
Fundamenta Informaticae 110 (2011) 1–21 1

DOI 10.3233/FI-2011-608

IOS Press

eDonkey & eMule’s Kad: Measurements & Attacks

Thomas Locher

IBM Research, Zurich, Switzerland

thl@zurich.ibm.com

Stefan Schmid∗

T-Labs & TU Berlin, Berlin, Germany

stefan@net.t-labs.tu-berlin.de

Roger Wattenhofer

ETH Zurich, Zurich, Switzerland

wattenhofer@ethz.ch

Abstract. This article reports on the results of our measurement studyof the Kad network. Al-
though several fully decentralized peer-to-peer systems have been proposed in the literature, most
existing systems still employ a centralized architecture.The Kad network is a notable exception.
Since the demise of the Overnet network, the Kad network has become the most popular peer-to-
peer system based on a distributed hash table. It is likely that its user base will continue to grow in
numbers over the next few years due to the system’s scalability and reliability.

The contribution of the article is twofold. First, we compare the two networks accessed by eMule:
the centralized paradigm of the eDonkey network and the structured, distributed approach pursued by
the Kad network. We re-engineer the eDonkey server softwareand integrate two modified servers
into the eDonkey network in order to monitor traffic. Additionally, we implement a Kad client
exploiting a design weakness to spy on the traffic at arbitrary locations in the ID space. The collected
data provides insights into the spacial and temporal distributions of the peers’ activity. Moreover, it
allows us to study the searched content. The article also discusses problems related to the collection
of such data sets and investigates techniques to verify the representativeness of the measured data.

Second, this article shows that today’s Kad network can be attacked in several ways. Our simple
attacks could be used either to hamper the correct functioning of the network itself, to censor content,
or to harm other entities in the Internet not participating in the Kad network, such as ordinary web

∗Address for correspondence: Ernst Reuter Platz 7 (TEL 16), D- 10587 Berlin, Germany



2 S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks

servers. While there are heuristics to improve the robustness of Kad, we believe that the attacks
cannot be thwarted easily in a fully decentralized peer-to-peer system, i.e., without some kind of a
centralized certification and verification authority. Thisresult may be relevant in the context of the
current debate on the design of a clean-slate network architecture for the Internet which is based on
concepts known from the peer-to-peer paradigm.

Keywords: Peer-to-Peer, Robustness, Measurements, Distributed Systems, eMule, Kademlia, Fu-
ture Internet Architecture

1. Introduction

Today’s peer-to-peer (p2p) networks come in different flavors. On the one hand, there are completely
decentralized systems such as theKad network which is based on adistributed hash table(DHT) where
both the task of indexing the content and the content itself is distributed among the peers.1 Other systems
still rely on centralized entities, e.g., a cluster of servers takes care of the data indexing in theeDonkey
network, or so-called trackers organize the peers inBitTorrent swarms. A server-based solution has
the advantage that it is easier to implement and that it worksreliably as long as the servers function
correctly. Clearly, the downside of this approach is that the servers can only sustain a certain number
of peers, implying that the scalability is limited and that an overload of concurrent requests can cause a
system failure. Purely decentralized systems do not dependon the availability of any particular entity;
however, such systems often demand larger contributions from all participants.

This article examines popular representatives of the two network types: the server-basedeDonkey
and the decentralizedKad network. eDonkey is one of the largest p2p networks in use today; millions
of users around the planet use it to share various types of multimedia contents. While there are other
clients to gain access to the eDonkey network, by far the mostpopular client iseMule.2 Additionally,
eMule allows its users to connect to theKad network. This network, which is based onKademlia[16],
is currently the most popular distributed hash table (apartfrom theMainline DHT and theAzureus DHT
which are used by BitTorrent as trackers for peer discovery).

In order to investigate various properties of eDonkey and Kad, we collected large amounts of data
from both networks (mostly in 2007). For this purpose, we reverse-engineered the eDonkey server
software and published two own servers which successfully attracted a considerable amount of traffic
despite the fact that our servers never returned any real content. For our Kad tests, we implemented a
client that is capable of spying on the traffic at any desired position in the ID space. Section3 describes
the setup of our measurement infrastructure.

Section4 reports on our measurement results. We are particularly interested in the user behavior
in both networks. In this article, in contrast to other literature, we monitor the actual user requests and
ignore automated requests which occur without any user intervention. Our measurements show that the
temporal request distributions of the two networks are verysimilar, exhibiting a high activity in the early
evening with high loads at the eDonkey servers or at the peershosting popular files in Kad. We also
found that both networks are predominantly used in Europeancountries, but there are also many active
users from Israel, China, Brazil, and the United States. Section 4 also investigates the content shared in

1Unstructured decentralized systems such asGnutellaare not considered in this study.
2See http://www.emule-project.net/.



S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks 3

the two systems. For example, we find that popular content in the eDonkey world is often also popular in
Kad, and that eDonkey follows the popularity trends of the real world. In general, our results indicate that
peer activity results in eDonkey directly carry over to the Kad network and vice versa. This observation
is not self-evident, given that we analyze only user-generated events. In Section5, we raise the question
of the representativeness of the collected data. In the Kad network, accurate data on the activity of a
specific file can be obtained, but due to the distributed nature of the DHT, it is inherently difficult to
compute global aggregates such as the most active file in the network. On the other hand, in the eDonkey
network, a server receives queries for virtually all keywords, but it has to compete against other servers
for the requests. If only a minor fraction of the traffic arrived at our servers or if the servers to be queried
were selected with respect to specific properties such as latency, the data could become biased. We will
provide evidence that there is no critical bias in our measurements.

Subsequently, in Section6 we question whether the p2p approach is mature enough to stepoutside
of its “comfort zone” of file sharing and related applications. In particular, not much is known about
the ability of DHTs to meet critical security requirements (as those required nowadays, e.g., for domain
name servers) and its ability to withstand attacks. To this end, as a case study, we evaluate the feasibility
of various attacks in the Kad network. Our study reveals thatwhile the Kad network functions reliably
under normal operation, today’s Kad network has several critical vulnerabilities, despite ongoing efforts
on the developers’ part to prevent fraudulant and destructive use. This article describes several protocol
exploits which prevent peers from accessing particular files in the system. In order to obstruct access
to specific files, file requests can be hijacked, and subsequently, arbitrary information can be returned
instead of the actual data. Alternatively, we show that publishing peers can be overwhelmed with bogus
information such that pointers to the original files can no longer be accessed. Moreover, it is even possible
to eclipsecertain peers, i.e., to fill up their routing tables with information about malicious peers, which
can subsequently intercept all messages. Additionally, webriefly discuss how our network poisoning
attacks can also be used to harm machines outside the Kad network, e.g. web servers, by tricking the
peers into performing a Kad-steered distributed denial of service (DDoS) attack. It is virtually impossible
to determine the true culprit in this scenario, as the initiating peer does not take part in the attack.

