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Abstract This article presents a simple local medium

access control protocol, called Jade, for multi-hop wire-

less networks with a single channel that is provably ro-

bust against adaptive adversarial jamming. The wire-

less network is modeled as a unit disk graph on a set of

nodes distributed arbitrarily in the plane. In addition

to these nodes, there are adversarial jammers that know

the protocol and its entire history and that are allowed

to jam the wireless channel at any node for an arbi-

trary (1− ε)-fraction of the time steps, where 0 < ε < 1

is an arbitrary constant. We assume that nodes can

perform collision detection (unless they are transmit-

ting themselves), but that they cannot distinguish be-

tween jammed transmissions and collisions of regular
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messages. Nevertheless, we show that Jade achieves

an asymptotically optimal throughput by efficiently ex-

ploiting the unpredictable time periods in which the

medium is available.
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1 Introduction

The problem of coordinating the access to a shared

medium is a central challenge in wireless networks. In

order to solve this problem, a proper medium access

control (MAC) protocol is needed. Ideally, such a pro-

tocol should not only be able to use the wireless medium

as effectively as possible, but it should also be robust

against attacks. Unfortunately, most of the MAC pro-

tocols today can be easily attacked. A particularly crit-

ical class of attacks are jamming attacks (i.e., denial-

of-service attacks on the broadcast medium). Jamming

attacks are typically easy to implement as the attacker

does not need any special hardware. Attacks of this

kind usually aim at the physical layer and are realized

by means of a high transmission power signal that cor-

rupts a communication link or an area, but they may

also occur at the MAC layer, where an adversary may

either corrupt control packets or reserve the channel for

the maximum allowable number of slots so that other

nodes experience low throughput by not being able to

access the channel. In this article we focus on jamming

attacks at the physical layer, that is, the interference

caused by the jammer will not allow the nodes to receive

messages. The fundamental question that we are inves-

tigating is: Is there a MAC protocol such that for any

physical-layer jamming strategy, the protocol will still

be able to achieve an asymptotically optimal throughput
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for the non-jammed time steps? Such a protocol would

force the jammer to jam all the time in order to prevent

any successful message transmissions. Finding such a

MAC protocol is not a trivial problem. In fact, the

widely used IEEE 802.11 MAC protocol already fails to

deliver any messages for very simple oblivious jammers

that jam only a small fraction of the time steps [3]. On

the positive side, Awerbuch et al. [2] have demonstrated

that there are MAC protocols which are provably ro-

bust against even massive adaptive jamming, but their

results only hold for single-hop wireless networks with

a single jammer, that is, all nodes experience the same

jamming sequence.

In this article, we significantly extend the results

in [2]. We present a MAC protocol called Jade (a short

form of “jamming defense”) that can achieve a con-

stant fraction of the best possible throughput for a large

class of jamming strategies in a large class of multi-hop

networks where transmissions and interference can be

modeled using unit-disk graphs. These jamming strate-

gies include jamming patterns that can be completely

different from node to node. It turns out that while

Jade differs only slightly from the MAC protocol of [2],

the proof techniques needed for the multi-hop setting

significantly differ from the techniques in [2].

1.1 Model

We consider the problem of designing a robust MAC

protocol for multi-hop wireless networks with a single

wireless channel. The wireless network is modeled as a

unit disk graph (UDG) G = (V,E) where V represents

a set of n = |V | honest and reliable nodes and two

nodes u, v ∈ V are within each other’s transmission

range, i.e., {u, v} ∈ E, if and only if their (normalized)

distance is at most 1. We assume that time proceeds in

synchronous time steps called rounds. In each round, a

node may either transmit a message or sense the chan-

nel, but it cannot do both. Moreover, we assume that

a (receiving) node can detect collisions. Concretely, a

node which is sensing the channel may either (i) sense

an idle channel (if no other node in its transmission

range is transmitting at that round and its channel is

not jammed), (ii) sense a busy channel (if two or more

nodes in its transmission range transmit at that round

or its channel is jammed), or (iii) receive a packet (if

exactly one node in its transmission range transmits at

that round and its channel is not jammed).

In addition to these nodes there is an adversary

(controlling any number of jamming devices). We al-

low the adversary to know the protocol and its entire

history and to use this knowledge in order to jam the

wireless channel at will at any round (i.e, the adversary

is adaptive). However, like in [2], the adversary has to

make a jamming decision before it knows the actions of

the nodes at the current round. The adversary can jam

the nodes individually at will, as long as for every node

v, at most a (1 − ε)-fraction of its rounds is jammed

(ε > 0 can be an arbitrarily small constant indepen-

dent of n), among which at least an arbitrary constant

fraction are open: We say a round t is open for a node

v if v and at least one other node in its neighborhood

are non-jammed (which implies that v’s neighborhood

is non-empty). More formally, an adversary is (T, 1−ε)-
bounded for some T ∈ N and 0 < ε < 1, if for any time

window of size w ≥ T and at any node v, the adversary

can jam at most (1− ε)w of the w rounds at v, and at

least an arbitrary constant fraction of the non-jammed

rounds at v are open in every time interval of size w.

We, later in this paper, will also consider a stronger

adversary that does not have the limitation of provid-

ing open rounds. While if not stated otherwise and by

default, we will always refer to the adversary defined

here, we will sometime explicitly use the adjective weak

to distinguish this adversary from the stronger variant.

Given a node v and a time interval I of size |I|
(in terms of rounds), we define fv(I) as the number of

time steps in I that are non-jammed at v and sv(I)

as the number of time steps in I in which v success-

fully receives a message. A MAC protocol is called

c-competitive against some (T, 1 − ε)-bounded adver-

sary if, for any time interval I with |I| ≥ K for a

sufficiently large K (that may depend on T and n),∑
v∈V sv(I) ≥ c ·

∑
v∈V fv(I). In other words, a c-

competitive MAC protocol can achieve at least a c-

fraction of the best possible throughput.

Our goal is to design a symmetric local-control MAC

protocol (i.e., there is no central authority controlling

the nodes, and all the nodes are executing the same pro-

tocol) that has a constant-competitive throughput (i.e.,

a c-competitive throughput where c does not depend

on n) against any (T, 1 − ε)-bounded adversary in any

multi-hop network that can be modeled as a UDG. Not

only the nodes are distributed in space in our model,

but also the adversary. Concretely, we introduce the

concept of a k-uniform adversary, an adversary that

can jam different nodes at different times. An adver-

sary is k-uniform if the node set V can be partitioned

into k subsets so that the jamming sequence is the same

within each subset. In other words, we require that at

all times, the nodes in a subset are either all jammed or

all non-jammed. Thus, a 1-uniform jammer jams either

everybody or nobody in a round whereas an n-uniform

jammer can jam the nodes individually at will. Note

that the adversary must hence not necessarily be geo-

metrically constrained.
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As already mentioned, this article also discusses a

stronger adversary: we say that a strong adversary is

(T, 1− ε)-bounded, if for any time window of size w ≥
T and at any node v, the adversary can jam at most

(1 − ε)w of the w rounds at v, where T ∈ N and 0 <

ε < 1. Note that this adversary is stronger as we only

guarantee that an ε-fraction of the rounds at v are non-

jammed, but not that during these rounds there exists

at least one neighbor free to receive a message from v.

