € (0,1) be
a parameterizable threshold and c a weighting factor (another
parameter of the algorithm). Both parameters ¢ and c are
constants.

Algo IV.1 (MIX). The algorithm MIX divides time into
epochs. In each epoch MIX monitors, for each node v, the
cost of serving all requests from this epoch by a server kept
at v. We will denote the value of such a counter at the end of
step t by Cy(v). MIX keeps the server at a single node w until
step t for which Ci(w) > ¢ - f3, ie., till step t in which the
counter would exceed c- 8 if no migration occurred. At such a
step t, MIX migrates the server to a node u chosen uniformly
at random among nodes with the property C¢(u) < ¢ - c- f.
If there is no such node, M1X does not migrate the server,
and the epoch ends in that round. The next epoch starts in the
next round, at the beginning of which the counters are reset
to zero.

Theorem IV.2. On expectation, MIX is O(log n)-competitive
in networks with constant bandwidth.

Proof: Fix any epoch £ and let S denote the migration
cost. If OPT migrates the server within &, it pays 3. Otherwise
it keeps it at a single node paying the value of the correspond-
ing counter at the end of £. By the construction of MIX, this
value is at least ¢-c- 3, and thus in either case OPT(E) = Q(S).

The migrations performed by MIX partition £ into several
phases. According to our migration strategy, the access cost
of MIX in each phase is at most ¢ - 3 as it moves before the
counter exceeds this threshold. Below, we will show that the
expected number of migrations within one epoch is at most
H,,, where H,, is the n-th harmonic number. The maximum
number of phases is then H,,+1, and hence the expected value
of MIX(E) is at most 8- H,, +c¢-5-(H,+1) =O(8-logn).
This yields the competitiveness of MIX.

Let (v;)I, be the sequence of nodes in order their coun-
ters reach the value ¢ - ¢ - S (with ties broken arbitrarily).
Furthermore, fix any node v; and let ¢; be the time when its
counter exceeds c- 3, and let K; be the number of nodes whose
counters at time ¢; are at most ¢ - ¢ - 8. Clearly K; < n —1i
and those nodes are vVy,— i, +1, Un—K;+2;- - - s Un.

Assume that in a phase MIX keeps the server at node v;
and let 7; be the expected number of server migrations until
the end of £. If ¢ = n, then the current phase is the last one
in £, and thus 7,, = 0. Otherwise ¢ < n, and at the end of
this phase MIX chooses a next place for the server uniformly
at random from the set {v; : n — K; +1 < j < n}. Hence,
we obtain the recursive formula T; = 1 + % Z?:n— Kit1 T;.
By a backward induction, one sees that 7; < H,,_;. The basis
holds as 7T,, = 0 and for the inductive step, we use T; <
1+ 1% E;‘L:nfmﬂ Hyj <1+ nl—i E;‘L:i+1 Hp—j = Hp—i.
Thus, if MIX starts £ with server at node vy, the expected
number of migrations in £ is H,,_y < H,. |

Note that our analysis does not rely on access costs being
measured as the number of hops. Rather, the analysis (and




hence also the result) is applicable to any metric which ensures
that counters increase monotonically over time (i.e., with
additional requests).

B. Deterministic Migration

For the analysis of MIX, we assumed an oblivious ad-
versary that cannot be adaptive with respect to the random
choices made by the online algorithm. We now show that
even a deterministic bound can be achieved. We will again
assume a weighting parameter ¢, a threshold ¢ € (0,1/2),
w(e) =w Ve € FE and § = size(s)/w.

Our deterministic algorithm CEN is based on the concept
of gravity centers.

Definition IV.3 (Gravity Center). Let d(-, ) denote the shortest
path metric on the weighted network graph G. The gravity
center of a subset V' C V of nodes is defined as the (not nec-
essarily unique) node COG = argminyey: ), oy d(u,v).
(Ties are broken arbitrarily.)

We can now describe CEN in detail.

Algo IV.4 (CEN). CEN divides time into epochs consisting of
one or multiple phases between which CEN migrates. Again,
we have counters C(v) for each node v that are set to zero
at the beginning of an epoch. These counters accumulate the
access costs of an epoch if the server was permanently located
at v. At the beginning of an epoch, CEN migrates the server
to a gravity center of the set V. We call all nodes v, for
which C(v) < ¢ -c- (3 at time t, active at time t. Assume that
algorithm CEN is currently at some node v. CEN remains at
this node until the node counter accumulated access costs of
c- B. Then, a new phase starts, and CEN computes the gravity
center w, Le., the “center” of the currently active nodes V'.
CEN migrates to w and a new phase starts. If there is no
active node left, the epoch ends.