All our attacks have been tested on the real Kad network usinga modified C++ eMule client. Al-
ready with three attackers, virtually no peer in the system was able to find content associated with any
given keyword for several hours, which demonstrates that with moderate computational resources, access
to any targeted content can be undermined easily.

2. Related Work

Measurement studies are an important means to gain deeper insights into the working of distributed
systems. While theoretic models allow researchers to reason formally about a system’s behavior and to
prove its properties, such models are often simplificationsand may not reflect reality well. For more
complex systems,in silico experiments are conducted, desirably for as many points in the parameter
space as possible. However, although such simulations—andalso experiments on PlanetLab [11]—can
provide additional confidence in a system’s performance, itis not until the real deployment when the
system properties become clear.

There exist many measurement results for various p2p systems today. Saroiu et al. [19] have analyzed
several characteristics such as the bottleneck bandwidthsof the peers participating in Gnutella and Nap-



4 S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks

ster. Adar et al. [1] have investigated the contributions of the Gnutella users. An important algorithmic
challenge in p2p computing is understanding churn, and hence traces of membership changes in the sys-
tems deployed today [23] have been collected. There is also a community aiming at reverse-engineering
closed-source projects such as Skype by studying the trafficpatterns [10].

We have decided to study the eDonkey and the Kad networks as they are two of the largest p2p
networks in use today, and as there is not much literature on these networks. Interesting results on the
Kad networkhave been obtained by Biersack, Steiner, and others in [6, 24, 25, 26]. For instance, in [25],
possible misuses of the protocol are discussed. Stutzbach et al. [28] describe implementation details of
Kad in eMule, and [27] presents crawling results on the behavior of Kad peers. Themost related work to
our study of the Kad network is due to Steiner, Biersack and En-Najjary [23]. The authors have crawled
the Kad network during several weeks and found, e.g., that different classes of participating peers exist
inside the network. In contrast to their work which has studied the churn induced by the peers’ joins
and leaves, our focus is on the peeractivity while the peers are online, which we measure by monitoring
the lookups. As stated in [23], peer IDs can change frequently, even as often as once per download
session while other IDs remain in the network for several weeks. Due to these conditions and the fact
that several peers might share the same IP address, it is hardto draw any conclusions about peer behavior
when monitoring the peer IDs and the IP addresses in the network. Since keyword lookups are hardly
automated, observing lookups is the best and presumably theonly way to get insights into the activities
of users in such networks. To the best of our knowledge, this is the first peer activity study by means
of monitoring lookup requests in distributed networks. It is also the first study to take both server-based
and decentralized systems into account.

The immense computational resources of p2p networks are also attractive to attackers, and there is
already a large body of literature on the subject [7, 30].3 Reasons to attack a p2p system can be manifold:
For example, a peer may seek to perform a more or less passive “rational attack” [18] to be able to benefit
from the system without contributing any resources itself [1, 13]. While such selfishness can threaten a
peer-to-peer system, which essentially relies on the participant’s contributions, there are more malicious
attacks seeking to harm the system directly. An attacker may, for example, strive to partition the system
or to eclipse individual nodes. Theeclipse attack[21], as also described in this work, can be used by a set
of malicious peers to position themselves around a given peer in the network such that the peer’s contact
list consists only of the colluding peers. In aSybil attack[9], a single entity creates multiple entities
of itself in order to gain control over a certain fraction of the system. Such an attack can undermine
redundancy mechanisms and is hard to counter in a completelydecentralized environment. Attackers
may also exploit a peer-to-peer system to efficiently spreada worm [31]. Furthermore, the resources of
a p2p system may also be used to attackany machine connected to the Internet regardless of whether
it is part of the peer-to-peer network or not. Adenial of service attackcan be launched in various p2p
systems, e.g., Gnutella [2], Overnet [17], and BitTorrent [8]. During this attack, information about the
victim, i.e., the targeted machine in the attack, is spread in the system. The victim is falsely declared as an
owner of popular content, causing other peers searching forthis content to contact the victim repeatedly.
In BitTorrent, tracker information can be faked which leadspeers to believe that the victim is a tracker
for the desired content [8]. In the Kad network, DoS attacks can be launched by means of aredirection
attack where a queried peer, the attacker, will return a response containing the address of the victim [29].
As mentioned before, the attacks presented in this work can also be used to launch a DoS attack.

3See also http://www.prolexic.com/news/20070514-alert.php/.



S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks 5

The work closest in spirit to our work on attacks in p2p networks is the study ofindex poisoning
attacksin FastTrack and Overnet [12]. The index poisoning attack in [12] is akin to our publish attack
where bogus information is pushed aggressively to the nodesresponsible for the desired keywords. How-
ever, while this attack is also quite successful, it is not aseffective in the Kad network as it is in FastTrack
and Overnet. We show that a different, even simpler poisoning attack is feasible and even more effective.
Moreover, our study of attacks in the Kad network is not limited to content poisoning and index poison-
ing, but also considers the eclipse attack to prevent peers from accessing a specific file. It is also worth
pointing out that, in comparison to Kad, it is generally easier to perform attacks on Overnet, as it, e.g.,
does not check whether the sender of a publish message provided its own IP address as the owner of the
file, and no cryptography is used for authentication.

While we believe that there are methods to contain the potential damage caused by such attacks to
a certain extent, it is known that some sort of logically centralized entity is required to thwart attacks
such as the Sybil attack [9]. There also exists literature on the robustness of Kad. Forexample, Steiner et
al. [25] initiated the study of Sybil attacks in Kad, and propose to tie the possibility of obtaining a Kad ID
to the possession of a cell phone number. Their solution therefore requires a centralized entity as well.
There is also some interesting theoretical work on how to identify and exclude large sets of colluding
peers [4]. However, the described techniques cannot be used to counter our attacks as we only need a
very small number of attackers close to a given ID, which is not sufficient to raise suspicion. For a more
thorough discussion of possible countermeasures against attacks in p2p networks, the reader is referred
to the corresponding literature (e.g., [7]).

3. Background and Measurement Framework

The eMule clientprovides access to the classic, server-based eDonkey network and the decentralized
Kad network, an implementation of the distributed hash table Kademlia [16]. The different nature of
the two networks requires different measurement techniques. In the following, we will first present our
approach to collect data in the eDonkey network. Subsequently, we will report on the functionality of
our Kad client which allows us to monitor traffic at arbitraryspots in the ID space.

