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Abstract Current peer-to-peer (P2P) systems often suffer from a large fraction of
freeriders not contributing any resources to the network. Various mechanisms have
been designed to overcome this problem. However, the selfish behavior of peers has
aspects which go beyond resource sharing. This paper studies the effects on the topol-
ogy of a P2P network if peers selfishly select the peers to connect to. In our model, a
peer exploits locality properties in order to minimize the latency (or response times)
of its lookup operations. At the same time, the peer aims at not having to maintain
links to too many other peers in the system. By giving tight bounds on the price of
anarchy, we show that the resulting topologies can be much worse than if peers col-
laborated. Moreover, the network may never stabilize, even in the absence of churn.
Finally, we establish the complexity of Nash equilibria in our game theoretic model
of P2P networks. Specifically, we prove that it is NP-hard to decide whether our game
has a Nash equilibrium and can stabilize.
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1 Introduction

The power of peer-to-peer computing arises from the collaboration of the system’s
constituent parts, the peers. If all the participating peers contribute some of their
resources—for instance bandwidth, memory, or CPU cycles—highly scalable decen-
tralized systems can be built which outperform existing server-based architectures.
However, in reality, peers may act selfishly and strive for maximizing their own util-
ity by benefiting from the system without contributing much themselves. Hence the
performance—and thus its success in practice!—of a p2p system crucially depends
on its capability of dealing with selfishness.

One of the few systems that actively tries to tackle the non-cooperation challenge
is BitTorrent—which is also one of the most popular applications on the Internet.
Unfortunately, in contrast to common belief, BitTorrent can still be cheated by selfish
users, e.g., with the BitThief client. Motivated by the apparent weaknesses, we are
interested in the impact of selfish behavior in p2p systems. Game theory provides
tools to quantify such effects.

This article investigates the impact of selfish behavior in unstructured peer-to-peer
topologies. Concretely, we study the quality of the network topologies which result
if peers selfishly select to which other peers they connect. One contribution will be
the computation of the Price of Anarchy of p2p overlay creation, which is the ratio
between an optimal solution compared to a solution generated by peers that act in an
egoistic manner, optimizing their individual benefit.

The importance of studying the Price of Anarchy in peer-to-peer systems stems
from the fact that it quantifies the possible degradation caused by selfishness. Specif-
ically, a low Price of Anarchy indicates that a system does not require an incentive-
mechanism (such as tit-for-tat), because selfishness does not overly bog down the
overall system performance. If the Price of Anarchy is high, however, specific co-
operation incentives (whose goals are to reduce the Price of Anarchy) need to be
enforced in order to ensure that the system can perform efficiently. Hence, in peer-
to-peer systems the Price of Anarchy is a measure that helps explaining the necessity
(or non-necessity) of cooperation mechanisms.

We will first show that the topologies of selfish, unstructured p2p systems can
be much worse than in a scenario in which peers collaborate. More precisely, we
show that the Price of Anarchy is �(min(α,n)), where α is a parameter that captures
the tradeoff between lookup performance (low stretches) and the cost of neighbor
maintenance, and n is the number of peers in the system. Thereby, the upper bound
O(min(α,n)) holds for peers located in arbitrary metric spaces, including the popu-
lar growth-bounded and doubling metrics. On the other hand, intriguingly, this bound
is tight even in such a simple metric space as the 1-dimensional Euclidean space. As
a second contribution, we prove that the topology of a static peer-to-peer system
consisting of selfish peers may never converge to a stable state. That is, links may
continuously change even in environments without churn, causing the network to be
inherently instable. Finally, we consider the complexity of Nash equilibria. We show
that deciding whether there exists a pure Nash equilibrium in a given network is NP-
hard. Consequently, it is infeasible in practice to determine if a p2p network of selfish
peers can stabilize.
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2 A P2P Network Creation Game

We model the peers of a p2p network as points in a metric space M = (V , d), where
d : V ×V → [0,∞) is the distance function which describes the underlying latencies
between all pairs of peers. The effects of selfish peer behavior is studied from a game-
theoretic perspective. We consider a set of n peers V = {π1,π2, . . . , πn}. A peer
can choose to which subset of other peers it wants to store pointers (IP addresses).
Formally, the strategy space of a peer πi is given by Si = 2V \{πi }, and we will refer
to the actually chosen links as πi ’s strategy si ∈ Si . We say that πi maintains or
establishes a link to πj if πj ∈ si . The combination of all peers’ strategies, i.e., s =
(s1, . . . , sn) ∈ S1 × · · · × Sn, yields a (directed) graph G[s] = (V ,

⋃n
i=1({πi} × si)),

which describes the resulting p2p topology.
Selfish peers exploit locality in order to maximize their lookup performance. Con-

cretely, a peer aims at minimizing the stretch to all other peers. The stretch between
two peers π and π ′ is defined as the shortest distance between π and π ′ using the
links of the resulting p2p topology G divided by the direct distance, i.e., for a topol-
ogy G, stretchG(π,π ′) = dG(π,π ′)/d(π,π ′). Clearly, it is desirable for a peer to
have low stretch to other peers in order to keep its latency small. By establishing
a link to all peers in the system, a peer reaches every peer with minimal stretch 1,
and the potential lookup performance is optimal. However, storing and especially
maintaining a large number of links is expensive. Therefore, the individual cost ci(s)

incurred at a peer π is composed not only of the stretches to all other peers, but also
of its degree, i.e., the number of its neighbors:

ci(s) = α · |si | +
∑

i �=j

stretchG[s](πi,πj ).

Note that this cost function captures the classic p2p trade-off between the need to
minimize latencies and the desire to store and maintain only few links, as it has been
addressed by many existing systems, for example Pastry [36]. Thereby, the relative
importance of degree costs versus stretch costs is expressed by the parameter α.

The objective of a selfish peer is to minimize its individual cost. In order to evalu-
ate the topologies constructed by selfish peers—and compare them to the topologies
achieved by collaborating peers—we use the notion of a Nash equilibrium. A p2p
topology constitutes a Nash equilibrium if no peer can reduce its individual cost by
changing its set of neighbors given that the connections of all other peers remain the
same. More formally, a (pure) Nash equilibrium is a combination of strategies s such
that, for each peer πi , and for all alternative strategies s′ which differ only in the ith
component (different neighbor sets for peer πi ), ci(s) ≤ ci(s

′). This means that in a
Nash equilibrium, no peer has an incentive to change its current set of neighbors, that
is, Nash equilibria are stable.

While peers try to minimize their individual cost, the system designer is interested
in a good overall quality of the p2p network. The social cost is the sum of all peers’
individual costs, i.e.,

C(G) =
∑

i

ci = α|E| +
∑

i �=j

stretchG(πi,πj ).

The lower this social cost, the better is the system’s performance.



Algorithmica

Determining the parameter α in real unstructured peer-to-peer networks is an in-
teresting field for study. As mentioned, α measures the relative importance of low
stretches compared to the peers’ degrees, and thus depends on the system or appli-
cation: for example, in systems with many lookups where good response times are
vital, α is smaller than in distributed archival storage systems consisting mainly of
large files. In the sequel, we will denote the link and stretch costs by

CE(G) = α|E| and CS(G) =
∑

i �=j

stretchG(πi,πj ).

Typically, a given distribution of peers in a metric space can result in different
Nash equilibria, depending on the order in which peers change their links. To gain
an understanding of the impact of selfishness on the social cost, we are particularly
interested in the social cost of the worst possible Nash equilibrium. That is, we study
topologies in which no selfish peer has an incentive to change its neighbors, but in
which all peers together could be much better off if they collaborated. More precisely
and using the terminology of game theory, we are interested in the Price of Anarchy,
the ratio between the social cost of the worst Nash equilibrium and the social cost of
the optimal topology.

3 Related Work

Papadimitriou [31] has argued that the Internet has surpassed the von Neumann com-
puter as the most complex computational artifact of our time. In particular, he pointed
out that the Internet has a socio-economic complexity whose understanding requires
techniques from mathematical economics and game theory [30]. Since then, game
theoretic approaches have become increasingly popular to study selfish behavior on
all layers of distributed systems. Specifically, researchers have been keen to study
the inherent loss of efficiency in a system caused by the participant’s selfishness in
networks. Consequently, the Price of Anarchy and its complexity have been investi-
gated in various system settings, for example in routing [12, 35] (see also the book by
Roughgarden [34]): Roughgarden has observed that the data packets which usually
“rocket along the Internet at the speed of light” [6] can be significantly slowed down
by selfish routers—a phenomenon which has been known also in civil engineering in
the context of road planning. Besides being a useful toolkit to understand strategic
interactions occurring in today’s Internet, game theory itself offers exciting questions
for mathematicians and computer scientists. For instance, while it is known that Nash
equilibria always exist if the players’ strategies are convex sets (such sets can for ex-
ample be obtained by using probability distributions over strategies), in general, the
complexity of finding a Nash equilibrium is believed to be one of the most important
open questions on the boundary of the complexity class P, besides factoring [31].
Despite decades of effort, the computational complexity of computing a Nash equi-
librium for a general-sum normal-form game remains unknown.

Adar and Huberman [3] noticed that selfish behavior is a reality also in peer-to-
peer systems, and that there exists a large fraction of free riders in the file sharing
network Gnutella. The problem of selfish behavior in peer-to-peer systems has been
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a hot topic in p2p research ever since, e.g. [23, 38], and many mechanisms to encour-
age cooperation have been proposed, for example in [19, 22, 37, 39, 41]. Perhaps the
simplest fairness mechanism is to directly incorporate contribution monitoring into
the client software. For instance, in the file-sharing system Kazaa, the client records
the contribution of its user. However, such a solution can simply be bypassed by im-
plementing a different client that hard-wires the contribution level to the maximum,
as it was the case with Kazaa Lite. Inspired by real economies, some researchers have
also proposed the introduction of some form of virtual money which is used for the
transactions. However, these monetary or credit based approaches have a substantial
overhead in terms of communication costs and infrastructure, and are inefficient [21,
42]. Often, these systems also require market regulating mechanisms [41] to cope
with inflation or deflation—a complex issue. Additionally, monetary based systems
may deter users from participating [29].