While the nodes do not know ε, we do allow them to

have a very rough upper bound of the values n and T .

Finally, let us emphasize that our notion of through-

put is constrained to Layer 2 (the MAC layer), and

measures the number of successful transmissions over

“links”, i.e., pairs of nodes. That is, assuming a back-

logged situation where packets are constantly submit-

ted to the medium access layer from higher layers,

we can schedule transmissions over Layer 2 links effi-

ciently. In contrast to other throughput models in lit-

erature (e.g., [40]), we explicitly consider the receiver-

side which we believe is much more meaningful: in a

broadcast medium and in a distributed setting, the

throughput computed by focusing on the sender only

can be misleading as simply sending a packet out does

not imply that it is also received (and by how many

nodes). However, also note that a (MAC layer) link-

based throughput does not imply any minimal end-to-

end throughput between remote nodes on higher lay-

ers, e.g., on the transport layer (especially when using

TCP with its flow and congestion control mechanisms),

or throughput of flows. Moreover, note that we do not

model any retransmissions that would happen on higher

layers. Indeed, our MAC protocol has the nice property

that it does not rely on any acknowledgements on the

MAC layer to guarantee the throughput, and assumes

that retransmission mechanisms are in place on higher

layers.

In this article, we will say that a claim holds with

high probability (w.h.p.) iff it holds with probability at

least 1−1/nc for any constant c ≥ 1; it holds with mod-

erate probability (w.m.p.) iff it holds with probability at

least 1− 1/(log n)c for any constant c ≥ 1.

1.2 Related Work

Due to the topic’s importance, wireless network jam-

ming has been extensively studied in the applied

research fields [1,5,6,22,26–28,30,31,39,41–43], both

from the attacker’s perspective [6,26,27,43] as well

as from the defender’s perspective [1,5,6,27,28,30,41,

43]—also in multi-hop settings (e.g. [21,32,45–47]).

Traditionally, jamming defense mechanisms operate

on the physical layer [28,30,38]. Mechanisms have been

designed to avoid jamming as well as detect jamming.

Spread spectrum technology has been shown to be very

effective to avoid jamming as with widely spread sig-

nals, it becomes harder to detect the start of a packet

quickly enough in order to jam it. Unfortunately, proto-

cols such as IEEE 802.11b use relatively narrow spread-

ing [20], and some other IEEE 802.11 variants spread

signals by even smaller factors [5]. Therefore, a jammer

that simultaneously blocks a small number of frequen-

cies renders spread spectrum techniques useless in this

case. As jamming strategies can come in many different

flavors, detecting jamming activities by simple methods

based on signal strength, carrier sensing, or packet de-

livery ratios has turned out to be quite difficult [27].

Recent work has also studied MAC layer strategies

against jamming, including coding strategies [6], chan-

nel surfing and spatial retreat [1,44], or mechanisms

to hide messages from a jammer, evade its search, and

reduce the impact of corrupted messages [41]. Unfortu-

nately, these methods do not help against an adaptive

jammer with full information about the history of the

protocol, like the one considered in our work.

In the theory community, work on MAC protocols

has mostly focused on efficiency. Many of these pro-

tocols are random backoff or tournament-based proto-

cols [4,7,17,18,25,34] that do not take jamming activ-

ity into account and, in fact, are not robust against it

(see [2] for more details). The same also holds for many

MAC protocols that have been designed in the context

of broadcasting [8] and clustering [24]. Also some work

on jamming is known (e.g., [9] for a short overview).

There are two basic approaches in the literature. The

first assumes randomly corrupted messages (e.g. [33]),

which is much easier to handle than adaptive adversar-

ial jamming [3]. The second line of work either bounds

the number of messages that the adversary can trans-

mit or disrupt with a limited energy budget (e.g. [16,

23]) or bounds the number of channels the adversary

can jam (e.g. [10–15,29]).

The protocols in [16,23] can tackle adversarial jam-

ming at both the MAC and network layers, where the

adversary may not only be jamming the channel but

also introducing malicious (fake) messages (possibly

with address spoofing). However, they depend on the

fact that the adversarial jamming budget is finite, so

it is not clear whether the protocols would work under

heavy continuous jamming. (The result in [16] seems to

imply that a jamming rate of 1/2 is the limit whereas

the handshaking mechanisms in [23] seem to require an

even lower jamming rate.)

In the multi-channel version of the problem intro-

duced in the theory community by Dolev [13] and also

studied in [10–15,29], a node can only access one chan-
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nel at a time, which results in protocols with a fairly

large runtime (which can be exponential for determinis-

tic protocols [11,14] and at least quadratic in the num-

ber of jammed channels for randomized protocols [12,

29] if the adversary can jam almost all channels at a

time). Recent work [10] also focuses on the wireless syn-

chronization problem which requires devices to be acti-

vated at different times on a congested single-hop radio

network to synchronize their round numbering while an

adversary can disrupt a certain number of frequencies

per round. Gilbert et al. [15] study robust information

exchange in single-hop networks.

Our work is motivated by the work in [3] and [2]. In

[3] it is shown that an adaptive jammer can dramati-

cally reduce the throughput of the standard MAC pro-

tocol used in IEEE 802.11 with only limited energy cost

on the adversary side. Awerbuch et al. [2] initiated the

study of throughput-competitive MAC protocols under

continuously running, adaptive jammers, but they only

consider single-hop wireless networks. (Their approach

has later been extended to reactive jamming environ-

ments [35] and applications such as leader election [36].)

We go one step further by considering multi-hop net-

works where different nodes can have different channel

states at a time, e.g., a transmission may be received

only by a fraction of the nodes. It turns out that while

the MAC protocol of [2] can be adopted to the multi-

hop setting with a small modification, the proof tech-

niques cannot. We are not aware of any other theoreti-

cal work on MAC protocols for multi-hop networks with

provable performance against adaptive jamming.

1.3 Our Contributions

In this article, we present a robust MAC protocol called

Jade. Jade is a fairly simple protocol: it is based on a

small set of rules and assumptions (e.g., collision detec-

tion at receivers), and has a minimal storage overhead.

We can prove the following main theorem:

Theorem 1 When running Jade for Ω([T +

(log3 n)/(γ2ε)] · (log n)/ε) rounds it holds w.h.p. that

Jade achieves a constant competitive throughput (i.e.,

independent of n) for any (T, 1 − ε)-bounded (weak)

adversary, where n is the total number of nodes and

γ ∈ O(1/(log T + log log n) is a parameter.