3.1. eDonkey Network

When a user issues a query using the eMule client, the keywords of the query are sent to a subset of
servers, which subsequently respond to the client with information about where to obtain the requested
file. We found that the peers typically iterate over the list of servers contained in their server file, querying
one server after the other as long as less than 300 results have been returned. The order of servers in this
list reflects the history of when peers learned about these servers, i.e., old servers are at the top of the list
while new servers are appended at the end of the list.

Today, there is a large number of eDonkey servers all over theworld, most of which are based on
the lugdunumsoftware.4 This software is not open-source as the developers try to prevent the creation
of fake servers or any other undesirable modification that could endanger the correct functioning of the
lugdunum servers. In order to collect data in the eDonkey network, we reverse-engineered the server
software and set up two servers ourselves which operate as follows. Initially, our server imports all

4See http://lugdunum2k.free.fr/kiten.html.



6 S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks

known eDonkey servers from a file and announces itself to every server on that list, one after the other.
For each server on the list, aserver list requestis sent, followed by aserver status requestand aserver
description request. In return, our server receives a list of servers that are alive, and the current status and
description of the corresponding server. As a side effect ofthese queries, our server is added to the other
server’s list. This is vital as peers keep their server listsup to date by periodically asking the servers they
are connected to for their lists of currently known servers;i.e., once our server appears in these server
lists, all peers will quickly learn about the existence of our servers. In order to remain a member of these
lists, our servers correctly answer the status requests of other servers. However, due to legal concerns, we
neither store nor return any real data. Moreover, we pretendhaving a high number of users and shared
files, but we deny any login requests and reply with a message indicating that our server is full.

Due to the iterative lookup procedure described before, ourservers are contacted perpetually, re-
gardless of which servers the peers are connected to. As a result, we can collect large amounts of data
about many different kinds of requests, making it possible to compute global aggregates such as the
most popular keyword in the network, or the most active peer’s IP address. Naturally, this data is only
representative if we receive a substantial fraction of all requests in the network. This issue is discussed
in more detail in Section4.

3.2. Kad Network

In the Kad network, both the files and the index is stored in a distributed manner by the peers themselves;
there are no indexing servers. Each peer in the Kad network has a 128-bit identifier (ID) which is
normally created by a random generator. This ID is stored at the peer even after it has left the network
and is re-used once the peer returns. Routing in the network is performed using these identifiers and the
XOR metric, which defines the distance between two identifiers as the bitwise exclusive or (XOR) of
these identifiers interpreted as an integer. For alli ∈ [0, 127], every peer stores the addresses of a few
other peers whose distance to its own ID is between2i and2i+1, resulting in a connected network whose
diameter is logarithmically bounded in the number of peers.For each of thesecontactsin the routing
table, a Kad ID, an IP address, and a port is stored.

The publish and retrieval mechanisms work roughly as follows. Each keyword, i.e., a word in a
file name, and the file itself, are hashed, and information about the keywords, its associated file, and
the address of the owner is published in the network, i.e., this information is stored at the peers in the
DHT whose identifers are closest to the respective hash values. More specifically, in Kad, information is
replicated ten times in a zone where peers agree in the first 8 bits with the published key. Usually, this
so-calledtolerance zonecontains several thousand peers. While most of the peers arevery close to the
key, this is not always the case, e.g., due to churn and also for keys that are very popular and published
by many different peers.

In order to find a file for a given keywordk, a peer computes a hash functionh(k) of k and routes,
in a multi-hop manner, the request to the peer having the overlay ID closest toh(k); this peer stores the
hash codes of all the files associated with this keyword. The matching filenames and the corresponding
hash codes of these files are then returned. Given a hash codeh(f) of a file f , it is then possible to get
a list of all the peers possessing a copy off by again routing to the peer whose ID is closest toh(f) as
this peer is responsible for the sources off .

We created our own Kad client in order to collect data on the peer activity in the Kad network. Our
client exploits the fact that Kad uses randomly chosen overlay IDs, which enables us to place our peers



S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks 7

at any desired place in the ID space. On the one hand, performing measurements in the Kad network is
simpler than in the eDonkey network. This is due to the fact that a small set of peers close to the hash
of a file f will be contacted by all peers interested in obtaining this file f . Thus, as there is a unique
location where peers obtain information aboutf , data of good quality can be collected by occupying the
corresponding area around this ID and spying on the traffic. On the other hand, the distributed nature of
the Kad network renders it more difficult to measure global quantities such as the most popular file in the
network. Answering such a query would require to occupy a large portion of the entire ID space. Hence,
we confine ourself to acquiring small samples of the entire traffic and try to juxtapose these samples and
the data acquired in the eDonkey network in a reasonable manner.

4. Measurements

This section summarizes our main measurement results. We investigated the distribution of the user base
across countries of both eDonkey and Kad as well as the temporal distribution of the users’ requests. In
addition, the content that users search in the system is examined. Our measurements were conducted
mostly in 2007.

4.1. Request Distributions

Within a few days after announcing our servers, they attracted much traffic. Figure1 shows the activity
of our servers during 4 days. We see that the request pattern remains fairly stable across all days. On
average, during a measurement period of 2 weeks, our serversreceived roughly 1,550 login requests, 448
keyword requests and 150,228 source requests per minute. The average bandwidth required to run each
server is approximately 300 KB/s. Note that a correct serverrequires substantially more bandwidth as it
has to reply to all keyword and source requests. Due to the additional traffic caused by re-announcing

Figure 1. Different server requests over time. The y-axis for the source requests is shown on the right, for the
login trials and the keyword requests it is shown on the left.



8 S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks

our servers at other servers once per hour, our servers are overloaded for a short time resulting in regular
drops of handled requests, which is most apparent in the curve of the recorded source requests.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of Day (GMT)

R
e

a
lt

iv
e

 R
e

q
u

e
s

t 
R

a
te

Europe

America

Asia

Figure 2. Temporal distribution of keyword search requestson an average day on eDonkey, grouped by conti-
nents. The time on thex-axis is based on the Greenwich Mean Time.

The keyword searches are particularly interesting to study, as they are entered by users directly and
are hardly automated. Consequently, the amount of search requests varies over the day. Figure2 shows
this distribution for different continents. The figure reveals that in Europe and America the minimum
number of requests is reached in the early morning and this number continuously increases until midday,
where it stays on a more or less constant level during the whole afternoon. Then it increases again after
the working hours until the maximum is reached at around midnight. The curve for Asia looks slightly
different; the maximum is also reached at midnight, but there is not such a sharp decline during the night,
and the number of requests even increases again reaching a second local maximum in the early morning.
Note that the maximum number of requests is set to 100% for each continent in order to show this diurnal
pattern. The total number of requests per day in Europe, America, Asia, and Africa plus Middle East
are 397,060, 156,322, 42,287, and 48,850, respectively, which necessitates this normalization and also
demonstrates the predominance of Europe in the eDonkey network.