BitTorrent [11] has incorporated a fairness mechanism from the beginning. Al-
though this mechanism has similarities to the well known tit-for-tat scheme [7], the
mechanism employed in BitTorrent distinguishes itself from the classic tit-for-tat
mechanism in many respects [24]. It has also been the subject of active research
recently (e.g., [8, 20, 33]). Based on PlanetLab tests, [24] has argued that BitTorrent
lacks appropriate rewards and punishments and therefore peers might be tempted to
freeload. The authors further propose a tit-for-tat-oriented mechanism based on the
iterated prisoner’s dilemma [7] in order to deter peers from freeloading. However, in
their work, a peer is already considered a free rider if it contributes considerably less
than other peers. BitThief [26], on the other hand, aims at attaining fast downloads
strictly without uploading any data. This is often desirable, since in many countries
downloading certain media content is legal whereas uploading is not.

The game-theoretic model of our locality game has been inspired by the paper
by Fabrikant et al. [18] which studies the Internet’s architecture as built by economic
agents, e.g., by Internet providers or autonomous systems. Recent subsequent work on
network creation in various settings includes [4, 5, 10, 14–17]. In contrast to all these
works, our model takes into account many of the intrinsic properties of p2p systems.
For instance, it captures the important locality properties of p2p systems, i.e., the
desire to reduce the latencies (expressed as the stretch) experienced when performing
look-up operations. Furthermore, the fact that a peer can decide to which other peers
it wishes to store pointers and thus maintain links yields a scenario with directed
links. Building structured systems that explicitly exploit locality properties has been a
flourishing research area in networking and p2p computing (e.g. [2, 36, 43]). In early
literature on distributed hash tables, the major measure of system quality has been the
number of hops required for look-up operations. While this hop-distance is certainly
of importance, it has been argued that the delay of communication (i.e., the stretch
between pairs of peers) is a more relevant quality measure. Based on results achieved
in [32], systems such as [1, 2, 36, 44] guarantee a provably bounded stretch with a
limited number of links per peer. All of these systems are structured and peers are
supposed to participate in a carefully predefined topology. Our work complements
this line of research by analyzing topologies as they are created by selfish peers,
which are interested only in optimizing their individual trade-off between locality
and maintenance overhead.
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4 Price of Anarchy

The Price of Anarchy is a measure to bound the degradation of a globally optimal
solution caused by selfish individuals. In this section, we show that the topologies
created by selfish peers deteriorate more (compared to collaborative networks) as the
cost of maintaining links becomes more important (larger α). Concretely, in Sect. 4.1
we prove that for arbitrary metric spaces—thus, including the important and well-
studied growth-bounded [25] and doubling (e.g. [9]) metrics—the Price of Anarchy
never exceeds O(min(α,n)). We then show in Sect. 4.2 that this bound is tight even
in the “simplest” metric space, the 1-dimensional Euclidean space, where there exist
Nash equilibria with a Price of Anarchy of �(min(α,n)).

4.1 Upper Bound

Assume the most general setting where n peers are arbitrarily located in a given
metric space M, and consider a peer π which has to find a suitable neighbor set.
Clearly, the maximal stretch from π to any other peer π ′ in the system is at most α+1:
if stretch(π,π ′) > α + 1, π could establish a direct link to π ′, reducing the stretch
from more than α + 1 to 1, while incurring a link cost of α. Therefore, in any Nash
equilibrium, no stretch exceeds α + 1. Because there are at most n(n − 1) directed
links (from each peer to all remaining peers), the social cost of a Nash equilibrium
is O(αn2). In the social optimum on the other hand, all stretches are at least 1 and
there must be at least n − 1 links in order to keep the topology connected. This lower
bounds the optimal social cost by �(αn + n2) and yields the following result.

Theorem 4.1 For any metric space M, the Price of Anarchy is O(min(α,n)).

Theorem 4.1 implies that if the relative importance of the peers’ stretch is large,
the Price of Anarchy is small. That is, for small α, the selfish peers have an incen-
tive to establish links to many other peers, while also the optimal network is highly
connected.

4.2 Lower Bound

We now show that there are p2p networks in which the Price of Anarchy is as bad
as �(min(α,n)), which implies that the upper bound of Sect. 4.1 is asymptotically
tight. Intriguingly, the Price of Anarchy can deteriorate to �(min(α,n)) even if the
underlying latency metric describes a simple 1-dimensional Euclidean space.

Consider the topology G in which peers are located on a line, and the distance
(latency) between two consecutive peers increases exponentially towards the right.
Concretely, peer i, for i from 1 to n, is located at position αi−1/2 if i is odd, and
at position αi−1 if i is even. The peers of G maintain links as follows: all peers
have a link to their nearest neighbor on the left. Odd peers additionally have a link
to the second nearest peer on their right. After proving that G constitutes a Nash
equilibrium, we derive the lower bound on the Price of Anarchy by computing the
social cost of this topology.
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Lemma 4.2 The topology G forms a Nash equilibrium for α ≥ 3.4.

Proof We distinguish between even and odd peers. For both cases, we show that no
peer has an incentive to deviate from its strategy.

Case even peers: Every even peer i needs to link to at least one peer on its left,
otherwise i cannot reach the peers j < i. A connection to peer i − 1 is optimal, as
the stretch to all peers j < i becomes 1. Observe that every alternative link to the
left would imply a larger stretch to at least one peer on the left without reducing
the stretch to peers on the right. Furthermore, i cannot reduce the distance to any—
neither left nor right—peer by adding further links to the left. Hence, it only remains
to show that i cannot benefit from adding more links to the right.

By adding a link to the right, peer i shortens the distance to all peers on the right.
However, we show that the cost reduction per peer decreases as a geometric series,
and any such link to the right would strictly increase i’s costs. We consider two cases:
i linking to an odd peer on the right, and to an even peer on the right.

Link to an odd peer: Consider the benefit of i adding a link to its odd neighbor
i + 1. For an odd peer j > i, we define the benefit Bi,j as the stretch cost reduction
caused by the addition of the link (i, i + 1). We have, for i ≥ 2,

Bi,j = stretchold(i, j) − stretchnew(i, j) = d(i, i − 1) + d(i − 1, j)

d(i, j)
− d(i, j)

d(i, j)

= αi−1 − 1
2αi−2 + 1

2αj−1 − 1
2αi−2

1
2αj−1 − αi−1

− 1 = 2αi−1 − αi−2

1
2αj−1 − αi−1

= 2 − 1
α

1
2αj−i − 1

.

Similarly, the savings Bi,j for an even peer j > i and i ≥ 2 amount to Bi,j =
stretchold(i,j)− stretchnew(i,j) = (d(i, i −1)+d(i −1,j +1)+d(j +1,j))/(d(i,j))

−(d(i, j + 1) + d(j + 1, j))/(d(i, j)) = (αi−1 − αi−2 + αj − αj−1)/(αj−1 −
αi−1) − (αj − αi−1 − αj−1)/(αj−1 − αi−1) = (2αi−1 − αi−2)/(αj−1 − αi−1) =
(2 − 1

α
)/(αj−i − 1). Hence, for all α ≥ 3.4, the total savings Bi for peer i are less

than

Bi =
∑

oddj > i

Bi,j +
∑

evenj > i

Bi,j ≤
∞∑

δ=1

2 − 1
α

1
2α2δ−1 − 1

+
∞∑

δ=1

2 − 1
α

α2δ − 1

≤
(α≥3)

∞∑

δ=1

2 − 1
α

1
2α2δ−2

+
∞∑

δ=1

2 − 1
α

α2δ−1
=

(

2 − 1

α

) ∞∑

δ=1

(
1

1
2α2δ−2

+ 1

α2δ−1

)

=
(

2 − 1

α

)(
2α2

α2 − 1
+ α

α2 − 1

)

= 4α2 − 1

α2 − 1
<

(α≥3.4)
α + 1.

Therefore, the construction of link (i, i + 1) would be of no avail (benefit smaller
than cost). The benefit of alternative or additional links to odd neighbors on the right
is even smaller.

Link to an even peer: A link to an even peer j > i entails a stretch 1 to the cor-
responding peer instead of stretchold(i, j) = (αj − αj−1 + αi−1 − αi−2)/(αj−1 −
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αi−1) < α + 1 for α > 2. However, the stretch from i to all other peers remains un-
changed, since the path i � (i − 1) � (i + 1) is shorter than i � (i + 2) � (i + 1):
αi−1 − 1

2αi−2 + 1
2αi − 1

2αi−2 < αi+1 − αi−1 + αi+1 − 1
2αi for α > 1. Therefore, an

even peer i has no incentive to build links to any even peer on its right.
Case odd peers: An odd peer i needs to link to peer i − 1, otherwise there is no

connection to i − 1 and the stretch from i to i − 1 is infinite. Moreover, if the link
(i, i −1) is established, stretch(i, j) = 1 for all j < i. Therefore, peer i does not profit
from building additional or alternative links to the left.

It remains to study links to the right. In order to reach all peers with a finite stretch,
peer i needs a link to some peer j ≥ i + 2. In the following, we first show that peer
i can always benefit from a link (i, i + 2), independently of additional links to the
right. Secondly, we prove that if i has a link (i, i + 2), it has no incentive to add
further links.

Assume peer i has no direct link to peer i + 2. Then, stretch(i, i + 2) ≥ (2αi+2 −
1
2αi−1 − 1

2αi+1)/( 1
2αi+1 − 1

2αi−1) > α + 1. Hence, no matter which links it already
has, peer i can benefit by additionally pointing to peer i + 2. On the other hand, if i

maintains the link (i, i + 2), any other links to the right only reduce i’s gain. For odd
peers, this is obvious, since the corresponding stretches are already optimal. A link
(i, j) to some even peer j > i only improves the stretch to peer j itself, but not to
other peers. The stretch to peer j becomes 1 instead of stretchold(i, j) = ( 1

2αj+1 −
1
2αi−1 + 1

2αj+1 −αj )/(αj − 1
2αi−1) = (αj+1 −αj − 1

2αi−1)/(αj − 1
2αi−1) < α + 1

for α > 0. Thus, also this link would increase i’s costs. �

Lemma 4.3 The social cost C(G) of the topology G is C(G) ∈ �(αn2).

Proof The topology G has n − 1 links pointing to the left and 	n/2
 links pointing
to the right. Hence, the total link costs are

CE(G) = α
[
(n − 1) + 	n/2
] ∈ �(αn).