In order to study the competitive ratio of CEN, we exploit
the property that a request always increases the counter of
several nodes (namely: a constant fraction) besides the gravity
center by at least a certain value (again, a constant fraction).

Lemma IV.5. Ler A € (0,1/2) be an arbitrary constant. Fix
any active set V'. Let r be an arbitrary requesting node (at
some step). Assume the counter at the gravity center COG
increased by F' because of request r. Then there are at least \-

|V'| nodes from V' whose counters increased at least by é:gi
F.

Proof: Assume the contrary. It means that there are at
least (1 — A) - |V’| nodes from V' whose counter increase is
smaller than - F' where oo = (1—2))/(3—2\). Denote this set
by V”. Nodes in V" have a distance to the request smaller than
a- F. This means that Vu € V", d(u,r) < «- F, and therefore
Yu,v € V", d(u,v) < 2a - F, i.e., the diameter of the set V"
is relatively small. On the other hand, the distance between
the request r and the gravity center is d(COG,r) = F.

Now let £ be any node of V. We show that £ would be
a better candidate for the gravity center than COG. Given that
d(CoG,r) = F, that d(u,r) < - F for all uw € V", (and

that d(£,r) < « - F'), using triangle inequality, we obtain the
following inequalities.
1) Forany v € V", it holds that d(COG, u) > d(COG,r)—
du,r) > (1—a)- F.
2) For any u € V' \ V", it holds that d(§,u) < d(§,7) +
d(r,CoG) + d(CoG,u) < (14 a) - F 4+ d(CoG, u).
Thus,

> d(CoG,u) = Y d(CoG,u)+ Y  d(CoG,u)

ueV’ ueV’’ ueVA\V"
>(1-a)-[V'[-F+ > d(CoG,u)
w€VA\VY
and

doduy =Y dEu)+ > d(&u)

uecV’ ueV?’”’ ueVA\V"
<2a-|\V"|-F+|V'\V"|-(1+a)-F

+ > d(CoG,u)

u€V\V

Finally, note that by definition of V', [V/\V"| < A\-|V'| <
25 V7| Thus, ey d(COG, u) =37, oy d(€u) > (1—
3a— 125 (14a))-|V"|- F > 0, which means that ¢ is a better
gravity center than COG: a contradiction. |

From Lemma IV.5 it follows that when the counter at the
gravity center exceeds a given threshold, the counter of many
nodes besides the center must be high as well.

Lemma IV.6. Fix any active set V', any threshold 6, and
a constant X € (0,1/2). When the counter at the gravity center
COG exceeds 0, then there exists V' C V', such that |V"| >

A2 - |V'| and the counter at any node v € V" is at least
1-2X A g
3—2x 2 %

Proof: Assume the contrary, i.e., there exists V' C V/,
such that |V”| > (1 — A/2) - [V’], and for all v € V", the
counter at v is smaller than ¢ - 0, where ¢ = % . % In
consequence, » v, C(v) < [V"|-¢-0 < |V'[-¢-6. On the
other hand, by Lemma IV.5, each time the counter C(COG)
increases by F', at least A-|V’| counters from set V' (and hence
at least A/2 - |V’| counters from set V", since |V’ \ V| <
A/2 - |V']) increase by =2 - F'. Thus, the sum of counters
from V" increases at least by ¢ - |V’| - F. Therefore, when
C(CoG) > 0, then > ., C(v) > |V'| - ¢ -0, which is
a contradiction. [ ]

For the competitive ratio, we therefore have the following
result.

Theorem IV.7. CEN is O(logn)-competitive in constant
bandwidth scenarios.

Proof: First, we consider the cost of the optimal offline
algorithm. If OPT migrates in an epoch, it has costs f.
Otherwise, due to the definition of CEN, as there are no active
nodes left at the end of an epoch, the access costs of any
node is at least ¢ - ¢ - 8 = (8). Regarding CEN, its access
cost in each phase is at most ¢ - 3, and it remains to study
the maximum number of phases per epoch. For any CEN’s



parameter ¢ € (0,1/2), there exists a constant A, such that
¢ = é:gi . % By the algorithm definition, within a single
phase CEN remains at a gravity center of the set of nodes that
are active at the beginning of the phase. As the counter at
the gravity center increases by ¢ - 3, by Lemma IV.6, in each
phase the counters at a fraction of at least A\/2 of the active
nodes increase by é:g:\\ -c-fB = ¢-c- [, which means that
they cease to be active. Thus, the number of active nodes is
reduced at least by a factor 1 — A/2. Therefore, there are at
most logn/log(1—A/2) = O(logn) many phases per epoch,
and the claim follows. ]

C. Lower Bound

It can be shown that the competitive ratios achieved by MIX
and CEN are close to optimal.