As one might expect, the distribution of the search requestsin the Kad network is similar. Figure3
depicts the temporal distribution of requests again for thethree continents in the Kad network. Again,
the curve for Asia is quite different from the others. As opposed to the other continents, the maximum
number of requests in Asia is reached in the morning and not late in the evening. We occupied 14
randomly chosen IDs and logged all requests on these peers and used the average number of requests in
this figure.

We can look at the origins of the requests in more detail and observe that European countries play
an important role in eDonkey, the only country among the five most active countries outside of Europe
is Brazil. Figure4 depicts the percentage of all requests originating from each of the 20 most active
countries per month, both for the eDonkey and the Kad networkin descending order of activity in the
eDonkey network. A first observation that can be made is that the spacial distribution is more concen-
trated in Kad than in eDonkey. Moreover, it can be seen that the same countries are the most active ones
in both networks. Note that, although eMule grants access toboth networks, users have to entermanually



S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks 9

Figure 3. Temporal distribution of keyword search requestson an average day on Kad, grouped by continents.
14 monitoring peers in Kad are used to compute these numbers.The time on thex-axis is again based on the
Greenwich Mean Time.

Figure 4. Origins of keyword search requests on our servers and in the Kad network.

where they want to search and thus this result is not self-evident. Furthermore, the Kad network seems
to be significantly more used in Europe, especially in Italy and France, than elsewhere. The question
whether this is due to a more lenient legislation remains open.

It is difficult to assess the popularity of these networks by comparing the absolute number of requests,
as there are countries with a much larger population or a higher Internet penetration rate. For this reason,
we have normalized the request rates received from each country by the number of Internet users in that
country.5 As can be seen in Figure5, the picture looks different in the normalized case. There are three
quite active countries, Morocco, Algeria, and Israel, while all other countries have a comparably small

5Data obtained from http://www.internetworldstats.com.



10 S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks

number of requests per Internet user per month. The reason for this exceedingly high number of request
originating from Morocco and Algeria might be simply due to the small number of Internet users in
these countries. Another possible reason is that relay servers are positioned in these countries in order
to obfuscate network traffic. The observation that a large number of requests originate from a small
number of IP addresses supports this claim. As there are manydifferent IP addresses active in Israel
and given that it is generally one of the most active countries, it seems that these networks are simply
highly popular in Israel, even more so than in Europe. As far as the other countries are concerned, the
graph shows that there is not a significant difference between the popularity of eDonkey and Kad among
them. What is more, the distribution for both networks has a long tail; as many as 21 countries exhibit
a normalized search activity of at least 20% of the search activity of Spain, implying that both networks
are popular in many countries. We further found that both networks are indeed much more popular in
Europe than in the United States, the activity of the United States normalized by the number of Internet
users is about 30 times smaller than the activity of Spain, making it the country with almost the smallest
activity overall. Clearly, this is partly due to the large number of Internet users in the United States.
Overall, only six countries contribute more keyword searches than the United States, which indicates
that also in the United States both networks have a large userbase. Finally, however, note that the data
in Figure5 could also be slightly biased, as the Internet penetration data might not be perfectly accurate.

Figure 5. Keyword search requests normalized by the number of Internet users of the 20 most active countries on
our servers and in the Kad network.

4.2. Search Contents

The main objective of both the eDonkey and the Kad system is toprovide users with a mechanism to find
and download files. Information about the searched content can be an interesting source for research,
for example, such data might give insights into the potentially different preferences of users in different
countries.

For this purpose, a record indicating the popularity of eachdata item in each country would be
required. Unfortunately, the compilation of such a record is quite difficult—not only in Kad, but also
in the eDonkey network. One reason is that there is no automatic one-to-one correspondence between



S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks 11

keywords and files. There might be different spellings of thesame keywords, files containing the same
content are typically available in different languages, and the corresponding filenames often contain
typing errors. Moreover, the popularity of the files we monitor in Kad can change quickly, particularly
when versions of the same content, e.g., a video file, of increased quality appear. Figure6 plots different
versions found when quering for a specific exemplary keywordduring a period of 50 days. Versionv1 is
the worst quality,v2 is the same content in better quality, andv3 has the best quality. As expected, the
number of occurrences ofv1 decreases over time, first at the expense ofv2, and afterv3 becomes more
and more popular, the number of occurrences ofv2 start decreasing as well.

Figure 6. Different quality versions, distinguished by specific keywords in the filename, in percentages of all
files.

In another experiment, we tried to evaluate to what extent the popularity of certain content in eDonkey
and Kad corresponds to the popularity of the same content in the real world. To this end, we observed
the popularity of newly released movies in eDonkey and Kad. We find that there is indeed a strong
correlation, i.e., movies that are currently playing in movie theaters are popular both in eDonkey and
Kad. Figure7 shows this correlation for a specific movie (namely “Superbad”). In this figure, the total

Figure 7. Comparison of the box office gross and the requests on our servers for a specific movie (“Superbad”).



12 S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks

gross6 in the U.S. is depicted for each day and also the number of requests for this movie on our servers.
The movie opened on October 5 2007, but it did not attract manymovie-goers until the next weekend.
Afterwards, the daily gross declined again with smaller peaks at the weekends as usual. In this graph,
we see that the popularity in eDonkey roughly follows these trends. Observe that the request pattern in
the network is delayed for about a week, reaching its maximumabout a week after the movie reached its
peak. Experiments using other content yielded more or less the same graph, also with a certain delay. In
order to take the Kad network into account, we further compared how often keywords are looked up in
eDonkey and in Kad and found that basically the same keywordsare looked up more often than others
in both networks.

A thorough discussion of content popularity is beyond the scope of this article. Our preliminary
findings indicate that there is not only a strong correlationbetween eDonkey and Kad, but also between
the two networks and the popularity of content in the real world.

5. Representativeness

Conducting measurement studies of distributed systems is adifficult endeavor. Even if large amounts
of data are collected, the statistical significance of the empirical results might be limited if the data is
biased. In order to obtain solid claims, it is important thatthe underlying data be either complete, or a
uniform and random subset thereof. In this section, we provide evidence that our data can be considered
representative.