Since log T and log log n are small the assumption

on γ is not too restrictive: A conservative estimate on

log T and log log n would leave room for a superpoly-

nomial change in n and a polynomial change in T over

time. Also note that the (unrealistic and non-scalable)

assumption that the nodes know constant factor ap-

proximations of n or T directly would render the prob-

lem trivial. (Whether a competitive MAC protocol ex-

ists without any assumptions on the magnitude of these

parameters is an open question. We conjecture no such

algorithm exists.)

Regarding the strong adversary, we can show con-

stant throughput only if one of the conditions in Theo-

rem 2 is satisfied.

Theorem 2 When running Jade for Ω((T log n)/ε +

(log n)4/(γε)2) rounds, Jade has a constant compet-

itive throughput against any strong adversary that is

(T, 1 − ε)-bounded and in any UDG w.h.p., as long as

(a) the adversary is 1-uniform and the UDG is con-

nected, or (b) there are at least 2/ε nodes within the

transmission range of every node.

In Section 3.4, we show that Theorem 2 captures all the

scenarios for which Jade can have a constant compet-

itive throughput under a strong adversary.

Concretely, we will show the following limitations

under a strong adversary.

Theorem 3 In general, Jade is not strongly c-

competitive for a constant c > 0 (independent of n)

if the strong adversary is allowed to be 2-uniform and

ε ≤ 1/3. Moreover, Jade is also not c-competitive for

a constant c if there are nodes u with |D(u)| = o(1/ε)

and the strong adversary is allowed to be 2-uniform.

Here, strongly c-competitive refers to a stronger

throughput model where we require that for any suffi-

ciently large time interval and any node v, the number

of rounds in which v successfully receives a message is

at least a c-fraction of the total number of non-jammed

rounds at v.

1.4 Article Organization

The remainder of this article is organized as follows.

Section 2 presents our MAC protocol, and the formal

analysis is given in Section 3. Section 4 reports on the

simulation results. The article is concluded in Section 5.

2 Description of Jade

This section first gives a short motivation for our algo-

rithmic approach and then presents the Jade protocol

in detail.

2.1 Intuition

The intuition behind our MAC protocol is simple: Each

node u maintains a parameter pu which describes u’s
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probability of accessing the channel at a given moment

of time. That is, in each round, each node u decides to

broadcast a packet with probability pu. (This is similar

to classic random backoff mechanisms where the next

transmission time t is chosen uniformly at random from

an interval of size 1/pv.) The nodes adapt and synchro-

nize their pu values over time in a multiplicative in-

crease multiplicative decrease manner, i.e., the value is

lowered in times of high interference or increased dur-

ing times where the channel is idling. However, pu will

never exceed p̂, for some constant 0 < p̂ < 1.

Consider the unit disk D(u) around node u consist-

ing of u’s neighboring nodes as well as u.1 Moreover,

let N(u) = D(u) \ {u} and p = p(u) =
∑
v∈N(u) pv;

henceforth, when u is clear from the context, we will

often simply write p instead of p(u). Suppose that u

is sensing the channel. Let q0 be the probability that

the channel is idle at u and let q1 be the probabil-

ity that exactly one node in N(u) is sending a mes-

sage. It holds that q0 =
∏
v∈N(u)(1 − pv) and q1 =∑

v∈N(u) pv
∏
w∈N(u)\{v}(1− pw). Hence,

q1 ≤
∑

v∈N(u)

pv
1

1− p̂
∏

w∈N(u)

(1− pw) =
q0 · p
1− p̂

q1 ≥
∑

v∈N(u)

pv
∏

w∈N(u)

(1− pw) = q0 · p.

Thus we have the following lemma, which has also been

derived in [2] for the single-hop case.

Lemma 1 q0 · p ≤ q1 ≤ q0
1−p̂ · p.

By Lemma 1, if a node v observes that the number

of rounds in which the channel is idle is equal to the

number of rounds in which exactly one message is sent,

then p =
∑
v∈N(v) pv is likely to be around 1 (if p̂ is a

sufficiently small constant), which would be ideal. Oth-

erwise, the nodes know that they need to adapt their

probabilities. Thus, if we had sufficiently many cases in

which an idle channel or exactly one message transmis-

sion is observed (which is the case if the adversary does

not heavily jam the channel and p is not too large),

then one can adapt the probabilities pv just based on

these two events and ignore all cases in which the wire-

less channel is blocked, either because the adversary is

jamming it or because at least two messages interfere

with each other (see also [19] for a similar conclusion).

Unfortunately, p can be very high for some reason (e.g.,

due to high initial sending probabilities), which requires

a more sophisticated strategy for adjusting the access

probabilities.

1 In this article, disks (and later sectors) will refer both to 2-

dimensional areas in the plane as well as to the set of nodes in
the respective areas. The exact meaning will become clear in the

specific context.

2.2 Protocol Description

In Jade, each node v maintains, in addition to the prob-

ability value pv, a threshold Tv and a counter cv for

Tv. Tv is used to estimate the adversary’s time window

T : a good estimation of T can help the nodes recover

from a situation where they experience high interfer-

ence in the network. In times of high interference, Tv
will be increased and the sending probability pv will be

decreased.

Initially, every node v sets cv := 1 and pv := p̂.

Note however that while we provide some initial values

for the variables in our description, our protocol is self-

stabilizing and works for any initial variable values, as

we will show in our proofs.

Initially, every node v sets Tv := 1, cv := 1 and

pv := p̂. Afterwards, the Jade protocol works in syn-

chronized rounds. In every round, each node v decides

with probability pv to send a message. If it decides not

to send a message, it checks the following two condi-

tions:

– If v senses an idle channel, then pv := min{(1 +

γ)pv, p̂}.
– If v successfully receives a message, then pv := (1 +

γ)−1pv and Tv := max{Tv − 1, 1}.

Afterwards, v sets cv := cv + 1. If cv > Tv then it

does the following: v sets cv := 1, and if there was

no round among the past Tv rounds in which v sensed

a successful message transmission or an idle channel,

then pv := (1 +γ)−1pv and Tv := min{Tv + 1, 21/(4γ)} .

As we will see in the upcoming section, the con-

cept of using a multiplicative-increase-multiplicative-

decrease mechanism for pv and an additive-increase-

additive-decrease mechanism for Tv, as well as the slight

modifications of the protocol in [2], marked in italic

above, are crucial for Jade to work. If in the Afterwards

part of the algorithm we did not include the “idle” con-

dition, in a distributed setting, it could happen that

a center node u with high pu value will never see any

successful transmissions: This can happen if the cumu-

lative probability of u’s neighbors is low while the cu-

mulative probability of u’s neighbors’ neighbors is high,

which makes u’s neighbors always stay at low probabili-

ties. In this situation, Tu may increase arbitrarily. Such

high Tu values however are harmful to the fast recovery

properties of the protocol.