Theorem IV.8. There are graphs on which the competitive
ratio of any randomized or deterministic algorithm is at least
Q(logn/loglogn).

Proof: To prove the theorem, we consider an instance
of the online function tracking problem [30] with linear
penalties [7]. In this variant of the problem, an algorithm
observes a sequence of numbers and wants to represent their
values by communicating a special “representative” value y.
An algorithm (observer) is charged both for communication
(i.e., updating the counter) and for inaccuracies of the rep-
resentation. More concretely, in each step ¢, the following
happens: (i) a number x; is revealed to the observer, (ii) the
observer may pay fixed amount 3 and change the value y to
an arbitrarily chosen number, and (iii) the observer pays the
difference between the value stored in y and x;. Theorem 6
of [7] states that no online algorithm for this problem (not even
arandomized one) can achieve a competitive ratio smaller than
Q(log 8/ loglog ). The lower bound construction uses only
integer values x; € {0,...,5 — 1}.

To show the lower bound for the server migration problem,
we can simply consider a fixed linear graph (i.e., a chain) of
n = [ nodes, numbered from 0 to n—1. On such a graph, there
is a one-to-one correspondence between the server migration
problem and function tracking with linear penalties: observing
a value z; corresponds to an access at x;, changing value
of y to h corresponds to moving a server to node h, and
paying for the inaccuracy between h and z; corresponds to
paying for request x; with a server at h. Thus, the lower bound
Q(log 5/ loglog 8) = Q(logn/loglogn) of [7] also applies
to the server migration problem.

|

As discussed in the related work section, our problem can
be seen as a special instance of the m-point uniform space
metrical task system (where all distances are equal), and it
is tempting to try to port the Q(logn) lower bound also to
our setting (see, e.g., [19]). However, note that due to the
topological constraints of the access costs, a better ratio is
potentially possible for our service migration problem. The
question whether online algorithms with a competitive ratio
o(logn) exist hence remains a challenging open problem.

D. Remark

The adversarial model for Mi1xX and CEN is different, and
one has to be careful when comparing the competitive ratios.
The bound for MIX only holds against oblivious adversaries,
and we expect the center of gravity approach to perform
better in worst-case scenarios with adaptive adversaries. Our
simulations show that on average, however, the two strategies
often yield a similar performance.

Also note that both MIx and CEN are quite general with
respect to the measure of access costs, i.e., the derived bounds
hold for arbitrary latency functions on the links in case of
Mix. In case of CEN, the access costs must fulfill the triangle
inequality.

V. OPTIMAL OFFLINE ALGORITHM OPT

In the competitive analysis of our online algorithms we ar-
gued about an optimal offline algorithm to which we compare
our costs. However, this algorithm was hypothetical as there
was no need to find or describe the offline algorithm explicitly:
all we needed was a good lower bound on its cost.

Still, while the decisions when and where to migrate servers
typically need to be done online, i.e., without the knowledge of
future requests, there can be situations where it is interesting
to study which migration pattern would have been optimal at
hindsight. For example, if it is known that the requests follow
a regular pattern (e.g., a periodic pattern per day or week),
it can make sense to compute an optimal migration strategy
offline and apply it in the future. Another reason for designing
optimal offline algorithms explicitly is that an optimal solution
is required to compute the competitive ratio in our simulations.

In the following, we sketch an optimal offline algorithm
for the service migration problem. It is based on a standard
dynamic programming approach. (See [14] for an introduc-
tion.) As we will see in Section VII, using similar techniques,
optimal offline algorithms can be computed in polynomial time
in much more general settings as well. We will hence postpone
a detailed discussion to the corresponding sections.

Our algorithm exploits the fact that migration exhibits
an optimal substructure property: Given that at time ¢, the
server is located at a node w, the most cost-efficient migration
path that leads to this configuration consists solely of optimal
sub-paths. That is, if a cost minimizing path to node u at time
t leads over a node v at time ' < t, then there cannot be a
cheaper migration sub-path that leads to v at time ¢’ than the
corresponding sub-path.