We consider the data collected by the servers first. As mentioned before, the servers receive requests
for all possible keywords. However, since a peer does not send requests to all the servers in its server list,
i.e., some servers might receive completely different requests, which could potentially bias the collected
data. As the eMule clients typically sendsource requeststo both networks, in order to estimate what
fraction of all requests we receive, we compared the number of source requests at our eDonkey server
with the number of source requests obtained in Kad. Our experiments showed that for a given file, we
receive roughly 10 times more requests in Kad than at the server. Since virtually all requests for a given
file are received in Kad, this indicates that our server roughly receives 10% of all keyword requests in the
network—a surprisingly large number. At the same time, the distribution of the origins of the requests
does not differ between the two networks. This suggests thatthey are already contacted with a reasonably
large probability, although our servers are relatively new, and also that they get a more or less random
subset of the entire traffic.

In the Kad network, it is easy to obtain unbiased request datafor a given file, since all requests for a
particular file are routed to the same ID. However, making statements about the global distributions of the
requests requires to collect data at all locations in the ID space, which is impossible. In this article, we
have taken a best-effort approach and aimed at getting data from a moderately large set of peers whose
IDs are distributed uniformly at random. By averaging thesemeasurements, we get similar distributions
as those measured in eDonkey, which indicates that the obtained data is fairly representative. Although
we believe that the quality of our results is quite good, it has to be taken into account that, similarly to our
client, other peers can also choose their overlay IDs at will, which could bias such a random sampling
approach. It is known that there are communities that selecttheir Kad IDs from a small subset of the
entire ID space [23].

6Data obtained from http://www.boxofficemojo.com.



S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks 13

6. Kad Attacks

We now turn our attention to the robustness of Kad, and reporton three different attacks that limit the
peers’ access to a given filef . In anode insertion attack, an attacking peer seeks to attract search requests
for f , which are answered with bogus information. Alternatively, access tof can be denied by filling up
the index tables of other peers publishing information about f (publish attack). Finally, we describe how
an attacker caneclipsean arbitrary peer: By controlling all the peer’s incoming and outgoing traffic, the
attacker can prevent a peer from either publishing information aboutf or from accessing it.

6.1. Node Insertion Attack

By performing anode insertion attack, it is possible to corrupt the network by spreading pollutedinfor-
mation, e.g., about the list of sources, keywords, or comments. We have implemented the attacks for
keywords, that is, a search for the attacked keyword will not give the correct results, but instead arbitrary
data chosen by the attacker is returned.

For this attack to work, we have to ensure that the search requests for the specific keyword are routed
to the attacking peer rather than to the peers storing the original information. This can be achieved as
follows. In our modified eMule client, it is possible to select the peer’s Kad ID manually. Thus, an
attacker can choose its ID such that it matches the hash valueof the targeted keyword. Consequently, the
peer will become the node closest to this ID and will receive all the corresponding search requests. The
nodes storing the correct files typically have a larger distance to the keyword’s ID than the attacker, as the
probability for a peer to have a random ID that perfectly matches the 128-bit keyword ID is negligible.

In order to guarantee that peers looking for a certain keyword only receive faked results, the attacker
must provide enough result tuples, as the eMule client terminates the search after having gathered 300
tuples. The attacker further has to include the keywords received from a peer in the filenames, otherwise
the replies are not accepted. In our attacks, we use filenamesthat contain a unique number, the message
“File removed from Kad!”, and the keywords. Unique file hashes are needed such that the 300 tuples are
not displayed as one tuple in eMule’s search window.

We frequently observed that eMule sends search requests notonly to the closest peer, even though
this peer provided enough answers. This can be explained by the delay caused when transmitting the
300 search results from the closest peer. eMule will send another request to the second closest peer
before all of the results are received from the closest one. This of course may harm the effectiveness of
the attack, and hence it is beneficial to gain control over thesecond, third, etc. closest IDs as well by
means of additional attackers. These attackers behave exactly the same way: All requests are answered
by supplying 300 faked tuples.

Figure8 depicts the traces obtained during two week-long node insertion attacks performed using
our modified eMule client on the keyword “Simpsons.” Note that this attack influences all queries in the
entire Kad network not only for the search term “Simpsons”, but also all other queries starting with the
term “Simpsons” such as “Simpsons Movie” or “Simpsons Soundtrack” etc. are affected automatically.

In the first trace, only one attacker whose ID exactly matchesthe hash of the keyword infiltrated the
network. We used another client to search for the term “Simpsons” once a minute and examined the
returned results. Since a single attacker is not sufficient,as mentioned before, the attack is moderately
successful in that only approximately 40% of the returned results originated from the attacker. What is
more, every single query returned at least some results thatare not faked. Further experiments showed



14 S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks

Figure 8. Percentage of successfully hijacked keyword requests in a node insertion attack for 1 and 3 attackers
during a time period of one week.

that using two attackers instead of one does not increase thesuccess rate substantially, but three attackers
is already enough to hijack virtually all requests. The second trace shows the success rate of the node
insertion attack using three attackers. On average, more than 95% of all returned tuples were faked,
and every batch of tuples contained at least some bogus data created by the attackers. The plot shows
that there are sudden drops of the success rate once in a while. An explanation for this behavior is that
peers join and leave the network at a high rate, resulting in inaccurate routing tables. Consequently, a
lookup request can be routed to a peer that still stores results for this request and does not know about
our attacking peers yet.

The attack was repeated at other times using different keywords. All our other experiment resulted
in a similar picture and confirmed our findings made with the “Simpsons” keyword. Our attacking peers
received roughly 8 requests per minute from other peers in the network during the experiments. As
expected, the peer having the closest ID received the most requests at a rate of roughly 4 requests per
minute.

6.2. Publish Attack

In contrast to the node insertion attack, which forces the search requests to be routed to the attacker, the
publish attack directly attacks the peers closest to the ID of the attacked keyword, comment, or source
entry. The index tables stored by the peers in the Kad networkhave a limited length; for instance, the
keyword table can store up to 50,000 entries for a specific ID.Moreover, a peer will never return more
than 300 result tuples per request, giving priority to the latest additions to the index table. This makes
it possible to replace the original information by filling upthe tables of the corresponding peers with
poisoned entries. Thus, an attacker seeks to publish a largeamount of information on these peers. Once
the index tables of the attacked peers are full, they will notaccept any publish requests by other peers
anymore. Therefore, the attacked peers will only return ourpoisoned entries instead of the original



S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks 15

information. Since every entry has an expiration time (24 hours for keyword and comment entries, and
5 hours for source entries), the clients have to be re-attacked periodically in order to achieve a constant
fraction of poisoned entries. In addition, an attacker has to take into consideration the newly joining
peers in the network; if they have an ID close to the one attacked, their tables also have to be filled.