It remains to compute the costs of the stretches.
The stretch from an odd peer i to an even peer j > i is stretch(i, j) = (αj −

αj−1 − 1
2αi−1)/(αj−1 − 1

2αi−1) > ( 1
2αj − 1

2αi−1)/(αj−1 − 1
2αi−1) > 1

2α for α > 2.
Thus, the sum of the stretches of an odd peer i is

CS(i) =
∑

j<i

stretch(i, j) +
∑

j>i

stretch(i, j)

> (i − 1) + 1

2
α

⌊
n − i − 1

2

⌋

+
⌊

n − i

2

⌋

.

The stretch between two even peers i and j is stretch(i, j) = (αj −αj−1 +αi−1 −
αi−2)/(αj−1 −αi−1) > ( 1

2αj − 1
2αi−1)/(αj−1 −αi−1) > 1

2α for j > i and all α > 2.
Thus, the stretch costs are at least

CS(i) > (i − 1) + 1

2
α

⌊
n − i − 1

2

⌋

− 1 +
⌊

n − i − 1

2

⌋

.
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Adding up the stretches of odd and even peers yields a lower bound on the total
stretch costs:

CS(G) =
∑

i even

CS(i) +
∑

i odd

CS(i)

>
n(n − 2)

2
+ α

(n − 3)(n − 2) − n

8
+ (n − 1)(n − 2)

4
∈ �(αn2).

Thus, in combination with Theorem 4.1, it follows that CS(G) ∈ �(αn2). The
proof is concluded by combining link and stretch costs, C(G) = CE(G) + CS(G) ∈
�(αn2). �

Theorem 4.4 The Price of Anarchy of the peer topology G is �(min(α,n)).

Proof The upper bound follows directly from the result obtained in Theorem 4.1.
As for the lower bound, if α < 3.4, the theorem holds because �(min {α,n}) ∈ O(1)

in this case. By Lemma 4.2, the topology G constitutes a Nash equilibrium for α ≥
3.4. Moreover, by Lemma 4.3, the social cost of G are in order of �(αn2). In the
following, we prove that the optimal social cost is upper bounded by O(n2 + αn)

from which the claim of the theorem follows by dividing the two expressions.
Consider again the peer distribution of G, and assume that there are no links. If

every peer connects to the nearest peer to its left and to the nearest peer to its right,
there are 2(n − 1) links, and all stretches are 1. Thus, the social cost of this resulting
topology G̃ is C(G̃) = α ·2(n−1)+n(n−1) ∈ O(n2 +αn). The optimal social cost
is at most the social cost of G̃. �

5 Existence of Nash Equilibria

In this section, we show that a system of selfish peers may never converge to a stable
state, even in the absence of churn, mobility, or other sources of dynamics. Inter-
estingly, this result even holds if we assume latencies to form simple metric spaces,
such as a 2-dimensional Euclidean space. Specifically, there may not exist a pure
Nash equilibrium for certain p2p networks in our “locality game”.

Theorem 5.1 Regardless of the magnitude of α, there are metric spaces M, for
which there exists no pure Nash equilibrium, i.e., certain p2p networks cannot con-
verge to a stable state. This is the case even if M is a 2-dimensional Euclidean space.

Instead of presenting the formal proof (which will be implicit in the proof of The-
orem 6.1), we attempt to highlight the main idea only. Assume that the parameter α

is a multiple of 0.6, i.e., αk = 0.6k for an arbitrary integer k > 0. Given a specific k,
the 2-dimensional Euclidean instance Ik of Fig. 1 has no pure Nash equilibrium.
Specifically, Ik constitutes a situation in which there are peers π1 ∈ �1 and π2 ∈ �2
that continue to deviate to a better strategy ad infinitum, i.e., the system cannot con-
verge.
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Fig. 1 Instance Ik has no pure
Nash equilibrium when
α = 0.6k, where k = n/5. The
number of peers in each cluster
is k

The n peers of instance Ik are grouped into five clusters �1, �2, �a , �b , and �c ,
each containing k = n/5 peers. Within a cluster, peers are located equidistantly in a
line, and each cluster’s diameter is ε/n, where ε > 0 is an arbitrarily small constant.
The inter-cluster distance d(�i,�j ) between �i and �j is the minimal distance
between any two peers in the two clusters. Distances not explicitly defined in Fig. 1
follow implicitly from the constraints imposed by the underlying Euclidean plane.

The proof unfolds in a series of lemmas that characterize the structure of the re-
sulting topology G[s] if the strategies s form a Nash equilibrium in Ik . First, it can
be shown that in G[s], two peers in the same cluster are always connected by a path
that does not leave the cluster. Secondly, it can be shown that there exists exactly one
link in both directions between clusters �a and �b , �b and �c , as well as between
�1 and �2. A third structural characteristic of any Nash equilibrium is that for every
i and j , there is at most one directed link from a cluster �i to peers in a cluster �j .

To preserve connectivity, some peers in �1 and �2 must have links to peers in the
“upper clusters” �a,�b,�c in Fig. 1; henceforth, we will refer to the peers in these
upper clusters �a,�b,�c as top-peers. Based on the aforementioned observations,
the set of possible strategies can further be narrowed down as follows.

(i) Neither peers in �1 nor �2 select three links to top-peers.
(ii) There exists a peer π1 ∈ �1 that establishes a link to �a .

(iii) There is exactly one link from cluster �2 to either cluster �b or �c , but there is
no link to �a .

Correctness of all three properties is proven by verifying that there exists some peer
π1 ∈ �1 or π2 ∈ �2 that has an incentive to change its strategy in case the prop-
erty is not satisfied. If, for instance, there are two peers π2,π

′
2 ∈ �2 that simul-

taneously maintain links to �b and �c (thus violating Case (iii)), π ′
2 can lower

its costs by dropping its link to �c . This holds because the sum of the stretches∑
πc∈�c

stretch(π ′
2,πc) entailed by the indirection π ′

2 � π2 � �b � �c does not
justify the additional cost α.

It can be shown that only the six structures depicted in Fig. 2 remain valid candi-
dates for Nash topologies. In each scenario, however, at least one peer benefits from
deviating from its current strategy.

Case 1: In this case, a peer π1 ∈ �1 can reduce its cost by adding a link to a peer
in �b .
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Fig. 2 Candidates for a Nash equilibrium

Case 2: If the only outgoing link from �1 to a top-cluster is to cluster �a , the peer
π2 ∈ �2 maintaining the link to �c can be shown to profit from switching its link
from �c to �b .

Case 3: The availability of the link from �1 to �b changes the optimal choice of the
above mentioned peer π2 ∈ �2. Unlike in the previous case, π2 now prefers linking
to �c instead of �b .

Case 4: Due to the existence of a link from a peer π2 ∈ �2 to �c , the peer π1 ∈ �1
with the link to �b has an incentive to drop this link and instead use the detours via
�2 and �a to connect to �c and �b , respectively.

Case 5: In this case, the peer π1 ∈ �1 having the link to �c reduces its cost by
replacing this link with a link to a peer in �b .

Case 6: Finally, this case is similar to Case 4: π1 ∈ �1 with the link to �c has an
incentive to remove its link to �c .

These cases highlight how the system is ultimately trapped in an infinite loop of
strategy changes, without ever converging to a stable situation. There is always at
least one peer which can reduce its cost by changing its strategy. For instance, the
following sequence of topology changes could repeat forever (cf. Fig. 2): 1 � 3 �
4 � 2 � 1 � 3 . . . . In other words, selfish peers will not achieve a stable network
topology.

5.1 Decoupling α and n

In the construction above, the network size n and α are coupled: the larger the edge
cost α, the more peers are needed per cluster in order for the construction to hold.
The question is whether Nash equilibria may always exist if α is constant, whereas
n is large. We now show that there are settings without an equilibrium for arbitrary
ratios n/α, even for constant α.

Consider again the construction of Fig. 1 and let each cluster consist of one peer
only, that is, n = 5, and hence k = 1 and α = 0.6. Let us refer to this 5-peer network



Algorithmica

by N5. From Theorem 5.1, we already know that N5 does not have a pure Nash
equilibrium. For any i ∈ 1,2, . . . , we construct a network with n = 5 · i peers and
α = 0.6 by simply arranging i copies of N5 horizontally using a sufficiently large
distance between two consecutive networks. Clearly, in order to prevent infinite costs,
the different entities of N5 will be connected. Moreover, due to the distance between
the N5 networks, the rational about the edges created within N5 remains independent
of the peers outside, and there is only one peer in a given N5 connecting to another
given N5. Therefore, the proof of Theorem 5.1 holds for the individual N5s which
gives us, using α = 0.6, the following claim for our construction.

Corollary 5.2 Regardless of the magnitude of the ratio n/α, there are metric
spaces M, for which no pure Nash equilibrium exists.

Observe that for the corresponding claim with larger αs, again, single peers can
be replaced by peer clusters.

6 Complexity of Nash Equilibria

It remains to answer the question whether for a given p2p network, it can be deter-
mined if it will eventually converge to a stable state or not. In the following, we show
that it is NP-hard to decide whether there exists a pure Nash equilibrium. This result
establishes the complexity of stability in unstructured p2p networks, showing that in
general, it is computationally infeasible to determine whether a peer-to-peer network
consisting of selfish peers can stabilize or not.

Theorem 6.1 Regardless of the magnitude of α, determining whether a given p2p
network represented by a metric space M has a pure Nash equilibrium (and can
therefore stabilize) is NP-hard.

The proof being rather technical, we first describe its main intuition. The proof is
based on a reduction from an NP-complete form of the Boolean satisfiability problem
SAT which is restricted to instances with 2 or 3 variables per clause and at most 3
occurrences per variable [40]. For any α a multiple of 0.6, i.e., αk = 0.6k for an
integer k > 0, we give a polynomial time construction of a metric space Mk

I from an
instance I of SAT, such that the following holds: there exists a pure Nash equilibrium
in Mk

I if and only if I is satisfiable.
The reduction is illustrated in Fig. 3, each rectangular box representing a cluster of

k peers. Assume that the SAT instance is given in standard conjunctive normal form
(CNF). For each clause Cj , we employ a gadget of three clause-clusters �a

j , �b
j , and

�c
j . For every variable xi , the two literal-clusters �0

i and �1
i represent the negative

and positive literal of the variable, respectively. Finally, the construction’s peer set
is completed with three special clusters �c , �y , and �z. The pairwise distances
between two peers in Mk

I are determined by the graph Gk
I shown in Fig. 3 (a formal

definition appears in Sect. 6.1). Two nodes within the same cluster have a distance
of ε, for some arbitrarily small ε < (k(2n + 3m + 3))−2, where m and n denote
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Fig. 3 The graph GI for instance I = (x1 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x5)∧ (x3 ∨ x4 ∨ x5). Each
cluster contains k peers with pairwise distance ε. δ is an arbitrary constant such that δ > ε > 0

the number of clauses and variables in I , respectively. An edge of Gk
I describes the

cluster-distance between two clusters: the mutual distance between every pair of two
peers πi ∈ �i and πj ∈ �j in neighboring clusters �i and �j with cluster-distance
X is d(πi,πj ) = X. All other distances are determined by the length of the shortest
path between the peers in Gk

I , that is, Mk
I corresponds to the shortest path metric

induced by Gk
I . Note that while Mk

I cannot be embedded in the Euclidean space, it
still forms a valid metric space, i.e., it fulfils symmetry and triangle inequality.

