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Abstract—Waypoint routing is a novel communication model
in which traffic is steered through one or multiple so-called
waypoints along the route from source to destination. Waypoint
routing is used to implement more complex policies or to
compose novel network services such as service chains, and
also finds applications in emerging segment routing networks.
This paper initiates the study of algorithms and complexity of
waypoint routing on special networks. Our main contribution is
an encompassing characterization of networks on which routes
through an arbitrary number of waypoints can be computed
efficiently: We present an algorithm to compute waypoint routes
for the important family of outerplanar networks, which have
a treewidth of at most two. We show that it is difficult to go
significantly beyond the graph families studied above, by deriving
NP-hardness results on slightly more general graph families
(namely graphs of treewidth three). For the case that the number
of waypoints is constant, we also provide a polynomial-time
algorithm for any constant treewidth network, even if waypoints
change the flow sizes. For arbitrary numbers of waypoints
however, the constraint of different flow-sizes between waypoints
turns the problem hard, already if the network contains just a
single cycle. Finally, we extend the study of waypoint routing to
special directed graph classes, in particular bidirected graphs.

I. INTRODUCTION

Waypoint routing is a fundamental communication model in
which packets need to visit a sequence of waypoints along their
route. Waypoint routing has many applications, e.g., related to
security policies [1], [2], [3], [4], emerging network services
such as service function chaining [5], [6], [7], [8], [9], or
segment routing [10], [11], [12], [13].

For example, computer networks today consist of a large
number of so-called middleboxes (in the order of the number of
routers [1]) providing various functionality inside the networks,
related to security (e.g., firewalls, NATs) and performance
(e.g., proxies, traffic optimizers). In order to benefit from (or
enforce) these middleboxes, traffic needs to be steered through
the functions (“waypoints”) explicitly, as in Fig. 1. This is non-
trivial especially in virtualized environments and in the context
of Network Function Virtualization (NFV), where virtualized
middleboxes can be deployed more flexibly. Software-Defined
Networking (SDN) is a particularly useful technology in this
context, as it facilitates the definition of such more flexible
routes.

This paper is concerned with the algorithmic aspects under-
lying waypoint routing. Interestingly, only little is known today
about the algorithmic problems, besides that the problem is
typically hard on general network topologies [14].

Our paper is motivated by the fact that real-world networks
(e.g., datacenter, enterprise, carrier networks) are often not
general or “worst-case” but feature additional structure, which

can potentially be exploited toward more efficient algorithms.
Accordingly, we initiate in this paper the study of waypoint
routing on specific network topologies.

A. Our Contributions

This paper studies the problem of computing (shortest)
paths through an arbitrary number of waypoints on special
network families. Our main contribution is a, in some sense,
tight characterization of the network topologies on which
routes through waypoints can be computed in polynomial time.
Concretely, we provide an algorithm to compute waypoint
routes on the important graph family of outerplanar graphs
(which are of treewidth at most two). We show that it is difficult
to go significantly beyond the graph families studied above, by
deriving NP-hardness results on slightly more general graph
families already (graphs of treewidth three). We also provide
a polynomial algorithm for shortest routes on any constant
treewidth, as long as the number of waypoints is also constant,
with the added feature that the flow-sizes may change after each
waypoint traversal. Additionally, we present various algorithmic
and complexity results on special directed graphs, in particular
on special bidirected graphs such as so-called cactus topologies.

B. State-of-the-Art and Novelty

The recent article by Amiri et al. [14] provided a first chart
for this waypoint routing problem in general graph classes.
Their focus is on providing intractability results and methods
for few waypoints, but they present no algorithms to handle
an arbitrary number of waypoints beyond trees and DAGs.