We have implemented the publish attack for keyword entries as well, again by modifying the original
eMule application. An existing timer method is used to run the attack every 10 minutes. In the first
phase, the 12 peers closest to the targeted ID are located using eMule’s search mechanism. In each run,
only peers are selected that have not been attacked before orwhich need to be re-attacked due to the
expiration of the poisoned entries. In the second phase, allthe peers found in the first phase are attacked,
beginning with the closest peer found. To guarantee a full cache list, 50,000 poisoned entries are sent
divided into 250 packets containing 200 entries each. In order to prevent overloading the attacked client,
the sending rate was limited to 5 packets per second. Every entry consists of a unique hash value and
filename as in the node insertion attack. Since these entriesought to match all search requests containing
the attacked keyword, it is necessary to include all additional relevant keywords (e.g. song titles for an
interpreter, year and language for a film title) in the filename; otherwise, all the lookups with additional
keywords would not receive the poisoned entries, because not all the keywords are included. In the node
insertion attack, this problem does not occur as the additional keywords are obtained from every search
request and can directly be appended to the filename to match the request. The success of each run is
measured with the load value sent in every response to a publish packet. This value should increase with
every poisoned packet sent, from a starting level of about 10- 20% to 100% when the attack is finished.

Figure 9. Percentage of faked replies received in a publish attack for the keyword “Simpsons” during a time
period of 5 days. Sometimes, the success rate drops but then recovers again quickly.

In comparison to the node insertion attack, it is clearly harder to maintain a high success rate using the
publish attack, due to the permanent arrivals of new peers and the need to re-attack the peers periodically.
While the node insertion attack yields constantly high rates, this is not true for the publish attack. Figure9
plots the success rate of an attack on the keyword “Simpsons”over a period of 5 days. While the attack



16 S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks

works fairly well on average, at a success rate of roughly 80%, the success rate periodically drops and
remains low for a certain time period before it recovers again.

Overall, the success rate is lower than in the case of a node insertion attack, although performing
a publish attack is more expensive. Again, repeating the attack at other times using different keywords
results in a similar pattern. The reason for this peculiar behavior is that the peers responsible for the
targeted IDs that are online during the phase where the success rate is low refuse to accept our publish
messages. In fact, these peers do not even reply to publish messages, even though they can be contacted,
otherwise we could not receive any lookup results from them.As this behavior is not in accord with the
protocol implemented in the real eMule client, we suspect that modified versions of the original client
cause this effect. What clients are used is hard to determineas they do not directly provide this infor-
mation. Thus, the use of modified clients appears to be another reason why the node insertion attack is
superior to the publish attack. In order to improve the success rate, a more sophisticated implementation
could be used where the attack is split up into two concurrentprocesses. The first one would permanently
search for new peers with an ID close to the one attacked and pass them to the second process which then
would attack these peers simultaneously. This would minimize the time during which peers can respond
with original data. As this improvement would not solve the problem of uncooperative peers, it was not
implemented.

6.3. Eclipse Attack

Instead of poisoning the network to keep peers from obtaining certain information, we can also attack
the requesting peers directly and keep them from sending requests into the Kad network. In the eclipse
attack, the attacker takes over the targeted peer’s routingtable such that it is unable to communicate with
any other peer in the Kad network except the attacker. As the attacker simulates the whole Kad network
for that peer, it can manipulate the attacked peer in arbitrary ways, e.g., it can specify what results are
returned for any lookup, or modify comments for any file. The peer’s requests can also be directed back
into the Kad network, but modified arbitrarily.

Typically, the contacts in the Kad routing table are not uniformly distributed over the whole ID
space. Rather, most of the contacts are located around the peer’s ID to maintain short lookup paths when
searching for other peers in the Kad network (see also [16]). The attacker takes advantage of the fact that
there are relatively few contacts in most parts of the ID space. Concretely, we inject faked peer entries
into these parts of the routing table to achieve a dominatingposition. Subsequently, the faked peers are
selected for almost all requests. If we set the IP address of all those faked entries to the address of our
attacking peer, we receive most requests of the attacked peer and can process them as desired. We make
use of the fact that the standard eMule client accepts multiple neighbors of the same IP address.

Our measurements showed that a peer running eMule for an extended period of time has up to 900
contacts in its routing table. As the maximum number of contacts is 6,310, there is plenty of space in the
routing table for faked entries. In order to inject faked entries theHello Requestmessage is used, which
is normally utilized during connection set up to check whether known peers are still alive. As a side
effect of this message, the sender of the message is added to the receiver’s routing table. After enough
entries are injected, the attacking peer has to process the requests from all those entries in order to keep
them in the routing table of the attacked node.

We implemented the eclipse attack in a stand-alone application and ported all necessary parts from
the source code of eMule. The application maintains a list that holds all faked entries sent to the attacked



S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks 17

peer. This is necessary, because every new entry in the routing table is validated by sending a hello
request. This request has to be answered with the same ID as wehave chosen when injecting the entry.
In order to differentiate between the entries, we assign a new port to every faked entry and maintain a
data structure to store this information. The other part of our application processes the requests of the
attacked peer. If it asks for new peers close to a specific ID, we reply with new faked peers that match this
ID, or are very close to it, to guarantee the success of the attack. If the peer asks for stored information
we deliver poisoned results, as in the two attacks discussedbefore.

Table 1. Percentage of faked replies received during 10 runsof the eclipse attack. Each runr was measured 15
minutes with an interval of one minute.

Minute r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r̄

1. 0 0 0 0 0 0 0 0 0 0 0

2. 0 0 0 0 0 0 0 0 0 0 0

3. 0 0 0 0 0 0 0 0 0 0 0

4. 0 0 0 81 0 0 78 0 0 0 15.9

5. 72 100 100 65 23 100 81 81 100 65 78.7

6. 78 100 90 72 85 100 78 72 100 81 85.6

7. 81 82 100 81 78 81 100 78 100 100 88.1

8. 65 100 100 100 81 100 100 68 81 100 89.5

9. 58 100 100 95 100 100 100 89 100 100 94.2

10. 78 100 100 100 100 100 98 100 100 100 97.6

11. 100 100 100 100 100 100 100 100 100 100 100

12. 100 100 100 100 100 100 100 100 100 100 100

13. 100 100 100 100 100 100 100 100 100 100 100

14. 100 100 100 100 100 100 100 100 100 100 100

15. 100 100 100 100 100 100 100 100 100 100 100

Table1 shows the results of 10 repeated eclipse attacks under the same conditions. To measure the
success rate of the attacks, we periodically ran searches onthe attacked peer and counted the number of
poisoned results. As the success rate virtually always reaches 100% within minutes, we can conclude
that the attack works well, especially if the attack is focused on a single keyword, but it is naturally
limited to merely a single attacked peer. The other two attacks are clearly preferable if an attacker aims
at hiding content fromall peers.