Consider an arbitrary clause Cj . Its clause-clusters �a
j , �b

j , and �c
j in combina-

tion with the two special clusters �y and �z form an instance similar to Ik as used in
the discussion of Theorem 5.1 (cf. Fig. 1). Hence, intuitively, when considering such
a clause-gadget by itself, it does not have a pure Nash equilibrium. In order to make
a clause-gadget stable, however, literal clusters may be used. For this purpose, the
cluster-distance between each pair of corresponding literals is 1 and peers in �z have
a distance of 1.72 to all literal-peers. Furthermore, the distance between a clause-
cluster �c

j and a literal-cluster depends on whether the corresponding literal appears
in the clause. Specifically, if the positive literal xi appears in clause Cj , xi ∈ Cj ,
the distance between �1

i and �c
j is small, i.e., only 1.48. Similarly, if xi ∈ Cj , then

d(�0
i ,�

c
j ) = 1.48. And finally, if neither literal is in Cj , then there exists no short

connection between the clusters, and the shortest distance between peers in these
clusters is via �c .

The proof comprises two ingredients. First, we prove that if the underlying SAT
instance I is not satisfiable, then there exists no Nash equilibrium. Towards this end,
we show that in any Nash equilibrium two “neighboring” clusters (clusters connected
by a short link in Gk

I , such as two clause-clusters in the same clause, a literal-cluster
�1

i to a clause-cluster �c
j if xi ∈ Cj , or �c to all clause-clusters and literal-clusters,

. . . ) always establish links in both directions between them. Between such close-by
clusters, there are always exactly two links, one in each direction. Furthermore, for
every variable xi , there is exactly one peer πz ∈ �z that establishes a link to exactly
either �1

i or �0
i (but not both!), while no other peer in �z links to these clusters.
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From these lemmas, it then follows that because I is not satisfiable, there must
exist a clause Cj∗ for which the path from πz ∈ �z to peers in �c

j∗ via any literal-

peer has a length of at least d(�z,�
μ
i ) + d(�

μ
i ,�

1−μ
i ) + d(�

1−μ
i ,�c

j∗) = 4.2, for
μ ∈ {0,1}. This path being long, it follows that it is worthwhile for πz to build an
additional link directly to some peer in �c

j∗ or even in �b
j∗ instead. Based on these

observations, we show that the subset of Mk
I induced by peers in �y , �z, and the

clause-peers of Cj∗ behaves similarly as in instance Ik of Fig. 1. That is, peers in
�y and �z continue to change their respective strategies forever, thus preventing the
system from stabilizing.

On the other hand, if the SAT instance I has a satisfying assignment AI , we ex-
plicitly construct a set of pure strategies that constitute a Nash equilibrium. In this
strategy vector, one peer in �z builds a direct link to a peer in �1

i if xi is set to true
in AI and to a peer in �0

i otherwise. Since AI is a satisfying assignment, there must
exist a path from �z via a single literal-cluster (i.e., without the additional detour of
going from one literal-cluster to the other) to peers in every cluster �c

j . This path can

be shown to have length at most kε +d(�z,�
μ
i )+kε +d(�

μ
i ,�c

j )+kε = 3.2+3kε

from �z via a literal-cluster to peers in every cluster �c
j . It follows that in any sat-

isfied clause Cj , the achievable reduction in stretch costs at a peer in �z when con-
necting directly to clusters �b

j or �c
j is significantly smaller than in an unsatisfied

clause. Specifically, it can be shown that peers in �y and �z are in a stable situation
if one peer πy ∈ �y connects to �a

j and �b
j of every clause Cj , and no peer in �z

directly builds a link to any clause-peer. Since AI is a satisfying assignment, peers in
�y and �z are stable relative to all clauses in the SAT instance.

Furthermore, we also prove that in our strategy vector, no other peer in the net-
work (i.e., peers in �c , �a

j , �b
j , �c

j , �1
i , or �0

i ) has an incentive to deviate from its
strategy. For this final ingredient of the proof, the existence of cluster �c is essential,
because it ensures that all helper peers are mutually connected by optimal paths.

All in all, the p2p network induced by the metric space Mk
I has a pure Nash

equilibrium if and only if the underlying SAT instance I is satisfiable. Hence, deter-
mining whether a given p2p network can stabilize is NP-hard. Section 6.1 defines the
construction of Gk

I (and consequently Mk
I ) from the SAT instance I . In Sects. 6.2

and 6.3, we will show that there exists a Nash equilibrium in Mk
I if and only if I

is satisfiable. Theorem 6.1 then follows from Lemmas 6.12 and 6.14, as well as the
NP-hardness of SAT. The following theorem and proof is due to Tovey [40]:

Theorem 6.2 Boolean satisfiability is NP-hard when restricted to instances with 2
or 3 variables per clause and at most 3 occurrences per variable.

Proof Consider a general 3-SAT instance. For each variable x which appears in more
than three clauses perform the following procedure: suppose x appears in k clauses.
Create k new variables x1, . . . , xk and replace the ith occurrence of x with xi , i =
1, . . . , k. Append the clause {xi ∨ xi+1} for i = 1, . . . , k − 1 and the clause {xk ∨ x1}.
In the new instance the clause {xi ∨ xi+1} implies that if xi is false, xi+1 must be
false as well. The cyclic structure of the clauses therefore forces the xi to have the
same assignment, and hence the new instance is satisfiable if the original one is. As
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the transformation requires polynomial time, and as 3-SAT is NP-hard [13], the claim
follows. �

6.1 The Construction of Mk
I

Let I be an instance of SAT expressed in conjunctive normal form (CNF), in which
each clause contains 2 or 3 variables. Without loss of generality, we can assume that
each variable in I appears in at most 3 clauses [40]. Furthermore, we can restrict
our attention to those instances of SAT in which each variable appears both as a
positive and a negative literal at least once, because otherwise, assigning a feasible
value to this variable is trivial. The set of clauses and variables of I is denoted by C
and X , respectively. Further, we write m = |C| and n = |X |. Given I , we construct a
graph Gk

I = (VI ,EI ) in which each node represents a peer of the underlying network.
Nodes are grouped into clusters of k peers and each cluster is illustrated as a rectan-
gular box in Fig. 3. Within each cluster, the pairwise distance between two peers is
ε < (k(2n + 3m + 3))−2, and the distance between two peers in neighboring clusters
is given by the cluster-distance d(�i,�j ) illustrated in Fig. 3. The p2p network is
then characterized by Mk

I , which is induced by the shortest path metric of Gk
I , i.e.,

the distance between two peers corresponds to the length of the shortest path in Gk
I .

In more detail, Gk
I is defined as follows. The node-set VI consists of three clusters

of peers per clause Cj ∈ C , denoted as clause-clusters �a
j , �b

j , and �c
j . Also, we add

a pair of literal-clusters �0
i and �1

i for each of the n variables, with �1
i representing

the positive literal xi , and �0
i representing the negative literal xi . The set of clause-

peers and literal-peers is denoted by CP and LP , respectively. Finally, there are three
additional special clusters �c , �z, and �y . Call the union of �c and all clusters in
CP and LP top-layer clusters. Peers in top-layer clusters are top-layer peers. The
total number of peers N in the network Mk

I is therefore N = k(2n+ 3m+ 3). Notice
that N · ε is smaller than (k(2n + 3m + 3))−1.

The pairwise distances between the peers in different clusters—as illustrated in
Fig. 3—are as follows. Let δ be an arbitrarily small constant with δ > 10kε, and
μ ∈ {0,1}. For all πc ∈ �c and πw ∈ CP ∪ LP , it holds that d(πc,πw) = 1.2. For
every Cj ∈ C , the following distances apply.

∀πy ∈ �y,∀πa
j ∈ �a

j : d(πy,π
a
j ) = 1.96

∀πy ∈ �y,∀πc
j ∈ �c

j : d(πy,π
c
j ) = 2.45

∀πz ∈ �z,∀πb
j ∈ �b

j : d(πz,π
b
j ) = 2

∀πa
j ∈ �a

j ,∀πb
j ∈ �b

j : d(πa
j ,πb

j ) = 1.14

∀πy ∈ �y,∀πb
j ∈ �b

j : d(πy,π
b
j ) = 2

∀πz ∈ �z,∀πa
j ∈ �a

j : d(πz,π
a
j ) = 2.45

∀πz ∈ �z,∀πc
j ∈ �c

j : d(πz,π
c
j ) = 2 + δ

∀πb
j ∈ �b

j ,∀πc
j ∈ �c

j : d(πb
j ,πc

j ) = 1
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For every variable xi ∈ X , it holds that

∀π0
i ∈ �0

i ,∀π1
i ∈ �1

i : d(π0
i , π1

i ) = 1

∀πz ∈ �z,∀π
μ
i ∈ �

μ
i : d(πz,π

0
i ) = d(πz,π

1
i ) = 1.72.

Furthermore,

∀Cj ∈ C, xi ∈ Cj∀π1
i ∈ �1

i ,∀πc
j ∈ �c

j : d(π1
i , πc

j ) = 1.48

∀Cj ∈ C, xi ∈ Cj∀π0
i ∈ �0

i ,∀πc
j ∈ �c

j : d(π0
i , πc

j ) = 1.48.

Finally, the distance between any two peers πy ∈ �y and πz ∈ �z is d(πy,πz) =
1 − 2δ. All distances not explicitly defined follow from the shortest path metric in-
duced by the above definitions.