Our simulation study showed that this protocol

change is crucial also in the average case, and not just

in artificial scenarios.
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3 Analysis of Jade

In contrast the description of Jade, its stochastic anal-

ysis is rather involved as it requires to shed light onto

the complex interplay of the nodes all following their

randomized protocol in a dependent manner. We first

prove Theorem 1 in Sections 3.1 and 3.2, and then de-

rive Theorem 2 in Section 3.3. The limitations of Jade

under the strong adversary are discussed in Section 3.4.

In order to show the theorems, we will frequently use

the following variant of the Chernoff bounds [2,37].

Lemma 2 Consider any set of binary random vari-

ables X1, . . . , Xn. Suppose that there are values

p1, . . . , pn ∈ [0, 1] with E[
∏
i∈S Xi] ≤

∏
i∈S pi for ev-

ery set S ⊆ {1, . . . , n}. Then it holds for X =
∑n
i=1Xi

and µ =
∑n
i=1 pi and any δ > 0 that

P[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e−

δ2µ
2(1+δ/3) .

If, on the other hand, it holds that E[
∏
i∈S Xi] ≥∏

i∈S pi for every set S ⊆ {1, . . . , n}, then it holds for

any 0 < δ < 1 that

P[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
≤ e−δ

2µ/2.

Throughout the section we assume that γ =

O(1/(log T + log log n)) is sufficiently small.

3.1 Proof of Theorem 1

First, we focus on a time frame F consisting of

(α log n)/ε subframes of size f = α[T + (log3 n)/(γ2ε)]

each, where f is a multiple of T and α is a sufficiently

large constant. The proof needs the following three lem-

mas. The first one is identical to Claim 2.5 in [2]. It is

true because only successful message transmissions re-

duce Tu.

Lemma 3 If in a time interval I the number of rounds

in which a node u successfully receives a message is at

most r, then u increases Tu in at most r+
√

2|I| rounds
in I.

The following lemma even holds for a strong adver-

sary and will be shown in Section 3.2.

Lemma 4 For every node u,
∑
v∈D(u) pv = O(1) for at

least a (1− εβ)-fraction of the rounds in time frame F ,

w.h.p., where the constant β > 0 can be made arbitrarily

small.

The following lemma follows from simple geometric

arguments.

Lemma 5 A disk of radius 2 can be cut into at most

20 regions so that the distance between any two points

in a region is at most 1.

Consider some fixed node u. Let J ⊆ F be the

set of all non-jammed open rounds at u in time frame

F (which are a constant fraction of the non-jammed

rounds at u). Let p be a constant satisfying Lemma 4

(i.e.,
∑
w∈D(v) pw ≤ p). Define DD(u) to be the disk

of radius 2 around u (i.e., it has twice the radius of

D(u)). Cut DD(u) into 20 regions R1, . . . , R20 sat-

isfying Lemma 5, and let vi be any node in region

Ri (if such a node exists), where vi = u if u ∈ Ri.

According to Lemma 4 it holds for each i that at

least a (1 − εβ′/20)-fraction of the rounds in F sat-

isfy
∑
w∈D(vi)

pw ≤ p for any constant β′ > 0, w.h.p.

Thus, at least a (1 − εβ′′)-fraction of the rounds in F

satisfy
∑
w∈D(vi)

pw ≤ p for every i for any constant

β′′ > 0, w.h.p. As D(v) ⊆ DD(u) for all v ∈ D(u)

and u has at least ε|F | non-jammed rounds in F , we

get the following lemma, which also holds for arbitrary

(T, 1− ε)-bounded adversaries.

Lemma 6 At least a (1− β)-fraction of the rounds in

J satisfy
∑
v∈D(u) pv ≤ p and

∑
w∈D(v) pw = O(p) for

all nodes v ∈ D(u) for any constant β > 0, w.h.p.

Let us call these rounds good. Since the probability

that u senses the channel is at least 1− p̂ and the prob-

ability that the channel at u is idle for
∑
w∈D(u) pw ≤ p

is equal to
∏
v∈N(u)(1−pv) ≥

∏
v∈N(u) e

−2pv ≥ e−2p, u
senses an idle channel for at least (1−p̂)(1−β)|J |e−2p ≥
2β|J | many rounds in J on expectation if β is suffi-

ciently small. This also holds w.h.p. when using the

Chernoff bounds under the condition that at least

(1 − β)|J | rounds in F are good (which also holds

w.h.p.). Let k be the number of times u receives a mes-

sage in F . We distinguish between two cases.

Case 1: k ≥ β|J |/6. Then Jade is constant competitive

for u and we are done.

Case 2: k < β|J |/6. Then we know from Lemma 3

that pu is decreased at most β|J |/6 +
√

2|F | times

in F due to cu > Tu. In addition to this, pu is de-

creased at most β|J |/6 times in F due to a received

message. On the other hand, pu is increased at least

2β|J | times in J (if possible) due to an idle channel

w.h.p. Also, we know from the Jade protocol that at

the beginning of F , pu = p̂. Hence, there must be at

least β(2−1/6−1/6)|J |−
√

2|F | ≥ (3/2)β|J | rounds in

J w.h.p. at which pu = p̂. As there are at least (1−β)|J |
good rounds in J (w.h.p.), there are at least β|J |/2
good rounds in J w.h.p. in which pu = p̂. For these

good rounds, u has a constant probability to transmit a
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message and every node v ∈ D(u) has a constant prob-

ability of receiving it, so u successfully transmits Θ(|J |)
messages to at least one of its non-jammed neighbors

in F (on expectation and also w.h.p.).

If we charge 1/2 of each successfully transmitted

message to the sender and 1/2 to the receiver, then a

constant competitive throughput can be identified for

every node in both cases above, so Jade is constant

competitive in F .

It remains to show that Theorem 1 also holds for

larger time intervals than |F |. First, note that all the

proofs are valid as long as γ ≤ 1/[c(log T + log log n)]

for a constant c ≥ 2, so we can increase T and thereby

also |F | as long as this inequality holds. So w.l.o.g. we

may assume that γ = 1/[2(log T + log log n)]. In this

case, 21/(4γ) ≤
√
|F |, so our rule of increasing Tv in

Jade implies that Tv ≤
√
|F | at any time. This allows

us to extend the competitive throughput result to any

sequence of time frames. Let J ⊂ l · F be the set of

all non-jammed open rounds at u overall time frames,

where l is the number of frames considered here. Hence,

Case 1 holds directly; as for Case 2, we have β(2 −
1/6− 1/6)|J | −

√
2l|F | ≥ (3/2)β|J | rounds in J w.h.p.

at which pu = p̂. Hence, the rest of the proof follows

directly, which completes the proof of Theorem 1.

3.2 Proof of Lemma 4

This section is dedicated to the proof of Lemma 4 which

is rather involved. Consider any fixed node u. We par-

tition u’s unit disk D(u) into six sectors of equal angles

from u, S1, ..., S6. Note that all nodes within a sector

Si have distances of at most 1 from each other, so they

can directly communicate with one another (in D(u),

distances can be up to 2). We will first explore prop-

erties of an arbitrary node in one sector, then consider

the implications for a whole sector, and finally bound

the cumulative sending probability in the entire unit

disk.