The goal of this paper is to chart the algorithmic landscape
of special graph classes, motivated by often highly structured
computer networks. Our main results on undirected graphs are
presented in Table I, but we also provide further new insights
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Fig. 1. In this introductory example, the task is to route the flow of traffic
from the source s to the destination t via the waypoint w. When routing via
the solid red (s, w) path, followed by the solid blue (w, t) path, the combined
walk length is 5 + 3 = 8. A shorter solution exists via the dotted red and
blue paths, resulting in a combined walk length of 2 + 2 = 4. Observe that
when the waypoint would be on the node x, no node-disjoint path can route
from s to t via the waypoint. Furthermore, some combinations can violate
unit capacity constraints, e.g., combining the solid red with the dotted blue
path induces a double utilization of the link from v to t.



# Waypoints Feasible Algorithms Known Hardness Demand Change Optimal Algorithms Demand Change Hardness

Arbitrary P: Outerplanar (tw ≤ 2)
Corollary 2

Strongly NPC: tw ≤ 3
Theorem 4

P: Tree (equivalent to tw of 1)
[14]

NPC: Unicyclic (tw ≤ 2)
Theorem 4

Constant P: General graphs
[14]

P: General graphs
[14]

P: Constant treewidth tw ∈ O(1)
Theorem 3

Strongly NPC: General graphs
[14]

TABLE I
OVERVIEW OF THE COMPLEXITY LANDSCAPE FOR WAYPOINT ROUTING IN SPECIAL UNDIRECTED GRAPHS.

w.r.t. algorithms for special directed graphs, whereas [14] only
provided NP-hardness results on general directed graphs.

C. Organization

The remainder of this paper is organized as follows. Sec-
tion II introduces the problem and model more formally, along
with studying the example of a single waypoint. Our in-depth
algorithmic results are presented in Section III, whereas the
complementing intractability proofs can be found in Section IV.
We present further related work in Section V and conclude in
Section VI.

II. THE PROBLEM AND MODEL

We study computer networks, modeled as connected undi-
rected, directed, or bidirected [15] graphs G = (V,E) with
|V | = n nodes (switches, middleboxes, routers) and |E| = m
links, where each link e ∈ E has a capacity c : E → N>0 and
a weight (cost) χ : E → N>0. Bidirected graphs (also known
as, e.g., Asynchronous Transfer Mode (ATM) networks [16] or
symmetric digraphs [17]) are directed graphs with the property
that if a link e = (u, v) exists, there is also an anti-parallel
link e′ = (v, u) with c(e) = c(e′) and χ(e) = χ(e′).

Given (1) a (bi/un)directed graph, (2) a source s ∈ V and
a destination t ∈ V , and (3) a set of k waypoints in V , the
waypoint routing problem asks for a flow-route R (i.e., a walk)
from s to t that (i) visits all waypoints in W and (ii) respects
all link capacities. Without loss of generality, we normalize
link capacities to the size of the traffic flow, removing links
of insufficient capacity. Unless specified otherwise, we will
assume at most one waypoint per node, though it may be
that s = t. Waypoints may also change the traffic rate, where
the demand can be denoted as follows: from s to w1 by d0,
from w1 to w2 by d1, etc. That said, if not stated explicitly
otherwise, we will assume that d0 = d1 = . . . = dk = 1, and
refer to this scenario as flow-conserving.

The waypoints depend on each other and must be traversed
in a pre-determined order: every waypoint wi may be visited at
any time in the walk, and as often as desired (while respecting
link capacities), but the route R must contain a given ordered
node sequence s, w1, w2, . . . , wk, t. For example, in a network
with stringent dependability requirements, it makes sense to
first route a packet through a fast firewall before performing a
deeper (and more costly) packet inspection.

We are interested both in feasible solutions (respecting
capacity constraints) as well as in optimal solutions. In the
context of the latter, we aim to optimize the cost |R| of the

route R, i.e., we want to minimize the sum of the weights of
all traversed links.

Lastly, for ease of reference, we might denote the undirected
waypoint routing problem by WRP, the directed version by
DWRP, and the bidirected version by BWRP.

Before directly presenting our algorithms and complexity
results, we start with a warm-up, considering the case of a
single waypoint in bidirected networks.