Intuitively, the idea of the construction is the following. Each clause Cj ∈ C is
represented by a gadget consisting of the two clusters �y , �z, as well as the clause-
clusters �a

j , �b
j , and �c

j . By itself, each such gadget is reminiscent of the construc-
tion shown in Fig. 1. Specifically, this implies that the sub-network induced by each
such clause-gadget does not have a pure Nash equilibrium when considered indepen-
dently from the rest of the network.

In order to render a clause-gadget stable, literal-peers can be used. In particular,
it can be shown that for μ ∈ {0,1}, the peers in every literal-cluster �

μ
i construct

links to those (at most two) clause-clusters �c
j in whose clause the literal occurs.

Based on this and other structural properties of Nash equilibria in Mk
I , it can further

be shown that in a Nash equilibrium, there is exactly one link from cluster �z to each
variable xi ∈ X , i.e., one peer in �z connects to a peer in either �0

i or �1
i for all

xi ∈ X .
Consider a clause Cj . If there is a peer πz ∈ �z that connects to at least one literal-

cluster that is directly connected to �c
j , the length of the path from πz to peers in �c

j

via this literal-cluster is at most kε +d(�z,�
μ
i )+kε +d(�

μ
i ,�c

j )+kε = 3.2+3kε.

In this case, the detour from πz to �c
j via some “satisfying” literal-cluster �

μ
i —while

being suboptimal compared to the direct connection—is relatively small. Specifi-
cally, it is small enough to ensure that no peer in �z has an incentive to construct
an additional direct link to �b

j or �c
j . Once peers in �z have no further need to

establish direct links to a clause-peer of Cj , the best possible strategy of peers in
�y becomes fixed, too. In other words, this satisfying literal helps in stabilizing the
clause-gadget.

Conversely, if there is a clause Cj for which no peer in �z connects to a satisfy-
ing literal-cluster, there exists no efficient detour. Specifically, the length of the path
from πz ∈ �z to πc

j ∈ �c
j via a literal-cluster is at least 4.2, including the distance

between the positive and negative literal-cluster of the variable. The increased length
of the detour renders the resulting stretch from �z to �c

j too large, and it becomes

worthwhile for πz ∈ �z to construct direct links to �c
j , and even to �b

j . That is, in a
sense, the network induced by the unsatisfied clause Cj becomes independent of the
remainder of the network and therefore does not stabilize.
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Finally, the special cluster �c ensures that the shortest path in Gk
I (and hence the

distance in Mk
I ) between two top-layer peers is small. In fact, it can be shown that

there are links in both directions from every top-layer cluster to �c . This implies that
all top-layer clusters are connected to one another almost optimally (i.e., with low
stretch) in every Nash equilibrium, thus facilitating the proof that such an equilibrium
exists in case I is satisfiable. We end the section with a series of lemmas that capture
structural properties of Mk

I .

Lemma 6.3 Consider two peers πg and π ′
g in an arbitrary cluster �g . In a Nash

equilibrium, there exists a path from πg to π ′
g of length at most kε.

Proof Because the distance between πg and π ′
g is ε, it is easy to see that the shortest

path between these two nodes must be located entirely in �g . Because the distance
between each pair of peers in a cluster is ε and there are k peers in the cluster, the
claim follows. �

Lemma 6.4 Consider two arbitrary clusters �g and �h. In a Nash equilibrium,
there is at most one peer πg ∈ �g that has a link to a peer in �h.

Proof Assume for contradiction that there are two nodes πg and π ′
g that maintain

links to peers in �h. Then, π ′
g can reduce its cost by dropping its link. Doing so, the

stretches to each peer in the network can increase by at most 2kε. By the definition
of ε, it holds that 2Nkε < α and hence, dropping the link is worthwhile. �

Based on these two lemmas, we can go on to prove more elaborate properties.

Lemma 6.5 Let �g and �h be two clusters with cluster distance at most d(�g,�h)

≤ 1.48. In any Nash equilibrium, there is exactly one peer πg ∈ �g that has a link to
a peer in �h.

Proof By Lemma 6.4, there cannot be more than one peer in �g having a link to �h.
It therefore remains to show that at least one link exists. We divide the proof in two
parts and begin by showing that the claim holds for all pairs of clusters with cluster
distance d(�g,�h) ≤ 1.2. In a second step, we prove the claim for pairs of clusters
with cluster distance d(�g,�h) = 1.48, which suffices because there are no cluster
distances between 1.2 and 1.48 in Gk

I .
Consider any two clusters in the network Mk

I with cluster distance at most 1.2.
It follows from the construction of Gk

I that the shortest path between peers in these
clusters via a third cluster has a length of at least 2.2 (e.g., from �0

i via �1
i to �c). In

other words, if there is no direct connection between the two clusters, πg has a stretch
of at least 2.2/1.2 to each peer in �h. Because 2.2k

1.2 > α + k(1 + 2kε), it is beneficial
for πg to establish a direct link to the other cluster.

For the second part of the proof, consider pairs of clusters with cluster distance
d(�g,�h) = 1.48. Specifically, we need to show the existence of a link in each
direction between clusters �c

j and �1
i , if xi ∈ Cj , or between �c

j and �0
i , if xi ∈ Cj .
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The shortest indirect connection between two such clusters has a length of at least 2.4
(via cluster �c) and hence, the cumulated stretch to all peers in the respective cluster
without a direct link is 2.4k

1.48 > α + k(1 + 2kε). That is, peers in both clusters decrease
their cost by paying for this direct link. �

Lemma 6.5 implies that within a clause, neighboring clause-clusters (i.e., �a
j ↔

�b
j and �b

j ↔ �c
j , respectively) are connected in both directions in any Nash equi-

librium. The same holds for corresponding literal-cluster �1
i and �0

i , as well as for
a literal-cluster �1

i (or �0
i ) and a �c

j if xi ∈ Cj (or xi ∈ Cj ). Also, there are links
in both directions from any top-layer (clause or literal) cluster to �c and vice versa.
All in all, this implies that in a Nash equilibrium, every pair of top-layer peers is
connected almost optimally, i.e., with stretch of less than 1 + 2kε. The value ε being
smaller than (k(m+n+ 3))−2, this stretch is virtually as good as 1. Finally, there are
also links between �y and �z in any Nash equilibrium. In the sequel of the proof,
we use the fact that these “short” links are available in any Nash equilibrium without
particular mention.

Lemma 6.6 In a Nash equilibrium, there is exactly one peer πy ∈ �y that has a link
to a peer in �a

j , for all Cj ∈ C , and vice versa.

Proof Consider a specific �a
j . If there exists no direct link from �y to �a

j , the stretch

of a peer πy ∈ �y to each peer in �a
j is at least 3.14

1.96 . Because for small enough ε,

we have 3.14k
1.96 > α + k(1 + 2kε), it is always worthwhile for some πy to build an

additional link to �a
j . Clearly, the argument also holds for the opposite direction. �

Lemma 6.7 Assume that there is a link between �z and at least one literal-cluster
of every variable xi ∈ X and that there is a link between �y and �a

j , for all Cj ∈ C .
Assume further that there are links in both directions between clusters with cluster
distance at most 1.48. Finally, assume that all peers are connected within their cluster
with a path of length at most kε. It holds for all j that the shortest path from a peer
πy ∈ �y to a peer in V \ (�a

j ∪ �b
j ∪ �c

j ) is not via �a
j , �b

j , or �c
j , even when

directly connecting to such a cluster. The same holds for πz ∈ �z.

Proof Recall that by assumption there exists a link from �y to �a
j (for every Cj ∈ C )

and �z. Hence, connecting to �b
j or �c

j clearly cannot reduce the stretch to peers in
�z, �c , and any �a

j ′ , j �= j ′. Furthermore, the distance in the topology to any clause-

peer in �b
j ′ and �c

j ′ via �a
j ′ is at most 3.1 + 3kε and 4.1 + 4kε, respectively, which

is strictly smaller than 2 + 2 · 1.2 = 4.4, which is the shortest achievable distance
via �b

j or �c
j . Finally, the path from πy ∈ �y to any literal-peer in �

μ
i has a length

of at most 3.72 − 2δ + 3kε. This is because there exists a link between �y and
�z, and between �0

i and �1
i , and because there is a link from �z to either �0

i or
�1

i . On the other hand, the path from πy ∈ �y to a literal-peer via �b
j or �c

j has a
length of at least 2.45 + 1.48 = 3.93. Similar arguments show that the same holds
for πz ∈ �z. �
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6.2 Satisfiable Instances

In this section, we show that if I has a satisfying assignment AI , then there exists a
Nash equilibrium in Mk

I . For this purpose, we explicitly construct a set of strategies
s, which we prove to constitute a Nash equilibrium. Let AI (xi) be the assignment of
xi in AI , i.e.,

AI (xi) :=
{

1, xi is set to 1 in AI ,

0, xi is set to 0 in AI .
(1)

Furthermore, we define in every cluster �g a single leader peer, which we denote by
π̂g . The role of this leader-peer is to construct all inter-cluster links going from this
cluster to peers located in other clusters. The strategy of the remaining non-leader
peers π̌g ∈ �g \ {π̂g} is to connect to the unique leader peer within their cluster.
Formally, the strategy sg for a non-leader peer π̌g ∈ �g \ {π̂g} is sg := {π̂g}. For each
leader-peer, we define the set of strategies s as follows:

sy := �y ∪ {π̂z} ∪
⋃

Cj ∈C
{π̂a

j , π̂b
j }

sc := �c ∪
⋃

xi∈X
{π̂0

i ∪ π̂1
i } ∪

⋃

Cj ∈C
{π̂a

j ∪ π̂b
j ∪ π̂ c

j }

sc
j := �c

j ∪ {π̂c, π̂z, π̂
b
j } ∪

⋃

x
μ
i ∈Cj

{π̂μ
i }, ∀Cj ∈ C

s
μ
i := �

μ
i ∪ {π̂c, π̂z, π̂

1−μ
i } ∪

⋃

x
μ
i ∈Cj

{π̂ c
j }, ∀xi ∈ X

sz := �z ∪ {π̂y} ∪
⋃

xi∈X
{π̂AI (xi )

i }

sa
j := �a

j ∪ {π̂c, πy, π̂
b
j }, ∀Cj ∈ C

sb
j := �b

j ∪ {π̂c, π̂
a
j , π̂ c

j }, ∀Cj ∈ C

Strategy s is illustrated in Fig. 4. Our goal is to show that s constitutes a Nash
equilibrium for AI . The topology resulting from strategy s contains all “short” links,
i.e., links between cluster leaders of clusters that have a distance of at most 1.48
(cf. Lemma 6.5). Additionally, peer π̂y builds links to clause-cluster leaders π̂a

j and

π̂b
j for all Cj ∈ C . On the other hand, leaders π̂a

j and π̂ c
j have a link to π̂y and π̂z,

respectively. Most importantly, however, for every variable xi ∈ X , leader-peer π̂z

maintains a link to the literal-peers π̂
AI (xi )
i that are used in the satisfying assignment.