OPT fills out a matrix opt[time|[node] where opt[t][v] con-
tains the cost of the minimal migration path that leads to
a configuration where the server satisfies the requests of time
t from node v. Assume that initially (i.e., ¢ = 0), the service
is located at node vg. Thus, initially, opt[0][vy] = 0 and
opt[0][u] = oo for all nodes u # vo.

For ¢ > 0, we find the optimal values opt[t][u] by consid-
ering the optimal migration paths to any node v at time ¢ — 1,
and adding the migration cost from v to w. That is,

opt[t][u] = f}réi‘g_l{opt[t — 1][v]+Costmig (v, u)

+ Zwew Costace(w,u)}
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Fig. 1: Competitive ratio as a function of network size,
averaged over all p € {0,0.2,0.4,0.6,0.8,1}.

where we assume that C'ost,. includes the first (wireless) hop
of the request from the terminal to the substrate network, and
where Costpig(v,v) = 0 for all v.

We have the following runtime result.

Theorem V.1. The optimal offline migration policy OPT can
be computed in O(n®+n?%", 1. |o¢|) time, where T is the set
of rounds in which events occur.

Proof: Note that we can constrain ourselves to optimal
offline algorithms where migration will only take place in
“active” rounds I' with at least one request. This is useful
in case of sparse sequences with few requests. The opt[-][-]-
matrix contains |I'| - n entries. In order to compute a matrix

entry, we need to consider each node v € A from which
a migration can originate; for each such node, the access
cost from all the requests in o; need to be computed. Both
the shortest access paths and the migration costs can be
looked up in a pre-computed table (pre-computation in time at
most O(n?), e.g., by Floyd-Warshall’s algorithm) and require
a constant number of operations only. [ ]

VI. SIMULATIONS

We complement our worst-case analysis with simulations
under a specific use-case. For simplicity, we also use the term
“competitive ratio” in this section. Note however that due to
the specific scenario, the ratio now has a different semantics
and simply refers to the cost ratio between the online and
offline algorithm.

A. Scenario

We study a simplified moving sun (or time zone) scenario.
This scenario is relatively general in the sense that it allows to
change the correlation of the requests as well as the degree of
dynamics, and hence lets us focus on the main factors influ-
encing the performance of our service migration algorithms.
Since geographic and topological distances correlate only to
a certain extent in the real world, we will concentrate on an on-
off model rather than a model where terminals “move” along
the substrate topology.

Scenario VI.1 (Time Zones Scenario). The time zone scenario
models an access pattern that can result, e.g., from global
daytime effects. A current zone is chosen round-robin from
the set of z available zones (z = 16 in our experiments).
At each time t, new requests originate from nodes chosen
uniformly at random from the respective current zone, until
they represent a fraction p of all requests. The remaining
request locations are chosen uniformly at random from all
nodes. Request durations follow an exponentially distributed
sojourn time with parameter M.

B. Set-Up

As a substrate topology for our experiments we use con-
nected Erdos-Rényi random graphs with between 30 to 130
nodes, and an average 1.4 links per node. The graphs are
partitioned in eight zones of equal size.

Link bandwidths are chosen at random (either T1 (1.544
Mbit/s) or T2 (6.312 Mbit/s)), and the server size is 2048MB.
If not stated otherwise, we assume that ¢ = 1 and that 3 equals
the server size divided by the average bandwidth. To provide
an incentive for migration, inter-zone links are weighted with
a latency of 100 units whereas other links bear a unit weight.
Experiments ran for 400 requests, and our results are averaged
over five repetitions. All compared algorithms start at the
center of the (weighted) graph.

To take into account that larger networks typically also have
a larger demand, we assume that the number of requests per
round is one fifth of the network size. Note that the runtime
of the optimal offline algorithm and hence the computation of
the competitive ratio is expensive in large networks; therefore,
the scale of our experiments is typically limited.
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C. Reference Algorithms

Our main yardstick to evaluate the performance of MIX
and CEN is the optimal offline algorithm (i.e., the competitive
ratio). However, it is interesting to compare our algorithms to
two additional canonic migration strategies: STAT and TIMM.

The STAT algorithm is very simple: it does not exploit the
possibility to migrate and just places the service at the static
center of the (weighted) topology. STAT stands for static. The
second algorithm we consider is called TIMM, which stands
for TIMed Migration. TIMM has a regular migration schedule:
it follows the official cycle of changing zones by choosing
a destination uniformly at random amongst all nodes of the
new zone.