7. Discussion

The preceding section has presented three different attacks that can be used to keep peers from acquiring
the requested information. Naturally, these attacks can also be combined in order to increase the chances



18 S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks

of a successful attack. However, these poisoning attacks cannot only be used for this purpose. Rather,
they can serve an attacker as basic building blocks to pursuecompletely different aims.

We will now briefly illustrate how they can be used for anotherattack. The resources of the Kad
network’s peers and our attacks can be used to drive adistributed denial of service attack(DDoS) against
any machine internal or external to the Kad network as follows: A node insertion attack is performed
in order to occupy some popular keywords. Letµ be the machine (e.g., a server) to be attacked. We
inform all requesters thatµ contains the desired files. Consequently, all requests are directed to the
attacked machine. Of course, the resulting load onµ is not larger than on the machine performing the
node insertion. However, the advantage of this attack is that the attacking machineremains hidden;
moreover, it is generally harder to counter a distributed DoS attack than a normal DoS attack as the
requests originate from different (and valid) IP addresses. Also the Publish Attack can be used for the
DDoS attack if we advertise wrong IP bindings of keywords. This has the additional advantage that the
attack induces more load on the attacked machine than on the attacker, as the different Kad peers are
directed to the attacked machine directly. Note that DDoS attacks using a p2p system such as Kad are
particularly nasty as the peers store information about sources for a long period of time, implying that
such an attack could last several days with steadily changing peers involuntarily performing the attack.

As all the described attacks can be performed easily and havea large impact, it is mandatory to
derive and implement counteractive measures. In order to overcome the node insertion attack it must be
guaranteed that choosing specific IDs is infeasible. A straightforward approach, which is often described
in literature (and which is used, e.g., by the Azureus BitTorrent client), is to bind the ID directly to the
peers’ IP addresses, e.g., by hashing the IP address. However, there are several reasons why real-world
p2p systems do not adhere to this simple rule. First, multiple peers may share the same IP address, for
example, peers in a local area network behind a NAT router aretypically addressed using the same public
IP address. These peers would all have the same peer identifier. Second, IP addresses are often given out
dynamically and the assignment of addresses may change. In case of an ID-IP binding, this implies that
peers have to rebuild their routing tables when reconnecting to the network with a new IP. Additionally,
all the credits gathered by uploading data would be lost irretrievably because the peer ID changed and
hence the peer cannot be recognized by other peers anymore. It seems that some of these problems can
be solved easily and the IP address can still be incorporatedinto the ID, e.g., by hashing the IP address
and a randomly chosen bit string to solve the NAT problem, or by using a different, randomly chosen ID
for the credit system, together with a public and private keypair to protect it against misuse.7 Hashing the
IP address and a user-generated bit string is preferable to including the port as this would require a static
assignment of ports, and switching ports would also lead to anew ID. However, a crucial point is that
creating such a binding is not sufficient to avert the attack in general, as long as the ID includes a user-
generated part. Assuming that a hash function such as SHA-1 is used, an attacker can try out millions of
bit strings in a short period of time in order to generate an IDthat is closest to the targeted keyword even
in a network containing more than a million peers. These observations indicate that some form of peer
authentication is required, which is hard to achieve without the use of a centralized verification service.
As part of the strength of the network is its completely decentralized structure, relying on servers does
not seem to be an acceptable solution.

A simple heuristic to render the Kad network more resilient to publish and eclipse attacks is to limit
the amount of information a peer accepts from the same IP address, i.e., a peer does not allow that its

7In fact, Kad already uses public and private keys to authenticate peers whenever a new session starts.



S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks 19

entire contact list is filled by peers using the same IP address. This is also a critical solution as several
peers behind a NAT may indeed have the same public IP address.What is more, an attacker with several
IP addresses at its disposal can circumvent this security measure.

An important observation is that many of the discussed vulnerabilities do not only pertain to the Kad
network, such attacks can be launched against any fully decentralized system that does not incorporate
strong verification mechanisms. We believe that in recent literature, some interesting approaches have
been proposed that may be useful not only in the context of theKad network, especially the work on
join-leave attacks [20] by Scheideler who studies how to spread peers over a virtualID space[0, 1)
in a robust way. In [5], Awerbuch and Scheideler proposed a robust distributed (round-robin) random
number generator. Intriguingly, while constructing a single random number is difficult, it turns out that
a set of random numbers can be generated by a group of peers in ascalable manner that is resilient to
a constant fraction of adversarial peers. Unlike the verifiable secret sharing algorithm described in [3],
their solution cannot fail if the initiating peer does not behave correctly, and a peer cannot rerun the
protocol sufficiently many times until an ID is generated that falls into a desired range. This is certainly
a desirable property to overcome the node insertion attacksdescribed in this article. However, important
questions remain open, for instance, how to handle concurrent rejoin operations, or how to cope with
ongoing DoS attacks.

8. Conclusion

Understanding the behavior of peers in large p2p networks enables the development of new and more
efficient distributed algorithms or may even pave the way fornovel applications in distributed systems. In
this article, we have reported on our measurement insights and compared the peer activity in the server-
based eDonkey network to the distributed hash table Kad, twoof the largest peer-to-peer networks in
use today. We find that not only do most requests arrive roughly during the same time interval every
day in both networks, the searched content is also quite similar. Moreover, by counting the number of
source requests we discovered that our server receives roughly 10% of all eDonkey requests. Using this
estimate, and given that we receive virtually all requests for certain keywords in Kad, we conclude that
the eDonkey network is still more popular. In total, we estimate the total number of requests in eDonkey
to be somewhere between 1.3 and 2 times larger than in Kad. It will be interesting to see how the situation
develops in the future.

Due to their properties, the use of DHTs or similar structured networks has been proposed as the
foundation of the “future Internet” in order to overcome thedeficiencies of today’s Internet. Therefore,
in the second part of this article, the robustness of Kad is examined in more detail. In particular, we
provide evidence that the Kad network can be attacked with a small amount of computing resources such
that access to popular files is denied. It is clear that such attacks could significantly lower the throughput
of the entire system as the sought-after files are no longer found, and that this imposed censorship would
frustrate the users. Moreover, the possibility of leveraging the immense computational resources of the
entire system to attack arbitrary machines constitutes a serious threat. Finally, one may also speculate
that the increasing number of spam replies observed in eMuletoday may be due to mechanisms that are
similar and inspired by the attacks described in this article.