A. An Introductory Case Study: A Single Waypoint

We first examine the case of a single waypoint w, which
requires finding a shortest s− t route through this waypoint.
Amiri et al. [14] already 1) provided a polynomial-time
algorithm for undirected graphs and 2) showed the NP-hardness
for directed graphs. We thus complement their results by
providing an algorithm for bidirected graphs as an introduction.

One waypoint: greedy is optimal. Simply taking two shortest
paths (SP s) P1 = SP (s, w) and P2 = SP (w, t) in a greedy
fashion is sufficient, i.e., the route R = P1P2 is always feasible
(and thus, also always optimal in regards to total weight).

Suppose this is not the case, that is, P1 ∩ P2 6= ∅, possibly
violating capacity constraints. Among all nodes in P1 ∩P2, let
u and v be, resp., the first and the last nodes w.r.t. to the order
of visits in R. Let P xy

i denote the sub-path connecting x to y in
Pi. Thereby we have R = P1P2 = P su

1 Puv
1 P vw

1 Pwu
2 Puv

2 P vt
2

(Fig. 2). Let P̄ be the reverse of any walk P obtained by
replacing each link (x, y) ∈ P with its anti-parallel link (y, x).
Observe that for P ′1 = P su

1 P̄wu
2 and P ′2 = P̄ vw

1 P vt
2 we have

that P ′1 is at most as long as P1 (because P1 is shortest) and
P ′2 is shorter than P2 (by Puv), a contradiction to P2 being a
shortest path.

s u v

w

t
P su

1
Puv

1,2

P vw
1

P
vt

2

P
wu
2

P̄ w
u2

Fig. 2. The directed path from u to v is traversed two times in R.

Two waypoints: can be infeasible! While we saw that it is
always possible to route through a single waypoint in bidirected
graphs, already two waypoints can prevent a valid solution.

In the example of Figure 3, an s− t route traversing first w1

and w2 second must use the link from w2 to w1 twice. Hence,
the feasibility of a solution depends on the link capacity.
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Fig. 3. In this unit capacity network, the task is to route the flow of traffic
from s to w1, then to w2, and lastly to t. To this end, the link from w2 to
w1 must be used twice.

After this brief introduction, we next study algorithms and
complexity beyond the simple case of a single waypoint.

III. EXPLORING COMPUTATIONAL TRACTABILITY

Computer networks often have very specific structures: for
example, many data centers are highly structured (e.g., are
based on Clos topologies [18]), but also enterprise and router-
level AS topologies for example, while being less symmetric,
often come with specific properties (e.g., are sparse). In this
light, the general hardness results provided in [14] may be too
pessimistic: in practice, much faster algorithms may be possible
which are tailored toward and leverage the specific network
structure. For example, as already pointed out in [14], the
waypoint routing problem can be solved quickly on undirected
tree or DAG topologies

Accordingly, in this section we explore the waypoint routing
problem on specific graph families. In particular, we are
interested in sparse graphs. We conducted a small empirical
study using Rocketfuel topologies [19] and Internet Topology
Zoo graphs [20], and found that they often have a low path
diversity: almost half of these graphs are outerplanar, and one
third are cactus graphs:
• a graph is outerplanar if it has a planar drawing s.t. all

vertices are on the outer face of the drawing [21]
• a graph is a cactus graph if any two simple cycles share

at most one node [22] (every cactus graph is outerplanar)

A. General Observations and Reductions

As first pointed out in [14] for undirected graphs, there
is a direct algorithmic connection from the link-disjoint path
problem to BWRP with unit capacities. By setting s1 = s, t1 =
w1, s2 = w1, t2 = w2, . . . , a k+1 link-disjoint path algorithm
also solves unit capacity BWRP for k waypoints. This method
can be extended to general capacities via a standard technique,
by replacing each link of capacity c(e) with bc(e)c parallel
links of unit capacity and identical weight.

Hence, we can apply the algorithm from Jarry and
Prennes [17], which solves the feasibility of the link-disjoint
path problem on bidirected unit capacity multigraphs for a
constant number of paths in polynomial runtime.

Theorem 1: Let k ∈ O(1). Feasible solutions for BWRP
can be computed in polynomial time.