D. Results

We first study the competitive ratio as a function of the
number of nodes under low (i.e., A = 1 in Figure la) and
high (i.e., A = 10 in Figure 1b) dynamics. We can see that
TIMM benefits when A is small as the zone can be estimated
relatively accurately. The competitive ratio of CEN and MIX
is similar but higher. The ratio grows moderately for larger
networks, which qualitatively corresponds to our formal worst-
case bounds. STAT exhibits the highest ratio. As expected, it
increases with the network size (i.e., with increasing diameter).
For larger A, CEN and MIX are relatively better: the migration
cost can be amortized. TIMM on the other hand suffers from
the reduced predictability, migrating ahead of the shift in
demand. Moreover, high values of A and large networks allow
the offline algorithm OPT to optimize migrations better. Due

to the more frequent migrations, the competitive ratios are
generally lower for high )\ values.

Generally, we find that the performance of CEN and MIX
is often qualitatively and quantitatively similar. We therefore
omit MIX plots for most of the following experiments. More-
over, in the following, we will focus on the more challenging
case A = 1. Plots for alternative parameter settings are only
presented to highlight specific properties.

Figure 2 shows an overview of the competitive ratios as
a function of the request correlation p. The figure indicates
that all algorithms suffer from a full correlation of p = 1.
However, the reasons are different. At low p values, economic
migration destinations are scarce and not obvious. CEN and
Mix therefore imitate STAT and hardly migrate for low p.
TIMM migrates in any case, and incurs high costs. For p €
[0.4, 0.6], useful migration destinations become available, and
choosing the ‘wrong’ zone is not yet dire. This yields good
ratios for TIMM and CEN/MIX. With p = 1 however, TIMM,
CEN and Mix suffer from a bad choice (the prior running
ahead, the latter delayed by slowly filling counters). As in the
previous plots, A = 10 allows CEN/MIX to amortize the late
migration, while the minimum of TIMM’s ratio curve shifts to
the left. As expected, STAT yields the relatively best results
with low correlation and small network sizes.

Figures 3a and 3b study the influence of A\. We see an in-
verse effect on CEN and TIMM. Due to the limited amount of
requests and our method of choosing request origins, TIMM’s
ratio increase however remains limited. Very high A values
have the effect of omitted zones. If requests of a zone remain
active over the whole period of its successor, requests will
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Fig. 3: Competitive ratio as a function of A\ and network size for p = 0.6.

jump this zone and catch up with TIMM.

Overall, TIMM performs well for moderate p and even on
average over all p for low A. However, CEN/MIX improve for
higher )\ and adapt to different correlation values p well. More
specifically, they do not migrate in situations where STAT
shows good performance. They may therefore be preferable in
scenarios with moderate to high A\ and low to moderate request
correlation, adapting to occasional spikes in p. Effectively,
being adaptive they may be considered a suitable initial choice
for new services with yet insufficiently known usage patterns.

VII. EXTENSIONS

The algorithmic principles of MiX and CEN can serve as
a basis for more involved models. This section initiates the dis-
cussion of such extensions. Concretely, we will study scenarios
where a service can be migrated across provider boundaries
(Section VII-A), where a service is realized with multiple
servers (Section VII-B), and where substrate resources are
more heterogenous (Section VII-C). We understand our al-
gorithms and bounds in this section as a first look at the more
complex models. More research is needed to gain insights into
the optimal tradeoffs arising in these scenarios.

A. Multiple Providers

The flexibility offered by network virtualization is not
limited to a single PIP. Rather, a Virtual Network Provider
may have contracts with multiple infrastructure providers, and
provision a service across PIP boundaries. In the following,
we sketch how to extend our algorithms to multiple provider
scenarios. In particular, we assume that migrating a server
across a PIP entails a fixed “roaming” cost 7w for each transit.
Since we assume that a PIP typically does not reveal its
internal resource structure, we seek to come up with migration
algorithms that pose minimal requirements on the knowledge
of a PIP topology.

We can extend the deterministic algorithm CEN to multi-
PIP scenarios as follows. (The extension for the randomized
algorithm MIX is analogous and omitted here.) We consider
x PIPs, and assume that migration inside a PIP costs (3, that
access costs are the number of hops, and that migrating across
providers costs 7 per crossed PIP. We will concentrate on the
more realistic case where © > £3.!

It is sometimes useful to think of the PIP graph, the graph
where all the nodes of one PIP form one vertex and two PIPs
are connected if there is a connection between nodes of the
respective PIPs in the substrate graph. In particular, we will
refer to the diameter of the PIP graph, the largest number PIP
boundaries to be crossed on a shortest migration path, by A.