Recall the definition of a time frame, a subframe and

f in the proof of Theorem 1. Fix a sector S in D(u) and

consider some fixed time frame F . Let us refer to the

sum of the probabilities of the neighboring nodes of a

given node v ∈ S by p̄v :=
∑
w∈S\{v} pw. The following

lemma shows that pv will decrease dramatically if p̄v is

high throughout a certain time interval.

Lemma 7 Consider a node v in a unit disk D(u). If

p̄v > 5− p̂ during all rounds of a subframe I of F , then

pv will be at most 1/n2 at the end of I, w.h.p.

Proof We say that a round is useful for node v if from

v’s perspective there is an idle channel or a successful

transmission at that round (when ignoring the action of

v); otherwise the round is called non-useful. Note that

in a non-useful round, according to our protocol, pv will

either decrease (if the threshold Tv is exceeded) or re-

main the same. On the other hand, in a useful round, pv
will increase (if v senses an idle channel), decrease (if v

senses a successful transmission) or remain the same (if

v sends a message). Hence, pv can only increase during

useful rounds of I. Let U be the set of useful rounds

in I for our node v. We distinguish between two cases,

depending on the cardinality |U|. In the following, let

pv(0) denote the probability of v at the beginning of I

(which is at most p̂). Suppose that f ≥ 2[(3c lnn)/γ]2

for a sufficiently large constant c. (This lower bound

coincides with our definition of f in the proof of Theo-

rem 1.)

Case 1: Suppose that |U| < (c lnn)/γ, that is, many

rounds are blocked and pv can increase only rarely. As

there are at least (3c lnn)/γ occasions in I in which

cv > Tv and |U| < (c lnn)/γ, in at least (2c lnn)/γ

of these occasions v only saw blocked channels for Tv
consecutive rounds and therefore decides to increase Tv
and decrease pv. Hence, at the end of I,

pv ≤ (1 + γ)|U|−2c lnn/γpv(0)

≤ (1 + γ)−c lnn/γpv(0)

≤ e−c lnn = 1/nc.

Case 2: Next, suppose that |U| ≥ (c lnn)/γ. We will

show that many of these useful rounds will be successful

such that pv decreases. Since pv ≤ p̂ ≤ 1/24 through-

out I, it follows from the Chernoff bounds that w.h.p. v

will sense the channel for at least a fraction of 2/3 of

the useful rounds w.h.p. Let this set of useful rounds
be called U ′. Consider any round t ∈ U ′. Let q0 be the

probability that there is an idle channel at round t and

q1 be the probability that there is a successful trans-

mission at t. It holds that q0 + q1 = 1. From Lemma 1

we also know that q1 ≥ q0 · p̄v. Since p̄v > 5− p̂ for all

rounds in I, it follows that q1 ≥ 4/5 for every round in

U ′. Thus, it follows from the Chernoff bounds that for

at least 2/3 of the rounds in U ′, v will sense a success-

ful transmission w.h.p. Hence, at the end of I it holds

w.h.p. that

pv ≤ (1 + γ)−(1/3)·|U
′|pv(0)

≤ (1 + γ)−(1/3)·(2c/3) lnn/γpv(0)

≤ e−(2c/9) lnn = 1/n2c/9.

Combining the two cases with c ≥ 9 results in the

lemma. ut

Given this property of the individual probabilities,

we can derive a bound for the cumulative probability of

an entire sector S. In order to compute pS =
∑
v∈S pv,
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we introduce three thresholds, a low one, ρgreen = 5,

one in the middle, ρyellow = 5e, and a high one,

ρred = 5e2. The following three lemmas provide some

important insights about these probabilities.

Lemma 8 For any subframe I in F and any initial

value of pS in I there is at least one round in I with

pS ≤ ρgreen w.h.p.

Proof We prove the lemma by contradiction. Suppose

that throughout the entire interval I, pS > ρgreen. Then

it holds for every node v ∈ S that p̄v > ρgreen − p̂

throughout I. In this case, however, we know from

Lemma 7, that pv will decrease to at most 1/n2 at

the end of I w.h.p. Hence, all nodes v ∈ S would

decrease pv to at most 1/n2 at the end of I w.h.p.,

which results in pS ≤ 1/n. This contradicts our as-

sumption, so w.h.p. there must be a round t in I at

which pS ≤ ρgreen. ut

Lemma 9 For any time interval I in F of size f and

any sector S it holds that if pS ≤ ρgreen at the beginning

of I, then pS ≤ ρyellow throughout I, w.m.p. Similarly,

if pS ≤ ρyellow at the beginning of I, then pS ≤ ρred
throughout I, w.m.p.

Proof It suffices to prove the lemma for the case that

initially pS ≤ ρgreen as the other case is analogous. Con-

sider some fixed round t in I. Let pS be the cumulative

probability at the beginning of t and p′S be the cumula-

tive probability at the end of t. Moreover, let p
(0)
S denote

the cumulative probability of the nodes w ∈ S with no

transmitting node in D(w) \ S in round t. Similarly,

let p
(1)
S denote the cumulative probability of the nodes

w ∈ S with a single transmitting node in D(w) \ S,

and let p
(2)
S be the cumulative probability of the nodes

w ∈ S that experience a blocked round either because

they are jammed or at least two nodes in D(w) \ S are

transmitting at t. Certainly, pS = p
(0)
S +p

(1)
S +p

(2)
S . Our

goal is to determine p′S in this case. Let q0(S) be the

probability that all nodes in S stay silent, q1(S) be the

probability that exactly one node in S is transmitting,

and q2(S) = 1 − q0(S) − q1(S) be the probability that

at least two nodes in S are transmitting.

When ignoring the case that cv > Tv for a node

v ∈ S at round t, it holds:

E[p′S ] = q0(S) · [(1 + γ)p
(0)
S + (1 + γ)−1p(1)S + p

(2)
S ]

+q1(S) · [(1 + γ)−1p(0)S + p
(1)
S + p

(2)
S ]

+q2(S) · [p(0)S + p
(1)
S + p

(2)
S ]

This is certainly also an upper bound for E[p′S ] if

cv > Tv for a node v ∈ S because pv will never be in-

creased (but possibly decreased) in this case. Now, con-

sider the event E2 that at least two nodes in S transmit

a message. If E2 holds, then E[p′S ] = p′S = pS , so there

is no change in the system. On the other hand, assume

that E2 does not hold. Let q′0(S) = q0(S)/(1 − q2(S))

and q′1(S) = q1(S)/(1−q2(S)) be the probabilities q0(S)

and q1(S) under the condition of ¬E2. Then we distin-

guish between three cases.

Case 1: p
(0)
S = pS . Then

E[p′S ] ≤ q′0(S) · (1 + γ)pS + q′1(S) · (1 + γ)−1pS

= ((1 + γ)q′0(S) + (1 + γ)−1q′1(S))pS .