We argue that the presented attacks can basically be launched in any peer-to-peer system that does
not incorporate sound peer authentication mechanisms, andwe have initiated a discussion of different



20 S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks

approaches to overcome these vulnerabilities. From this first discussion we conclude that while there are
both practical and theoretical schemes that seem to improvethe robustness, more research is needed on
how to apply them optimally “in the wild”.

Acknowledgments

We would like to thank David Mysicka for his work on the measurements, and Bernhard Ager and
Christian Scheideler for interesting discussions. Preliminary versions of this article appeared at DYNAS
2009 [14] and ICDCN 2010 [15].

References

[1] E. Adar and B. A. Huberman. Free Riding on Gnutella.First Monday, 5(10), 2000.

[2] E. Athanasopoulos, K. G. Anagnostakis, and E. P. Markatos. Misusing Unstructured P2P Systems to Per-
form DoS Attacks: The Network That Never Forgets. InProc. 4th International Conference on Applied
Cryptography and Network Security (ACNS), 2006.

[3] B. Awerbuch and C. Scheideler. Towards a Scalable and Robust DHT. InProc. 18th Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), pages 318–327, 2006.

[4] B. Awerbuch and C. Scheideler. Towards Scalable and Robust Overlay Networks. InProc. 6th IPTPS, 2007.

[5] B. Awerbuch and C. Scheideler. Robust Random Number Generation for Peer-to-Peer Systems.Theor.
Comput. Sci., 410(6-7):453–466, 2009.

[6] D. Carra and E. W. Biersack. Building a Reliable P2P System out of Unreliable P2P Clients: The Case of
KAD. In Proc. ACM CoNEXT, 2007.

[7] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure Routing for Structured Peer-to-
Peer Overlay Networks. InProc. 5th Symposium on Operating Systems Design and Implementation (OSDI),
pages 299–314, 2002.

[8] K. E. Defrawy, M. Gjoka, and A. Markopoulou. BotTorrent:Misusing BitTorrent to Launch DDoS Attacks.
In Proc. 3rd Workshop on Steps to Reducing Unwanted Traffic on the Internet (SRUTI), 2007.

[9] J. R. Douceur. The Sybil Attack. InProc. 1st IPTPS, 2002.

[10] S. Guha, N. Daswani, and R. Jain. An Experimental Study of the Skype Peer-to-Peer VoIP System. InProc.
5th International Workshop on Peer-to-Peer Systems, 2006.

[11] A. Haeberlen, A. Mislove, A. Post, and P. Druschel. Fallacies in Evaluating Decentralized Systems. In
Proc. 5th International Workshop on Peer-to-Peer Systems, 2006.

[12] J. Liang, N. Naoumov, and K. W. Ross. The Index PoisoningAttack in P2P File Sharing Systems. InProc.
25th Annual IEEE Conference on Computer Communications (INFOCOM), 2006.

[13] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free Riding in BitTorrent is Cheap. InProc. 5th
Workshop on Hot Topics in Networks (HotNets), 2006.

[14] T. Locher, D. Mysicka, S. Schmid, and R. Wattenhofer. Invited Paper: A Peer Activity Study in eDonkey &
Kad. InProc. International Workshop on Dynamic Networks: Algorithms and Security (DYNAS), 2009.

[15] T. Locher, D. Mysicka, S. Schmid, and R. Wattenhofer. Poisoning the Kad Network. InProc. 11th Interna-
tional Conference on Distributed Computing and Networking(ICDCN), 2010.



S. Schmid et al. / eDonkey & eMule’s Kad: Measurements & Attacks 21

[16] P. Maymounkov and D. Mazières. A Peer-to-Peer Information System Based on the XOR Metric. InProc.
1st IPTPS, 2002.

[17] N. Naoumov and K. Ross. Exploiting P2P Systems for DDoS Attacks. InProc. 1st International Conference
on Scalable Information Systems (INFOSCALE), 2006.

[18] S. J. Nielson, S. A. Crosby, and D. S. Wallach. A Taxonomyof Rational Attacks. InProc. 4th IPTPS, 2005.

[19] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study of Peer-to-Peer File Sharing Systems.
In Proc. of Multimedia Computing and Networking (MMCN), 2002.

[20] C. Scheideler. How to Spread Adversarial Nodes?: Rotate! In Proc. 37th Annual ACM Symposium on
Theory of Computing (STOC), pages 704–713, 2005.

[21] A. Singh, T.-W. J. Ngan, P. Druschel, and D. S. Wallach. Eclipse Attacks on Overlay Networks: Threats
and Defenses. InProc. 25th Annual IEEE Conference on Computer Communications (INFOCOM), 2006.

[22] M. Steiner. Private Communication.

[23] M. Steiner, E. W. Biersack, and T. En-Najjary. ActivelyMonitoring Peers in the KAD. InProc. 6th IPTPS,
2007.

[24] M. Steiner, D. Carra, and E. W. Biersack. Faster ContentAccess in KAD. InProc. 8th IEEE Conference on
Peer-to-Peer Computing (P2P), 2008.

[25] M. Steiner, T. En-Najjary, and E. W. Biersack. Exploiting KAD: Possible Uses and Misuses. InComputer
Communication Review 37(5), 2007.

[26] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global View of KAD. In Proc. 7th ACM IMC, 2007.

[27] D. Stutzbach and R. Rejaie. Understanding Churn in Peer-to-Peer Networks. InProc. 6th IMC, 2006.

[28] D. Stutzbach and R. Rejaie. Improving Lookup Performance over a Widely-Deployed DHT. InProc. 25th
IEEE INFOCOM, 2006.

[29] X. Sun, R. Torres, and S. Rao. Preventing DDoS Attacks with P2P Systems through Robust Membership
Management.Technical Report TR-ECE-07-13, Purdue University, 2007.

[30] D. S. Wallach. A Survey of Peer-to-Peer Security Issues. In Proc. International Symposium on Software
Security, 2002.

[31] L. Zhou, L. Zhang, F. McSherry, N. Immorlica, M. Costa, and S. Chien. A First Look at Peer-to-Peer
Worms: Threats and Defenses. InProc. 4th IPTPS, 2005.


	1 Introduction
	2 Related Work
	3 Background and Measurement Framework
	3.1 eDonkey Network
	3.2 Kad Network

	4 Measurements
	4.1 Request Distributions
	4.2 Search Contents

	5 Representativeness
	6 Kad Attacks
	6.1 Node Insertion Attack
	6.2 Publish Attack
	6.3 Eclipse Attack

	7 Discussion
	8 Conclusion