Algo VIL.1 (MULTIPIP). The algorithm MULTIPIP divides
time into three types of epochs: a huge epoch consists of
multiple large epochs, and a large epoch consists of Y[ /3]
small epochs, for some constant 1. Again, we use counters
C(u) to accumulate the access costs of a node u during a small
epoch; in addition, a counter Cp(u) is used to accumulate
access costs during a large epoch. In the beginning, all PIPs
are set to active. At the beginning of a small epoch, the C(u)
values are set to zero for all nodes within the current PIP.
MULTIPIP then monitors, for each node u, the cost of serving
all requests from this small epoch by a server kept at wu.
MULTIPIP leaves the server at a single node u until C(u)
reaches (3. In this case, MULTIPIP migrates the server to
a node v which constitutes the center of gravity among the
active nodes of the current PIP, i.e., the nodes w of the current
PIP for which it still holds that C(w) < B/v. If there is no
active node left within the current PIP, a small epoch ends
in that round; the next small epoch starts in the next round.
After o[m/B] small epochs, a new large epoch starts, and all

U1f the total migration cost (over multiple providers) is in the order of §3,
our single PIP algorithms could be applied without taking into account transit
costs.



nodes u in the network with Cr(u) > m/v become inactive
with respect to the large epoch. Among all remaining active
nodes of the large epoch, MULTIPIP determines their center
of gravity and moves the server to the corresponding PIP, and
a new large epoch begins. Otherwise, if there is no PIP left
that contains active nodes, the server stays where it is, and
a new huge epoch starts.

The following theorem can be shown along the lines of the
corresponding single provider proof (see [1] for details).

Theorem VIL.2. For a sufficiently large value of constant 1,
MULTIPIP is O(logn - (log ny + A))-competitive in networks
with constant bandwidth and x PIPs, where ny is the size of
the largest PIP, and A is the diameter of the PIP graph.

Note that MULTIPIP requires knowledge of the topologies
of the different PIPs to compute the gravity centers. However,
this information may not be available if PIPs conceal their
network (typically a business secret). Thus, what can be
optimized will depend on the specific context and information
shared by the PIPs. Our algorithms must be adapted to
make use of the potentially aggregated or estimated costs.
Nevertheless, we expect the approach to be relatively robust
to approximate information. For example, we expect that
pragmatic implementations that move the service, e.g., to the
PIP which lies “at the center” of the active providers, yield
good results and justify the validity of concept and analysis.
Moreover, it turns out that MIX can be generalized with
less assumptions on the infrastructure topology, allowing for
a higher autonomy on the PIP level. [1]

B. Redundant Servers

A natural way to generalize our algorithms to a scenario
where a service is realized with up to £ > 1 redundant servers,
is to use configurations.

Definition VIL3 (Configuration). A configuration y describes,
for each server, whether it is not in use, inactive, or active. In
case of inactive and active servers, 7y specifies where—i.e., on
which node—the server is located.

The following algorithm CONF is an extension of MIX to
multi-server scenarios. (The extension for CEN is analogous.)
For simplicity, we will assume that migration is cheap, i.e.,
that 8 < ¢; the case where 3 > c is similar, see [2].

Algo VIL4 (CONF). CONF uses a counter C(v) for each
configuration . Time is divided into epochs. In each epoch
CONF monitors, for each configuration -, the cost of serving
all requests from this epoch by servers kept in configuration
v, including the access costs (latency plus induced load) of
the requests, the server running costs, and possible creation
costs. CONF stores this cost in C(y). The servers are kept in
a given configuration 5 until C(¥) reaches k - ¢, where k is
the maximal number of servers. In this case, CONF changes
to a configuration §' chosen uniformly at random among
configurations with the property C(y) < k - c. If there is no
such configuration left, the epoch ends in that round; the next
epoch starts in the next round and the counters C(vy) are reset
to zero.

Although a certain bound on the competitive ratio of CONF
can be obtained (see [2]), the algorithm needs to be optimized
in many respects. For instance, it can make sense to switch
between “close” (with respect to costs) configurations only, or
to deterministically switch to the configuration with the lowest
counter. More importantly, the complexity of this algorithm is
high for a large number of servers k. In order to speed up
the computations, local search heuristics could be employed
where only one server of the configuration changes state per
epoch. A detailed discussion is left for future research.