From Lemma 1 we know that q0(S) ≤ q1(S)/pS , so

q′0(S) ≤ q′1(S)/pS . If pS ≥ ρgreen, then q′0(S) ≤
q′1(S)/5. Hence,

E[p′S ] ≤ ((1 + γ)/6 + (1 + γ)−15/6)pS ≤ (1 + γ)−1/2pS

since γ = o(1). On the other hand, p′S ≤ (1 + γ)pS in

any case.

Case 2: p
(1)
S = pS . Then

E[p′S ] ≤ q′0(S) · (1 + γ)−1pS + q′1(S)pS

= (q′0(S)/(1 + γ) + (1− q′0(S)))pS

= (1− q′0(S)γ/(1 + γ))pS .

Now, it holds that 1 − xγ/(1 + γ) ≤ (1 + γ)−x/2 for

all x ∈ [0, 1] because from the Taylor series of ex and

ln(1 + x) it follows that

(1 + γ)−x/2 ≥ 1− (x ln(1 + γ))/2 ≥ 1− (x(1− γ/2)γ)/2

and

1− xγ/(1 + γ) ≤ 1− (x(1− γ/2)γ)/2

for all x, γ ∈ [0, 1] as is easy to check. Therefore, when

defining ϕ = q′0(S), we get E[p′S ] ≤ (1 + γ)−ϕ/2pS . On

the other hand, p′S ≤ pS ≤ (1 + γ)ϕpS .

Case 3: p
(2)
S = pS . Then for ϕ = 0, E[p′S ] ≤ pS =

(1 + γ)−ϕ/2pS and p′S ≤ pS = (1 + γ)ϕpS .

Combining the three cases and taking into account

that p
(0)
S + p

(1)
S + p

(2)
S = pS , we obtain the following

result.

Lemma 10 There is a φ ∈ [0, 1] (depending on p
(0)
S ,

p
(1)
S and p

(2)
S ) so that

E[p′S ] ≤ (1 + γ)−φpS and p′S ≤ (1 + γ)2φpS . (1)

Proof Let a = (1 + γ)1/2, b = (1 + γ)ϕ/2 for the ϕ

defined in Case 2, and c = 1. Furthermore, let x0 =

p
(0)
S /pS , x1 = p

(1)
S /pS and x2 = p

(2)
S /pS . Define φ =

− log1+γ((1/a)x0 + (1/b)x1 + (1/c)x2). Then we have

E[p′S ] ≤ (1 + γ)−1/2p(0)S + (1 + γ)−ϕ/2p(1)S + p
(2)
S

= (1 + γ)−φpS .
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We need to show that for this φ, also p′S ≤ (1 +γ)2φpS .

As p′S ≤ (1 + γ)p
(0)
S + (1 + γ)ϕp

(1)
S + p

(2)
S , this is true if

a2x0 + b2x1 + c2x2 ≤
1

((1/a)x0 + (1/b)x1 + (1/c)x2)2

or

((1/a)x0 + (1/b)x1 + (1/c)x2)2(a2x0 + b2x1 + c2x2) ≤ 1 (2)

To prove this, we need two claims whose proofs are

tedious but follow from standard math.

Claim For any a, b, c > 0 and any x0, x1, x2 > 0 with

x0 + x1 + x2 = 1,

(ax0 + bx1 + cx2)2 ≤ (a2x0 + b2x1 + c2x2)

Claim For any a, b, c > 0 and any x0, x1, x2 > 0 with

x0 + x1 + x2 = 1,

((1/a)x0 + (1/b)x1 + (1/c)x2)(ax0 + bx1 + cx2) ≤ 1

Combining the claims, Equation (2) follows, which

completes the proof. ut

Hence, for any outcome of E2, E[p′S ] ≤ (1 + γ)−ϕpS
and p′S ≤ (1 + γ)2ϕpS for some ϕ ∈ [0, 1]. If we define

qS = log1+γ pS , then it holds that E[q′S ] ≤ qS − ϕ. For

any time t in I, let qt be equal to qS at time t and ϕt
be defined as ϕ at time t. Our calculations above imply

that as long as pS ∈ [ρgreen, ρyellow], E[qt+1] ≤ qt − ϕt
and qt+1 ≤ qt + 2ϕt.

Now, suppose that within subframe I we reach a

point t when pS > ρyellow. Since we start with pS ≤
ρgreen, there must be a time interval I ′ ⊆ I so that

right before I ′, pS ≤ ρgreen, during I ′ we always have

ρgreen < pS ≤ ρyellow, and at the end of I ′, pS >

ρyellow. We want to bound the probability for this to

happen.

Consider some fixed interval I ′ with the proper-

ties above, i.e., with pS ≤ ρgreen right before I ′ and

pS ≥ ρgreen at the first round of I ′, so initially,

pS ∈ [ρgreen, (1 + γ)ρgreen]. We use martingale theory

to bound the probability that in this case, the proper-

ties defined above for I ′ hold. Consider the rounds in I ′

to be numbered from 1 to |I ′|, let qt and ϕt be defined

as above, and let q′t = qt +
∑t−1
i=1 ϕi. It holds that

E[q′t+1] = E[qt+1 +

t∑

i=1

ϕi]

= E[qt+1] +

t∑

i=1

ϕi ≤ qt − ϕt +

t∑

i=1

ϕi

= qt +

t−1∑

i=1

ϕi

= q′t.

Moreover, it follows from Inequality (1) that for any

round t, p′S ≤ (1 + γ)2ϕtpS . Therefore, qt+1 ≤ qt + 2ϕt,

which implies that q′t+1 ≤ q′t+ϕt. Hence, we can define

a martingale (Xt)t∈I′ with E[Xt+1] = Xt and Xt+1 ≤
Xt + ϕt that stochastically dominates q′t. Recall that a

random variable Yt stochastically dominates a random

variable Zt if for any z, P[Yt ≥ z] ≥ P[Zt ≥ z]. In

that case, it is also straightforward to show that
∑
i Yi

stochastically dominates
∑
i Zi, which we will need in

the following. Let T = |I ′|. We will make use of Azuma’s

inequality to bound XT .

Fact 4 (Azuma Inequality) Let X0, X1, . . . be a

martingale satisfying the property that Xi ≤ Xi−1 + ci
for all i ≥ 1. Then for any δ ≥ 0,

P[XT > X0 + δ] ≤ e−δ
2/(2

∑T
i=1 c

2
i ).

Thus, for δ = 1/γ +
∑T
i=1 ϕi it holds in our case

that

P[XT > X0 + δ] ≤ e−δ
2/(2

∑T
i=1 ϕ

2
i ).

This implies that

P[q′T > q′0 + δ] ≤ e−δ
2/(2

∑T
i=1 ϕ

2
i ),

for several reasons. First of all, stochastic dominance

holds as long as pS ∈ [ρgreen, ρyellow], and whenever this

is violated, we can stop the process as the requirements

on I ′ would be violated, so we would not have to count

that probability towards I ′. Therefore,

P[qT > q0 + 1/γ] ≤ e−δ
2/(2

∑T
i=1 ϕ

2
i ).