Note that because in s, peer π̂z has exactly one connection to a literal-peer of every
variable, we can apply Lemma 6.7. That is, no peer in clusters �y and �z can reduce
its stretch to any peer V \ (�a

j ∪�b
j ∪�c

j ) by connecting to one of the clause-peers of
clause Cj . Finally, note that non-leaders are directly connected to their cluster leader,
and cluster leaders maintain direct links to each peer in their cluster.
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Fig. 4 An example instance Gk
I

with the topology resulting from strategy s. Within each cluster, the
peers are connected as a star. Directed arrows between clusters indicate inter-cluster links between clus-
ter-leaders. Cluster-leader π̂z connects to those leaders of literal-peers that appear in the satisfying assign-
ment AI . In the example, AI sets x1 = 0 and xn = 1

The next three lemmas prove that no peer has an incentive to single-handedly
deviate from strategy s. In the proofs, we use the notation 	i(ψ) to denote the change
in cost when peer πi changes its strategy according to action ψ , ψ being clear from
the context. Specifically, if 	i(ψ) ≥ 0, peer πi has no incentive to perform action ψ

because doing so would increase its cost.
We begin with a lemma that shows that no peer can unilaterally benefit from

changing its links within its own cluster.

Lemma 6.8 In s, no peer in an arbitrary cluster �g has an incentive to change its
strategy within the cluster, i.e., to add, replace, or remove links to peers in �g .

Proof The cluster leader π̂g cannot remove any link because the topology would
become disconnected without it. Next, consider a non-leader π̌g . If π̌g removes its
link to the cluster-leader, it disconnects itself from the network. Adding one or more
new link to a non-leader costs α per link, while the resulting stretch reduction per link
is 2ε

ε
− 1 = 1 only. Finally, replacing the link to the leader with a link to another non-

leader strictly increases the stretch to all but one peer in the network and therefore
cannot be beneficial. �

Based on Lemma 6.8, we can regard the topology within each cluster in s as fixed.
It remains to show that no peer has an incentive to add, remove, or replace its inter-
cluster links. As shown next, peers in �y cannot unilaterally reduce their costs in s.

Lemma 6.9 No peer in �y has an incentive to change its strategy, given that all
other peers follow strategy s.

Proof By Lemma 6.8, no peer πy ∈ �y has an incentive to change its intra-cluster
links. Furthermore, π̂y does not benefit from switching its link from a leader peer to
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a non-leader peer, because this would only decrease the stretch to that particular peer,
while increasing the stretch to all other peers (at least) in this cluster. It follows from
Lemmas 6.5 and 6.6 that π̂y must keep its links to π̂a

j and π̂z. We now show that no
peer in �y can reduce this cost by deviating from its strategy in any other way.

Case 1: Some π̌y or π̂y adds one or more additional links: in the topology resulting
from s, every peer in �y is connected with stretch at most 1+2ε with all peers except
from peers in �c

j (for all Cj ∈ C ) and peers in those literal-clusters to which π̂z does
not have a direct connection. With any additional link, a peer in �y can reduce its
stretch to peers in exactly one of these clusters only. Hence, every additional link
would increase the peer’s cost: 	y(+) ≥ − k(4.72+ε)

3.72 + α + k > 0.
Observe that because non-leader peers π̌y ∈ �y do not have inter-cluster links,

Case 1 in combination with Lemma 6.8 implies that no π̌y can benefit from changing
its strategy.

Case 2: π̂y changes its link from π̂b
j to π̂ c

j : while the stretch to peers in �c
j is reduced,

the stretch to peers in �b
j increases. The relative cost difference is 	y(π̂

b
j → π̂ c

j ) ≥
− k(3+ε)

2.45 + (1.96+1.14)k
2 > 0.

Case 3: π̂y removes its link from π̂b
j : by removing such a link, π̂y can save the link’s

cost α. On the other hand, the stretch to both �b
j and �c

j increase. Specifically, the

shortest connection to peers in these clusters is now via π̂a
j and π̂b

j , i.e., 	y(−π̂b
j ) ≥

−α − k(1 + ε) − k(3+ε)
2.45 + (1.96+1.14)k

2 + (1.96+1.14+1)k
2.45 > 0.

The only other thing that could potentially lead to an advantage for π̂y is to replace
a link π̂b

j by some leader peer in �
μ
i to which π̂z is not connected, formally μ �=

AI (xi). Doing so clearly increases the stretch to peers in �b
j and �c

j , but like in

Case 3, the shortest connection between π̂y to peers in �c
j is via π̂a

j and π̂b
j . In

particular, this path has a length of at most 4.1 + ε, whereas the shortest path via a
literal-cluster has a length of at least 1−2δ +1.72+1.48 = 4.2−2δ, which is larger.
Hence, replacing one or more links to π̂b

j by links to literal-peers reduces to Cases 1
and 3, respectively, and therefore cannot be worthwhile. Finally, no combination of
the above cases can reduce the cost of any peer in �y either. �

Lemma 6.10 No peer in �z has an incentive to change its strategy, given that all
other peers follow strategy s.

Proof Again, we discuss the various cases and show that none of them is beneficial
for a peer in �z. Recall that by Lemma 6.7, connecting to any clause-peer cannot
improve the stretch to any other peer outside this clause. Furthermore, because AI

is a satisfying assignment, the topology of s contains a path of length at most ε +
d(�z,�

μ
i ) + d(�

μ
i ,�c

j ) + ε = 3.2 + 2ε between peers in �z and peers in �c
j , for

every clause Cj ∈ C . Consequently, connecting to a so far unconnected literal-peer
cannot decrease the stretch to any clause-peer πj ∈ CP in the system.

It follows from Lemma 6.8 that no peer πz ∈ �z has an incentive to change its
intra-cluster links. Also, as shown in the proof of Lemma 6.9, no peer can benefit
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from connecting to a non-leader peer in the network, because this bears strictly higher
costs than connecting to the corresponding leader peer of the same cluster. Hence, we
only need to verify the cases in which peers in �z connect to leader peers.

In the following, we will discuss the various cases how peers in �z could improve
their situation and derive that none of them is actually beneficial.

Case 1: Some peer in �z adds an additional link to π̂b
j : the reduction of the stretches

to peers in �b
j and �c

j resulting from the additional link does not outweigh the link’s

cost. Specifically, we have 	z(+π̂b
j ) ≥ − k(3−2δ+2ε)

2 + k − k(3.2+2ε)
2+δ

+ 3k
2+δ

+ α ≥
k(4δ + 2δ2) > 0. Notice that in the second term, the stretch to each of the k peers in
�b

j is at least 1, and in the third term, the distance 3.2 + 2ε holds because AI is a
satisfying assignment.

Case 2: Some peer in �z adds an additional link to π̂ c
j : again, the stretches to �b

j

and �c
j are not reduced enough to render the additional link worthwhile. In fact, the

stretch to peers in �b
j is not reduced by the addition of this link, nor is the stretch to

any other peer in the network except from peers in �c
j (Lemma 6.7). It follows that

	z(+π̂ c
j ) ≥ − k(3.2+2ε)

2+δ
+ k + α = k(1.6δ − 2ε) > 0.

Case 3: Some peer in �z adds an additional link to π̂a
j : clearly, this option is even

worse than Cases 1 and 2.

Case 4: Some peer in �z adds an additional link to π̂
μ
i : adding a link to a literal-

cluster that is not used in AI reduces the stretch to peers in this cluster only, because
there is already a short connection from �z to every �c

j through the literal-clusters

�
AI (xi )
i . Hence, 	z(+π̂

μ
i ) ≥ − k(2.72+2ε)

1.72 + k + α > 0.
Observe that because non-leader peers π̌z ∈ �z do not have inter-cluster links,

Cases 1 to 4 in combination with Lemma 6.8 implies that no π̌z can benefit from
changing its strategy.

Case 5: π̂z replaces some π̂
AI (xi )
i by π̂

1−AI (xi )
i : again, the new link to a previously

unconnected literal-cluster cannot decrease the stretch to any clause-peer, because AI

is a satisfying assignment and π̂z already had a path of length 3.2 to every π̂ c
j via some

π̂
AI (xi )
i . Furthermore, by a symmetry argument, the stretch cost gained by adding

the link to π̂
1−AI (xi )
i is lost by removing the link to π̂

AI (xi )
i . Thus, 	y(π̂

AI (xi )
i →

π̂
1−AI (xi )
i ) ≥ 0.

Case 6: π̂z removes or replaces some π̂
AI (xi )
i : if π̂z does not have a connection to any

literal-cluster of a variable xi , the resulting stretch to each peer in these two clusters is
at least 3+δ+1.48

1.72 . Because k(4.48+δ)
1.72 > k(1+2ε)+α, it follows that π̂z must maintain

at least one link to such a peer.
Any other possible strategy deviation can either be reduced to one of the above

five cases or to Lemma 6.5. �

Having shown that peers in �y and �z have no incentive to deviate from s, we
have to prove that no other peer can improve its situation either.
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Lemma 6.11 No top-layer peer can benefit from changing its strategy, given that all
other peers follow s.

Proof First, by Lemma 6.8, it holds that no peer can improve its situation by adding,
replacing, or removing a link within its cluster. Also, no peer can benefit from con-
necting to a non-leader, as opposed to the leader peer in the same cluster. Both claims
can be proven with exactly the same argument as in the proof of Lemma 6.9.

It is important to observe that in s, all top-layer peers are almost optimally con-
nected with each other, either via the central cluster �c or because their respective
clusters are neighbors in the graph. More specifically, the stretch between any pair of
top-layer peers in s is at most 1 + 2ε (via the own cluster leader, π̂c, and the other
cluster leader). Besides removing the final 2ε from these small stretches, adding ad-
ditional links can only help in reducing the stretches to peers in �y and �z. By
Lemma 6.5, no link between cluster leaders whose clusters have a distance of less
than 1.48 can be removed from s. Hence, the possible strategy deviations by other
nodes is actually limited.