C. Heterogenous Resources

Finally, let us have a look at a scenario with heterogenous
resources, i.e., where the different links have different band-
widths. In this scenario, a service will be migrated along the
path with the highest bandwidth, as the service interruption
cost is given by the server size and the minimal available
migration bandwidth.

There is a simple generalization of our results in Section IV
to arbitrary bandwidths: without major modifications of CEN
and MixX we have the following results.

Theorem VIL5. MiX and CEN are O(u - log n)-competitive
in general networks, where | = max, orcpw(e)/w(e).

Proof: In networks with arbitrary and heterogenous band-
widths, the algorithms can simply be adopted in such a way
that we define the migration cost 3 to be size(s)/ max, w(e).
As [ is a lower bound on the actual migration cost, the lower
bounds on OPT (given as a function of 3) remain intact. On the
other hand, the actual cost of our algorithm is underestimated
at most by a factor of u. [ ]

To deal with heterogenous bandwidths more efficiently,
we may extend MIX (and similarly: CEN) by a hierarchical
clustering approach that classifies edges in different classes
depending on their bandwidth. We leave the study of this ap-
proach for future research, but it remains to remark that (after
a clustering) the heterogenous bandwidth problem can also be
modeled as an instance of a Metrical Task System on a hier-
archically separable tree metric. Although good competitive
ratios are achieved (in the order of O(logn - loglogn) [17]),
the corresponding randomized algorithms are quite complex
and thus to some extent impractical.

D. Algorithmic Offline Framework

Regarding our offline algorithm, there exists a simple gen-
eralization for all these models as well. The idea of a generic
optimal offline algorithm GOPT is to use the concept of
configurations (cf Definition VII.3). Recall that given a con-
figuration =, access costs Costycc, migration costs Costy;g, and
the running costs Cost,,, over time can be computed.

GOPT exploits optimal substructure properties on the con-
figuration level: Given that at time ¢, the k servers are in
a configuration -y, then the most cost-efficient path (migrations,
activation and deactivation of servers, creation, etc.) that leads
to this configuration consists solely of optimal sub-paths. That
is, if a cost minimizing path to configuration +y at time ¢ leads
over a configuration +" at time ¢’ < ¢, then there cannot be



a cheaper migration sub-path that leads to ' at time ¢’ than
the corresponding sub-path.

GOPT essentially fills out a matrix opt[time][configuration]
where opt[t][y] contains the cost of the minimal path that leads
to a configuration where the servers satisfy the requests of time
t in a configuration ~y. For ¢ > 0, we find the optimal values
opt[t][v] by considering the optimal paths to any configuration
~" at time ¢t — 1, and adding the migration cost from ' to
~. That is, the optimal cost to arrive at a configuration with
servers at «y at time ¢ is equal to

IIliIl{Opt [t - 1]['7/]+C05t('}/ — ’Y) + COStn n(’y)
,-Y/
Zveat COStaCC(U’ ’y)}

where we assume that Cost,.. includes the first (wireless) hop
of the request from the terminal to the substrate network, and
where Cost(y — ) = 0.

Observe that the runtime of GOPT is relatively low for
a small number of servers, i.e., any scenario with a constant
upper bound on the number of usable servers can be computed
in polynomial time. However, for a non-constant number of
servers, clustering or sampling heuristics may be needed to
speed up the computations; only approximative solutions can
be found.

VIII. SERVICE MIGRATION DEMONSTRATOR

To round off and complement our theoretical study, we
report on our network virtualization prototype architecture [29]
which allows to migrate services. In particular, the prototype
includes a migration demonstrator.

The demonstrator performs two types of migrations: (1)
The migration of a virtual video streaming server (technically:
a virtual machine) closer to the users; the migration decisions
are based on the center-of-gravity algorithm presented in this
article (namely CEN). For example, these migrations may
visualize a “‘move-with-the-sun” scenario where the server
moves along with the users. (2) The migration of entire virtual
networks (VNet) which are already embedded in the substrate
network and may be moved away (“move-with-the-moon’)
to free up resources for the streaming server. These VNets
do not have any latency requirements towards users, and
embeddings and migrations are computed using mathematical
programming (namely, Mixed Integer Programs [28]).