Notice that qT > q0 + 1/γ is required so that pS >

ρyellow at the end of I ′, so the probability bound above

is exactly what we need. Let ϕ =
∑T
i=1 ϕi. Since ϕi ≤ 1

for all i, ϕ ≥
∑T
i=1 ϕ

2
i . Hence,

δ2

2
∑T
i=1 ϕ

2
i

≥ (1/γ + ϕ)2

2ϕ
≥
(

1

2ϕγ2
+
ϕ

2

)
.

This is minimized for 1/(2ϕγ2) = ϕ/2 or equivalently,

ϕ = 1/γ. Thus,

P[qT > q0 + 1/γ] ≤ e−1/γ

Since there are at most
(
f
2

)
ways of selecting I ′ ⊆ I,

the probability that there exists an interval I ′ with the

properties above is at most

(
f

2

)
e−1/γ ≤ f2e−1/γ ≤ 1

logc n

for any constant c if γ = O(1/(log T+log log n)) is small

enough. ut
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Lemma 11 For any subframe I in F it holds that if

there has been at least one round during the past sub-

frame where pS ≤ ρgreen, then throughout I, pS ≤ ρred
w.m.p.

Proof Suppose that there has been at least one round

during the past subframe where pS ≤ ρgreen. Then we

know from Lemma 9 that w.m.p. pS ≤ ρyellow at the

beginning of I. But if pS ≤ ρyellow at the beginning of

I, we also know from Lemma 9 that w.m.p. pS ≤ ρred
throughout I, which proves the lemma. ut

Now, define a subframe I to be good if pS ≤ ρred
throughout I, and otherwise I is called bad. With the

help of Lemma 8 and Lemma 11 we can prove the fol-

lowing lemma.

Lemma 12 For any sector S, at most εβ/6 of the sub-

frames I in F are bad w.h.p., where the constant β > 0

can be made arbitrarily small depending on the constant

α in f .

Proof From Lemma 8 it follows that for every subframe

I in F there is a time point t ∈ I at which pS ≤ ρgreen
w.h.p. Consider now some fixed subframe I in F that

is not the first one and suppose that the previous sub-

frame in F had at least one round with pS ≤ ρgreen.

Then it follows from Lemma 11 that for all rounds in I,

pS ≤ ρred w.m.p. (where the probability only depends

on I and its preceding subframe), i.e., I is good. Hence,

it follows from the Chernoff bounds that at most εβ/7

of the odd-numbered as well as the even-numbered sub-

frames after the first subframe in F are bad w.h.p. (if

the constant α is sufficiently large). This implies that

overall at most εβ/6 of the subframes in F are bad

w.h.p. ut

From Lemma 12 it follows that apart from an εβ-

fraction of the subframes, all subframes I in F satisfy∑
v∈D(u) pv ∈ O(1) throughout I, which completes the

proof of Lemma 4.

3.3 Proof of Theorem 2

Now, let us consider the two cases of Theorem 2 under

the strong adversary.

Case 1: the adversary is 1-uniform and the UDG is

connected.

In this case, every node has a non-empty neighborhood

and therefore all non-jammed rounds of the nodes are

open. Hence, the conditions on a (T, 1 − ε)-bounded

adversary are satisfied. So Theorem 1 applies, which

completes the proof of Theorem 2 a).

Case 2: |D(v)| ≥ 2/ε for all v ∈ V .

Consider some fixed time interval I with |I| being a

multiple of T . For every node v ∈ D(u) let fv be the

number of non-jammed rounds at v in I and ov be the

number of open rounds at v in I. Let J be the set

of rounds in I with at most one non-jammed node.

Suppose that |J | > (1 − ε/2)|I|. Then every node in

D(u) must have more than (ε/2)|I| of its non-jammed

rounds in J . As these non-jammed rounds must be seri-

alized in J to satisfy our requirement on J , it holds that

|J | >
∑
v∈D(u)(ε/2)|I| ≥ (2/ε)·(ε/2)|I| = |I|. Since this

is impossible, it must hold that |J | ≤ (1− ε/2)|I|.
Thus,

∑
v∈D(u) ov ≥ (

∑
v∈D(u) fv) − |J | ≥

(1/2)
∑
v∈D(u) fv because

∑
v∈D(u) fv ≥ (2/ε) · ε|I| =

2|I|. Let D′(u) be the set of nodes v ∈ D(u) with

ov ≥ fv/4. That is, for each of these nodes, a

constant fraction of the non-jammed time steps is

open. Then
∑
v∈D(u)\D′(u) ov < (1/4)

∑
v∈D(u) fv, so∑

v∈D′(u) ov ≥ (1/2)
∑
v∈D(u) ov ≥ (1/4)

∑
v∈D(u) fv.

Consider now a set U ⊆ V of nodes so that⋃
u∈U D(u) = V and for every v ∈ V there are at most

6 nodes u ∈ U with v ∈ D(u) (U is easy to construct in

a greedy fashion for arbitrary UDGs and also known

as a dominating set of constant density). Let V ′ =⋃
u∈U D

′(u). Since
∑
v∈D′(u) ov ≥ (1/4)

∑
v∈D(u) fv

for every node u ∈ U , it follows that
∑
v∈V ′ ov ≥

(1/6)
∑
u∈U

∑
v∈D′(u) ov ≥ (1/24)

∑
u∈U

∑
v∈D(u) fv ≥

(1/24)
∑
v∈V fv. Using that together with Theorem 1,

which implies that Jade is constant competitive w.r.t.

the nodes in V ′, completes the proof of Theorem 2 b).

3.4 Limitations under the Strong Adversary

One may ask whether a stronger throughput result than

Theorem 2 can be shown for the strong adversary. Ide-

ally, we would like to use the following model. A MAC

protocol is called strongly c-competitive against some

(T, 1−ε)-bounded adversary if, for any sufficiently large

time interval and any node v, the number of rounds in

which v successfully receives a message is at least a

c-fraction of the total number of non-jammed rounds

at v. In other words, a strongly c-competitive MAC

protocol can achieve at least a c-fraction of the best

possible throughput for every individual node. Unfor-

tunately, such a protocol seems to be difficult to design.

In fact, Jade is not strongly c-competitive for any con-

stant c > 0, even if the node density is sufficiently high.

We can prove the following lemmas which imply Theo-

rem 3.
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Lemma 13 In general, Jade is not strongly c-

competitive for a constant c > 0 if the strong adversary

is allowed to be 2-uniform and ε ≤ 1/3.