Peers in �a
j : A peer π̂a

j ’s link to π̂y cannot be removed by Lemma 6.6. For every
peer πa

j ∈ �a
j , it further holds that building an additional link to π̂z is too costly,

	a
j (+π̂z) ≥ − k(2.96−2δ+2ε)

2.45 +k+α > 2kNε. Hence, even if this additional link could
reduce all other less than N stretches to top-level peers by the remaining 2ε, the cost
of an additional link would still be too high.

Peers in �b
j : Peer π̂b

j does not have a link longer than 1.48 in s and hence,
cannot remove any of them. We show that neither building a link to π̂y nor to
π̂z decreases the cost of any peer in �b

j . In the first case, we have 	b
j (+π̂y) ≥

− k(1.96+1.14+2ε)
2 + k − k(3+δ+2ε)

2 + k(3−2δ)
2 + α > 2kNε. As for the second case,

	b
j (+π̂z) ≥ − k(1.96+1.14+2ε)

2 + k(3−2δ)
2 − k(3+δ+2ε)

2 + k + α > 2kNε. Clearly, build-
ing both links is even less worthwhile.

Peers in �c
j : The potential strategy deviations that could decrease peer π̂ c

j ’s costs
are to add a link to π̂y , to remove its link from π̂z, or to replace the link to π̂z by
a link to π̂y . However, none of these alterations are beneficial for π̂ c

j (or for any
non-leader peer in �c

j in the case of link addition). First, it holds that 	c
j (+π̂y) ≥

− k(3−δ+2ε)
2.45 + k + α > 2kNε and 	c

j (−π̂z) ≥ −α − k(1 + 2ε) − k(3−δ+2ε)
2.45 + 3.2k

2+δ
+

4.1k
2.45 > 2kNε. Also, switching the link from π̂z to π̂y is not helpful, 	c

j (π̂z→π̂y) ≥
3.2k
2+δ

− k(3−δ+2ε)
2.45 > 2kNε.

Peers in �
μ
i : Each leader of a literal-cluster maintains a link to π̂z, and we show that

they (as well as any non-leader peer in these clusters) do not have an incentive to
change that strategy. It is clear that neither adding a link to π̂y nor switching from
π̂z to π̂y can be beneficial. In the first case, the stretch is reduced by at most 2ε by
the additional link, which does not render the link cost α worthwhile. In the second
case, the stretch is strictly increased. If π̂

μ
i removes its link to π̂z and connects via its

neighboring literal-cluster, the stretches to both �y and �z increase. Particularly, we
have 	

μ
i (−π̂z) ≥ −α − k(1 + 2ε) + 2.72k

1.72 + k(3.72−2δ)
2.72−2δ

> 2kNε.
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Peers in �c: Finally, peers in �c are connected with stretch at most 2ε to all peers in
the network. To top-clusters, the connection is via links shorter than 1.48. As for the
remaining two clusters, it is connected to π̂z via one of the literal-clusters and to π̂y

via some π̂a
j . By the definition of ε and α, it is clear that no peer in �c can improve

its strategy. �

By combining Lemmas 6.9, 6.10, and 6.11, we know that no peer in the network
has an incentive to change its strategy. Hence, s constitutes a pure Nash equilibrium.

Lemma 6.12 If I is satisfiable, there exists a pure Nash equilibrium in Mk
I .

6.3 Non-satisfiable Instances

It remains to prove the other direction, that is, there exists no pure Nash equilibrium
in the network if the underlying SAT instance I has no satisfying assignment. We
proceed by defining structural properties that any Nash equilibrium must fulfil, and
show that the intersection of all these properties is empty. Besides the basic properties
derived in Sect. 6.1, an important characteristic of any Nash equilibrium is the fact
that exactly one peer in �z connects to exactly one literal-peer (either in �0

i or �1
i )

for every variable xi ∈ X .

Lemma 6.13 In any Nash equilibrium, exactly one peer in �z connects to either a
peer π1

i ∈ �1
i or π0

i ∈ �0
i , for every xi ∈ X .

Proof We have already shown in Lemma 6.10 (Case 6) that there must be a peer
πz ∈ �z that has at least one link to a literal-peer of every variable. Furthermore, we
know by Lemma 6.4 that no other peer in �z connects to the same cluster as πz.
Hence, we only need to show that in a Nash equilibrium no two peers in �z connect
to both literal-clusters of the same variable.

Assume for the sake of contradiction that peers πz and π ′
z (potentially πz = π ′

z)
maintain links to both �0

i and �1
i for some xi ∈ X . In this case, it would be worth-

while for one of the two peers to remove its link and replace it with a link to some peer
in �c

j if this link does not already exist. By the definition of our special SAT instance

and the construction of GI , we know that of the two literal-clusters, one, say �
μ
i , has

clause-cluster �c
j at distance 1.48, and the other literal-cluster, say �

1−μ
i , has one

or two such close-by clause-clusters. Let π ′
z be the peer that connects to cluster �

μ
i

(otherwise, replace πz with π ′
z for the remainder of the proof).

Assume for the first case that the length of the shortest path from π ′
z to this

�c
j without the link via �

μ
i is 3.2 or longer. In this case, the change in π ′

z’s costs

when switching from its link to literal-cluster �
μ
i that has only a single close-by

clause-cluster �c
j directly to a peer in �c

j is 	z(π
μ
i →πc

j ) ≤ + k(2.72+2kε)
1.72 − 3.2k

2+δ
+

k(2+δ+2kε)
2+δ

< 0. If the length of the path from πz to �c
j is strictly shorter than 3.2,

then the link to �
μ
i can simply be dropped, resulting in a gain of 	z(−π

μ
i ) ≤

−α − k + k(1.72+2kε)
1.72 + k(2.72+2kε)

1.72 < 0. Hence, π ′
z is always better off not connect-

ing to a literal-cluster if πz already connects to a literal-cluster. From this, the claim
follows. �
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Lemma 6.13 is an important ingredient for the remainder of the proof, because
it gives us a one-to-one correspondence between the connections of �z to literal-
clusters, and an assignment of variables in the SAT instance I . Also, note that when
combining Lemma 6.13 with Lemma 6.7, it follows that in a Nash equilibrium, peers
in �y and �z cannot reduce their stretch to any peer in V \ {�a

j ∪ �b
j ∪ �c

j } by
connecting to one of the clause-peers of clause Cj .

Lemma 6.14 If I is non-satisfiable, there exists no pure Nash equilibrium in Mk
I .

Proof By Lemma 6.13, exactly one peer in �z connects to either the positive or
negative literal-cluster of every variable xi . Because there exists no satisfying assign-
ment, it follows that regardless of how �z is connected to the literal-clusters, there
must exist at least one clause Cj∗ that is “not satisfied”. In the resulting topology,
this means that the path from a peer in �z to a clause-peer in �c

j∗ of this unsatisfied

clause via any literal-cluster must be of length at least d(�z,�
μ
i ) + d(�

μ
i ,�

1−μ
i ) +

d(�
1−μ
i ,�c

j∗) = 4.2. Particularly, every such path must include the additional dis-

tance of 1 between x1
i and x0

i . In the sequel, we consider this unsatisfied clause Cj∗
in more detail.

First, we show that in a Nash equilibrium, no peer πy ∈ �y establishes a link to
�c

j∗ . We distinguish two cases. In the first case, if some peer in �y already has a link

to �b
j∗ , then the cost reduction for πy when omitting its link to �c

j∗ is 	y(−πc
j∗) ≤

−α − k + k(3+2kε)
2.45 < 0. In the other case, the cost reduction when switching the link

from �c
j∗ to a peer in �b

j∗ is at least 	y(π
c
j∗ →πb

j∗) ≤ − k(3−2δ)
2 + k(3+2kε)

2.45 < 0. That
is, in either case it is beneficial for πy not to connect directly to �c

j∗ .
For the next step, we establish that in any Nash equilibrium, exactly one peer

πz ∈ �z connects to either a peer in �b
j∗ or in �c

j∗ . To see this, assume that no peer
in �z establishes any links to peers in the two clusters. In this case (because there is
no link from �y to �c

j∗ , and because Cj∗ is not satisfied), the sum of the stretches to

peers in �c
j∗ is at least k(4−2δ)

2+δ
> k(1 + 2kε)+α. That is, πz ∈ �z can reduce its cost

by connecting to πc
j∗ .

It remains to show that no peer in �z connects to �a
j∗ , and particularly, that no

two peers in �z simultaneously connect to both �b
j∗ or �c

j∗ . Because there is at least

one link from �z to either �b
j∗ or �c

j∗ , it follows that a link to �a
j∗ can only reduce

the stretch to peers in this particular cluster. However, the incurred cost exceeds the
savings due to the reduced stretch, i.e., 	z(+πa

j∗) = − k(2.96−2δ+2kε)
2.45 + α + k > 0.

For the last case, assume that two peers πz and π ′
z (potentially the same) connect to

both �b
j∗ and �c

j∗ , respectively. Then, π ′
z has an incentive to drop its link to �c

j∗ :

	z(−πc
j∗) = k(3+2kε)

2+δ
− k − α < 0. Hence, in any Nash equilibrium, there is exactly

one link from �z to either �b
j∗ or �c

j∗ , but not to both.
Studying the above rules, it can be observed that there remain only four possible

sets of strategies for peers in �y and �z that could potentially result in a pure Nash
equilibrium. The four cases can be distinguished by whether or not a peer in �y

directly connects to �b
j∗ , and by whether a peer in �z connects to �b

j∗ or �c
j∗ .
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Case 1: Some peer πz ∈ �z connects to πb
j∗ : in this case, some peer πy ∈ �y has

an incentive to add a link to a peer in �b
j∗ , because this significantly reduces its

stretches to peers in �b
j∗ and �c

j∗ . Specifically, πy could reduce its cost by at least

	y(+πb
j∗) ≤ − k(3−2δ)

2 − k(4−2δ)
2.45 + α + k(1 + 2kε) + k(3+2kε)

2.45 < 0.

Case 2: Peers πz ∈ �z and πy ∈ �y connect to �b
j∗ : in this case, the peer πz can

profit from switching its link to a peer in �c
j∗ . Specifically, 	z(π

b
j∗ →πc

j∗) ≤ − 3k
2+δ

+
k(3−2δ+2kε)

2 < 0.