Accordingly, the demonstrator consists of the following two
parts:

a) The video demonstrator: This part demonstrates how
a migrating streaming server can improve QoS for (mobile)
terminals (one possible use case for our network virtualiza-
tion architecture). It consists of a web interface (see Fig-
ure 4) for control and three virtual network (VNet) topolo-
gies. Each of these topologies contains a video streaming
server VNode (server) and three access point VNodes
(accesspoint{l, 2, 3}) in fixed locations. These access
points connect video streaming clients to the server (zero
to three for each access point). Each topology mandates co-
location of the streaming server with a different access point.
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Fig. 4: Video Demonstrator web interface.

b) The topology demonstrator: This part consists of
several pre-defined VNet topologies that can be embedded
through a web interface. These topologies are independent
of the video demonstrator virtual network, but they share the
same substrate (thus competing for the same resources). The
topology demonstrator’s VNets are priorized lower than the
video demonstrator VNet.

Depending on client load the video demonstrator’s stream-
ing server will migrate to be co-located with the center-of-
gravity access points. At the same time topology demonstrator
VNets may be embedded on the same substrate. In case of
local resource shortages® the topology demonstrator’s virtual
machines will be migrated away to accommodate the video
demonstrator’s VNodes.

A. Background on Prototype

Our network virtualization prototype is run on two separate
testbed environments, one at TU Berlin (the Routerlab) and
one at NTT DoCoMo Eurolabs, Munich. Both testbeds have
a Cisco 4500 series switch carrying both virtual network data
plane VLANs and testbed management VLANS.

Substrate nodes are Sun X4150 machines hosting both vir-
tual network nodes and the virtual machines running physical
infrastructure provider management software. Substrate nodes,
management nodes and virtual nodes run Linux (Ubuntu
8.04). Virtual nodes are Xen or KVM virtual machines
running on the substrate nodes.

The substrate resource allocation for the VNet embeddings
(CPU and memory resources on virtual machine hosts, and
network links for connections) is computed using a mixed
integer program [28]; it also supports migrations. Once the
resource allocation is determined, the physical infrastructure
provider creates virtual machines, establishes the links be-
tween them and hands control over to the customer (e.g. by
providing console access to the virtual nodes).

Each physical infrastructure provider keeps a MySQL
database with information about its substrate topology and
embedded virtual networks. The database holds a representa-
tion of the substrate topology (the Underlay (UL) Graph), and

>The substrate description contains exactly enough space for all topol-
ogy demonstrator VNodes, accesspointl, 2, 3 and one instance of the
server VNode, but there are enough extra resources to allow for a brief
oversubscription during migration.
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Fig. 5: Video Demonstrator overview schematic. One VLAN
connects all three access points and the streaming server. Each
triple of clients shares a dedicated VLAN (created manually).
The access points bridge the client VLANs into the virtual
network.

for each embedded virtual network there is an Overlay (OL)
Graph describing the virtual network topology and a Mapping
Layer (ML) Graph describing the locations of the virtual
network’s components on the substrate hosting them.

B. Implementation

The Video Demonstrator includes three components: a range
of backend scripts behind the video demonstrator’s web in-
terface, a video streaming server on the server virtual node,
and a multi-layered VPN tunnel architecture to connect three
physical machines, each hosting three streaming clients to the
virtual network (see Figure 5 for a detailed schematic.).

The streaming server uses VLC’s? stateless UDP streaming
protocol to send a video stream to a total of nine clients evenly
distributed across the aforementioned physical machines. Said
machines in turn display the video stream. Individual clients
are enabled/disabled through the video demonstrator’s web
interface. Video is continuously streamed to all clients, with
streams to disabled clients being blocked by iptables* rules
on the server VNode.

Upon each change in client status the web interface’s back-
end will recompute the center of gravity (cf Definition IV.3). If
it changes it will issue a topology modification request (to the
infrastructure provider hosting the video demonstrator VNet)
that co-locates the server with the access point at the new
center of gravity. The infrastructure will then recompute the
embedding and migrate the server VNode accordingly.

3http://www.videolan.org
“http://www.netfilter.org

IX. CONCLUSION

At the heart of network virtualization lies the ability to
react to changing environments in a flexible fashion. In order
to optimally exploit the benefits from virtualization, cost-
aware migration algorithms need to be designed which this
is typically difficult as future demand is hard to predict. We
believe that competitive analysis is an important tool to devise
and understand such online algorithms.

This article studied the cost-benefit tradeoff of online mi-
gration in a system supported by network virtualization, and
compared our system to a setting without migration. We
derived the first migration algorithms, which are competitive
even in the worst-case.

We understand our work as a first step towards a better
understanding of competitive virtual service migration, and
there are several interesting directions for future research.
For instance, we have so far only sketched extensions to
multi-provider scenarios or scenarios with redundant servers
realizing a service. The optimal tradeoffs remain unclear.
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