Proof Suppose that (at some corner of the UDG) we

have a set U of at least 1/p̂ nodes located closely to

each other that are all within the transmission range

of a node v. Initially, we assume that
∑
u∈U pu ≥ 1,

pv = p̂ and Tx = 1 for all nodes x ∈ U ∪ {v}. The time

is partitioned into time intervals of size T . In each such

time interval, called T -interval, the (T, 1− ε)-bounded

adversary jams all but the first εT rounds at U and

all but the last εT rounds at v. It follows directly from

Section 2.3 of [2] that if T = Ω((log3 n)/(γ2ε)), then for

every node u ∈ U , Tu ≤ α
√
T log n/ε w.h.p. for some

sufficiently large constant α. Thus, Tu ≤ γT/(β log n)

w.h.p. for any constant β > 0 if T is sufficiently large.

Hence, between the last non-jammed round at U and

the first non-jammed round at v in a T -interval, the val-

ues Tu are increased (and the values pu are decreased)

at least β(log n)/(6γ) times. Thus, at the first non-

jammed round at v, it holds for every u ∈ U that

pu ≤ p̂ · (1 + γ)−β(logn)/(6γ) ≤ p̂ · e−(β/6) logn ≤ 1/nβ/6

and, therefore,
∑
u∈U pu = O(1/n2) if β ≥ 18. This cu-

mulative probability will stay that low during all of v’s

non-jammed rounds as during these rounds the nodes

in U are jammed. Hence, the probability that v re-

ceives any message during its non-jammed rounds of

a T -interval is O(1/n2), so Jade is not c-competitive

for v for any constant c > 0. ut

Also, in our original model, Jade is not constant

competitive if the node density is too low.

Lemma 14 In general, Jade is not c-competitive for

a constant c independent of ε if there are nodes u with

|D(u)| = o(1/ε) and the strong adversary is allowed to

be 2-uniform.

Proof Suppose that we have a set U of k = o(1/ε)

nodes located closely to each other that are all

within the transmission range of a node v. Let T =

Ω((log3 n)/(γ2ε)). In each T -interval, the adversary

never jams v but jams all but the first εT rounds at

U . Then Section 2.3 of [2] implies that for every node

u ∈ U , Tu ≤ γT/(β log n) w.h.p. for any constant β > 0

if T is sufficiently large. The nodes in U continuously

increase their Tu-values and thereby reduce their pu val-

ues during their jammed time steps. Hence, the nodes in

U∪{v} will receive at most εT ·|U |+(εT+O(T/ log n)) =

εT ·o(1/ε)+(ε+o(1))T = (ε+o(1))T messages in each T -

interval on expectation whereas the sum of non-jammed

rounds over all nodes is more than T . ut

Hence, Theorem 2 is the best one can show for

Jade (within our notation). More generally, of course,

no MAC protocol can guarantee a constant competi-

tive throughput if the UDG is not connected. However,

it is still an open question whether there are simple

MAC protocols that are constant competitive under

non-uniform jamming strategies even if there are o(1/ε)

nodes within the transmission range of a node.

4 Simulations

In order to complement our theoretical insights, we re-

port on our simulation results. First, we present our

throughput results for a sufficiently large time interval,

and then we discuss the convergence behavior. For our

simulations, as in our formal analysis, we assume that

initially all nodes v ∈ V have a high sending probability

of pv = p̂ = 1/24. The nodes are distributed at random

over a square plane of 4× 4 units, and are connected in

a unit disk graph manner (multi-hop). We simulate the

jamming activity in the following way: for each round, a

node is jammed independently with probability (1− ε).
Note that in the terminology we introduced, this adver-

sary is strong (as rounds do not need to be open) and

n-uniform (as nodes are jammed independently). The

reason for studying this rather simplistic randomized

“adversary” is twofold. First, although our formal re-

sults hold for arbitrary adversaries, it is not clear how to

constructively compute such a worst adversarial strat-

egy; second, a random adversary also complements our

formal results better as it may capture the “average

case” behavior.

We run the simulation for a sufficiently large num-

ber of time steps indicated by the Theorem 1, i.e., for

([T + (log3 n)/(γ2ε)] · (log n)/ε rounds, where ε = 0.1,

T = 200, and γ = 1/(log T + log logN). Simula-

tions with different combinations of ε ∈ {0.5, 0.3, 0.1}
and T = {50, 100, 150, 200} showed that ε = 0.1

and T = 200 yields the lowest throughput (and the

strongest adversary), and hence, in the following, we

will focus on this most challenging case. (The pa-

rameter γ is set to a value satisfy its definition, i.e.,

γ = O(1/(log T + log logN)).)

Figure 1 (top) shows the throughput competitive-

ness of Jade for a scenario where different numbers of

nodes (i.e., n ∈ [100, 2000]) are distributed uniformly at

random over the plane and a scenario where the nodes

are distributed according to a normal/Gaussian distri-

bution N (0, 1). In both cases, the throughput is larger

when the density is higher. This corresponds to our

formal insight that a constant competitive throughput

is possible only if the node density exceeds a certain

threshold. For example, in a scenario with 100 nodes
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Fig. 1 Top: Throughput as a function of network size, where n ∈ [100, 2000], ε = 0.1, T = 200, and γ = 1/(log T + log logn). The

result is averaged over 10 runs. Bottom left: Convergence behavior for multi-hop networks (uniform distribution). As a demonstration,

we used n = 500, ε = 0.1, T = 200, and γ = 1/(log T +log logN). Note that the start-up phase where the sending probabilities are high
is short (no more than 50 rounds). Bottom right: Convergence of Tv for multi-hop networks (uniform distribution). For demonstration,

we used n = 500, ε = 0.1, T = 200, and γ = 1/(log T + log logN).

in the 4 × 4 plane (density of 6.25), there are at least

6.25π ≈ 20 ≥ 2/ε = 20 uniformly distributed nodes

in one unit disk. As can be seen in the figure, when

the number of nodes is larger than 600, the throughput

falls between 20% and 40% for both uniform distribu-

tion and Gaussian distribution.

Convergence time is the second most important

evaluation criterion. We found that already after a short

time, a constant throughput is achieved; in particular,

the total sending probability per unit disk approaches

a constant value quickly. This is due to the nodes’ abil-

ity to adapt their sending probabilities fast, see Fig-

ure 1 (bottom left). The figure also illustrates the high

correlation between success ratio and aggregated send-

ing probability.

Finally, we have also studied the average of the Tv
values over time. The average quickly stabilizes to a

value around 10, as shown in Figure 1 (bottom right).

5 Conclusion

This article has presented the first jamming-resistant

MAC protocol with provably good performance in

multi-hop networks exposed to an adaptive adversary.

While we have focused on unit disk graphs, we believe

that our stochastic analysis is also useful for more real-

istic wireless network models. Moreover, although our

analysis is involved, our protocol is rather simple.

There are several questions that remain open. For

instance, we assumed a common parameter γ which is

known by all nodes and which depends on n and T .

Although the estimations on these parameters we need

are very rough and scalable, it remains an open question

whether this limitation can be relaxed,and e.g., a local

value γv = 1/ log Tv would also work.
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