The optimal solution already for few link-disjoint paths still
puzzles researchers on bidirected graphs, but the problem seems
to be non-trivial on undirected graphs as well: while feasibility
for a constant number of link-disjoint paths is polynomial in
the undirected case as well [23],[24], optimal algorithms for 3
or more link-disjoint paths are not known, and even for 2 paths

the best result is a recent randomized high-order polynomial-
time algorithm [25]. For directed graphs, already 2 link-disjoint
paths pose an NP-hard problem [26].

Furthermore, leveraging our connection to disjoint path
problems again, we can also make the following observation,
which we will use for special directed graphs and a non-constant
amount of waypoints on some undirected graphs.

Observation 1: For any graph family on which the k + 1
disjoint paths problem is polynomial-time solvable, we can
also find a route through k waypoints in polynomial time on
graphs of unit link capacity.

Thus, it immediately follows from [27] that the single
waypoint routing problem is polynomial time solvable on
semicomplete directed graphs, where a directed graph is called
semicomplete, if there is at least one directed link between
every pair of nodes.

Another case are directed graphs with constant independence
number α, where α = α(G) denotes the maximum size of
an independent set in G. Then, for constant α, k ∈ O(1), a
polynomial time DWRP algorithm exists, using [28].

Having a well-connected graph helps as well: On random
undirected graphs G, where the set of 2k endpoints are chosen
by an adversary (e.g., to compute a waypoint routing), it holds
with high probability that the k paths exists, if k ∈ O(n/ log n)
and the minimum degree of G is some sufficiently large
constant. The paths can be constructed in randomized time of
O(n3) [29]. Similar results also hold on Expander graphs [30].

B. Algorithms: Parametrized by Treewidth I/II

For a further example, on bounded treewidth graphs, and as
long as the number of waypoints k is logarithmically bounded,
the problem is polynomial time solvable, because the link-
disjoint paths problem is polynomial time solvable.

We briefly introduce the notion of treewidth as in [31],
with alternate analogous descriptions and further examples
provided in, e.g., Bodlaender and Kloks in [32], [33], [34]:
Given an undirected graph G = (V,E), a tree decomposition
T = (T,X) of G is a bijection between a collection X and a
tree T , s.t. every element of X is a set of nodes from V with: 1)
each graph node is contained in at least one tree node, which is
in turn called a bag (separator), 2) the tree nodes containing a
node v form a connected subtree of T , and 3) nodes are adjacent
in the graph only when the corresponding subtrees have a
node in common. The width of T = (T,X) is the number of
elements in the largest set in X minus 1. The treewidth tw
is the minimum width over all tree decompositions of G. We
will make use of these definitions again in Section III-D.

For a treewidth decomposition of width ≤ tw and k link-
disjoint paths, Zhou et al. [35] provide an algorithm with a
runtime of

O
(
n((k + tw2)ktw(tw+1)/2 + k(tw + 4)2(tw+4)k+3

)
. (1)

As a constant-factor approximation of treewidth decompositions
can be obtained in polynomial time [36], also beyond constant
treewidth, it is therefore possible to solve the waypoint
routing problem for any values of t and k s.t. Equation (1)



stays polynomial. E.g., tw, k ∈ O(
√

log n/ log log n), due
to f(n)g(n) = exp(ln(f(n)g(n))) = exp(g(n) ln(f(n))).
This idea can also be extended to polylogarithmic functions
f(n), g(n) ∈ polylog(n), obtaining quasi-polynomial runtimes
of 2polylog(n) ∈ QP. Quasi-polynomial algorithms fit sort of
in between polynomial and exponential algorithms and it is
widely believed that NP-complete problems are not in QP [37].

Unit capacities can be modeled by introducing parallel links
and in particular subdividing them by placing auxiliary nodes
in the center. For each such new path of length three, we can
add the three nodes of the path to a new bag, and connect it to
the original bag. Unless the graph is a tree (in which case the
treewidth increases by one), the treewidth remains unchanged.