Case 3: Some peer πz ∈ �z connects to �c
j∗ : unlike in the previous case, πz prefers

switching its link from �c
j∗ to a peer in �b

j∗ in the absence of a link from �y to

�b
j∗ . By doing so, it can reduce its cost by 	z(π

c
j∗ →πb

j∗) ≤ k(3+2kε)
2+δ

− k(3+δ)
2 =

k(−5δ − δ2 + 4kε) < 0.

Case 4: Some peer πz ∈ �z connects to �c
j∗ and some peer πy ∈ �y connects to �b

j∗ :

in this configuration, peer πy benefits from removing its link to �b
j∗ . The decrease of

its costs is 	y(−πb
j∗) < −α − k + k(3.1+2kε)

2 < 0.

Finally, since none of these four cases is a Nash equilibrium, the proof is con-
cluded. �

7 Conclusion

The analysis of our locality game reveals that the efficiency of p2p topologies can
suffer if peers act selfishly. Already in a simple 5-peer network, no equilibrium may
exist. Moreover, our results indicate that topologies may degrade more severely when
selfish peers value maintenance cost relatively higher than latency costs. Finally, it
has been shown that it is generally a hard problem to decide whether a p2p system
can stabilize if peers select their neighbors in a selfish manner.

7.1 Practical Issues and Future Directions

The main contributions of this paper are rather theoretic in nature, however, we be-
lieve that our model indeed the main trade-offs that might govern selfish peers’ de-
cisions. We have gained some experience with selfish behavior by collecting data in
the popular BitTorrent network (using our own client BitThief [26]) which provides
evidence—merely by counting the number of users that actually use BitThief every
day—that peers are indeed selfish. Unfortunately, the collected data cannot directly
be used to derive scientific statements about topological structures, as in BitTorrent,
peers learn about new neighbors by recontacting a so-called tracker. However, our
measurements indicate that peers are indeed willing to accept large degrees and con-
nect to many other peers if this improves the download speed (up to 500 TCP con-
nections do not cause any performance loss). Thus, in a file-sharing swarm, peers
tend to have relatively small αs. Gnutella would be an interesting network for a more
detailed measurement study to verify our results. While we expect that some of our
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insights can be confirmed, it may turn out that different forms of “rationality” may
appear on the level of different client versions rather than on the level of individual
users. This line of research is left for future work.

7.2 Open Theoretical Problems

Many theoretic questions are left for future research as well. For instance, we un-
derstand that the NP-hardness construction makes use of network topologies that are
most unlikely to occur in practice. Whether unique Nash equilibria exist for the net-
works we observe in practice today and whether these equilibria can be computed
in polynomial time remains an open question. It would also be interesting to know
whether incentive mechanisms can be designed such that the resulting topologies
have desirable properties, e.g., are hypercubic or pancake networks. Some of our as-
sumptions should also be weakened; e.g., a peer may not have complete knowledge
of the other peers’ states. Finally, we have not investigated how optimal topologies
(with respect to our social cost function) can be computed, and approximate or mixed
Nash equilibria have not been considered yet either.

References

1. Abraham, I., Malkhi, D., Dobzinski, O.: LAND: Stretch (1 + e) locality aware networks for DHTs.
In: Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 550–559 (2004)

2. Abraham, I., Badola, A., Bickson, D., Malkhi, D., Maloo, S., Ron, S.: Practical locality-awareness for
large scale information sharing. In: Proc. 4th Int. Workshop on Peer-to-Peer Systems (IPTPS) (2005)

3. Adar, E., Huberman, B.A.: Free riding on Gnutella. First Monday 5(10) (2000)
4. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria for a network creation

game. In: Proc. 17th ACM Symposium on Discrete Algorithms (SODA) (2006)
5. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of

stability for network design with fair cost allocation. In: Proc. 45th Symposium on Foundations of
Computer Science (FOCS), pp. 295–304 (2004)

6. Austen, I.: Like a swerving commuter, a selfish router slows traffic. The New York Times (2003)
7. Axelrod, R.: The evolution of cooperation. Science 211(4489), 1390–1396 (1981)
8. Bharambe, A.R., Herley, C., Padmanabhan, V.N.: Analyzing and improving a BitTorrent network’s

performance mechanisms. In: Proc. IEEE Conference on Computer Communications (INFOCOM),
pp. 36–46 (2006)

9. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling metrics. In:
Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 762–771 (2005)

10. Chen, H.-L., Roughgarden, T.: Network design with weighted players. In: Proc. 18th ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA), pp. 29–38 (2006)

11. Cohen, B.: Incentives build robustness in BitTorrent. In: Proc. 1st Workshop on Economics of Peer-
to-Peer Systems (P2PEcon) (2003)

12. Cole, R., Dodis, Y., Roughgarden, T.: How much can taxes help selfish routing? J. Comput. Syst. Sci.
72(3), 444–467 (2006)

13. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd ACM Symposium on The-
ory of Computing (STOC), pp. 151–158 (1971)

14. Corbo, J., Parkes, D.C.: The price of selfish behavior in bilateral network formation. In: Proc. 24th
ACM Symposium on Principles of Distributed Computing (PODC), pp. 99–107 (2005)

15. Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Zadimoghaddam, M.: On the topologies formed by
selfish peers. In: Proc. 26th Annual Symposium on Principles of Distributed Computing (PODC)
(2007)

16. Demaine, E.D., Hajiaghayi, M., Mahini, H., Zadimoghaddam, M.: The price of anarchy in cooperative
network creation games. In: Proc. 26th International Symposium on Theoretical Aspects of Computer
Science (STACS) (2009)



Algorithmica

17. Eidenbenz, S., Kumar, V., Zust, S.: Equilibria in topology control games for ad hoc networks. In:
Proc. ACM Joint Workshop on Foundations of Mobile Computing (DIALM-POMC) (2003)

18. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network creation game.
In: Proc. 22nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 347–351
(2003)

19. Feldman, M., Chuang, J.: Overcoming free-riding behavior in peer-to-peer systems. ACM Sigecom
Exch. 6 (2005)

20. Ganesan, P., Seshadri, M.: On cooperative content distribution and the price of barter. In: Proc. 25th
IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 81–90 (2005)

21. Garcia, F.D., Hoepman, J.-H.: Off-line karma: A decentralized currency for peer-to-peer and grid
applications. In: Proc. 3rd Applied Cryptography and Network Security (ACNS)

22. Grolimund, D., Meisser, L., Schmid, S., Wattenhofer, R.: Havelaar: A robust and efficient reputa-
tion system for active peer-to-peer systems. In: Proc. 1st Workshop on the Economics of Networked
Systems (NetEcon), June 2006

23. Hughes, D., Coulson, G., Walkerdine, J.: Free riding on Gnutella revisited: The bell tolls? IEEE
Distrib. Syst. Online 6(6) (2005)

24. Jun, S., Ahamad, M.: Incentives in BitTorrent induce free riding. In: Proc. 3rd ACM SIGCOMM
Workshop on Economics of Peer-to-Peer Systems (P2PEcon) (2005)

25. Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics. In: Proc. 34th ACM
Symposium on Theory of Computing (STOC), pp. 741–750 (2002)

26. Locher, T., Moor, P., Schmid, S., Wattenhofer, R.: Free riding in BitTorrent is cheap. In: Proc. 5th
Workshop on Hot Topics in Networks (HotNets) (2006)

27. Moscibroda, T., Schmid, S., Wattenhofer, R.: On the topologies formed by selfish peers. In: Proc. 5th
International Workshop on Peer-to-Peer Systems (IPTPS) (2006)

28. Moscibroda, T., Schmid, S., Wattenhofer, R.: On the topologies formed by selfish peers. In: Proc. 25th
Annual Symposium on Principles of Distributed Computing (PODC) (2006)

29. Odlyzko, A.M.: The case against micropayments. In: Financial Cryptography, pp. 77–83 (2003)
30. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (2000)
31. Papadimitriou, C.H.: Algorithms, games, and the Internet. In: Proc. 33rd ACM Symposium on Theory

of Computing (STOC), pp. 749–753 (2001)
32. Plaxton, C., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated objects in a distributed

environment. In: Proc. 9th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp.
311–320 (1997)

33. Qiu, D., Srikant, R.: Modeling and performance analysis of BitTorrent-like peer-to-peer systems. In:
Proc. ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (2004)

34. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)
35. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49(2) (2002)
36. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for large-scale

peer-to-peer systems. In: Proc. IFIP/ACM Int. Conference on Distributed Systems Platforms (Mid-
dleware), pp. 329–350 (2001)

37. Sanghavi, S., Hajek, B.: A new mechanism for the free-rider problem. In: Proc. 3rd ACM SIGCOMM
Workshop on Economics of Peer-to-Peer Systems (P2PEcon) (2005)

38. Shneidman, J., Parkes, D.C.: Rationality and self-interest in peer to peer networks. In: Proc. 2nd Int.
Workshop on Peer-to-Peer Systems (IPTPS) (2003)

39. Tamilmani, K., Pai, V., Mohr, A.: SWIFT: A system with incentives for trading. In: Proc. 2nd Work-
shop on Economics of Peer-to-Peer Systems (P2PEcon) (2004)

40. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8, 85–89 (1984)
41. Vishnumurthy, V., Chandrakumar, S., Sirer, E.G.: KARMA: A secure economic framework for P2P

resource sharing. In: Proc. 1st Workshop on Economics of Peer-to-Peer Systems (P2PEcon) (2003)
42. Wang, W., Li, B.: Market-driven bandwidth allocation in selfish overlay networks. In: Proc. IEEE

Conference on Computer Communications (INFOCOM), pp. 36–46 (2005)
43. Wong, B., Slivkins, A., Sirer, E.G.: Meridian: A lightweight network location service without virtual

coordinates. In: Proc. ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (2005)

44. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry: A resilient
global-scale overlay for service deployment. IEEE J. Sel. Areas Commun. (2003)


	Topological Implications of Selfish Neighbor Selection in Unstructured Peer-to-Peer Networks
	Abstract
	Introduction
	A P2P Network Creation Game
	Related Work
	Price of Anarchy
	Upper Bound
	Lower Bound

	Existence of Nash Equilibria
	Decoupling alpha and n

	Complexity of Nash Equilibria
	The Construction of MIk
	Satisfiable Instances
	Non-satisfiable Instances

	Conclusion
	Practical Issues and Future Directions
	Open Theoretical Problems

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