We thus obtain the following corollary, which does not find
shortest routes and is not applicable to demand changes:

Corollary 1: In undirected graphs with a treewidth of tw
and k waypoints, we can solve the waypoint routing problem
in polynomial time for the following combinations:
• Constant tw ∈ O(1), logarithmic k ∈ O(log n)
• tw ∈ O(

√
log n), constant k ∈ O(1)

• tw, k ∈ O
(√

log n/ log log n
)
.

In quasi-polynomial time, we can solve:
• tw, k ∈ polylog(n) .

Nonetheless, note that the non-parallel unit capacity obser-
vation is of limited use in general: for a negative example, an
outerplanar graph requires nodes to touch the outer face, how-
ever, this property will be lost during the graph transformation.
Yet, as we will show in the following, solutions for outerplanar
graph exist, even in arbitrarily capacitated networks. We note
that outerplanar graphs have a treewidth of tw ≤ 2.

C. Algorithms: Outerplanar and Cactus Graphs

Undirected Outerplanar Graphs. We first prove the follow-
ing lemma, which we then use for outerplanar graphs.

Lemma 1: Let I be the class of undirected WRP with
1) the graph G is planar (w.l.o.g. we have a planar drawing),
2) the maximum capacity is cmax, w.l.o.g. n ≥ cmax ∈ N,
3) s, t and all waypoints touch the outer face F of G,
4) for every node v 6∈ F , Σe : {u,v}∈E(G)c(e) is even.

Then the feasibility of the ordered waypoint routing problem
in the class I is decidable in time O(n2), and the construction
of a feasible solution taking time O(n2 · c2max).

Proof: Let I ∈ I be an instance of the problem.
Suppose s, t are the source and terminal and w1, . . . , wk

are waypoints. Define w0 = s, wk+1 = t. We construct an
equivalent instance of the link-disjoint paths problem as follows.
Replace each link e = {u, v} with capacity c by c ≤ cmax

links with capacity 1, then subdivide those links once, i.e.,
the number of nodes is in O(m · cmax). In the newly created
instance of link-disjoint paths problem:

1) The input graph is planar,
2) all terminal pairs touch the outer face,
3) the degree of every node not on the outer face is even.

If only condition 1) and 2) hold, the problem is NP-hard [38].
But for this class of link-disjoint paths problems, there are
polynomial time algorithms [39] with the following properties:
Let b be the number of nodes on the outer face and n′ be
the total number of nodes. Because the graph is planar we
have m = O(n) and n′ = O(n). The feasibility of the link-
disjoint path problem can be tested in O(bn′) and constructing
the paths can be done in O(n′2) which gives us the desired
polynomial time solutions for the original problem.

This directly implies the following result:

Corollary 2: In undirected outerplanar graphs with a
maximum link capacity of cmax, the waypoint routing problem
is decidable in time O(n2), with an explicit construction
obtainable in time O

(
n2 ·min

{
n2, c2max

})
.

A solution to the shortest waypoint routing problem cannot
be obtained via the same reduction: Brandes et al. [40] showed
the minimum total length link-disjoint path problem to be
NP-hard on graphs satisfying the three conditions mentioned
above, already when the maximum degree is at most 4.

For bidirected cactus graphs of constant capacity, the
ordered waypoint routing problem can be optimally solved
in polynomial time, as we show next.
Bidirected Cactus Graphs The difficulty of BWRP lies in
the fact that the routing from wi to wi+1 can be done along
multiple paths, each of which could congest other waypoint
connections. Hence, it is easy to solve BWRP optimally (or
check for infeasibility) on trees, as each path connecting two
successive waypoints is unique.

Lemma 2: BWRP can be solved optimally in polynomial
time on trees.

For multiple path options, the problem turns NP-hard though
(Theorem 6). To understand the impact of already two options,
we follow-up by studying rings.

Lemma 3: BWRP is optimally solvable in polynomial time
on bidirected ring graphs where for at least one link e holds:
c(e) ∈ O(1).

Proof: We begin our proof with c(e) = c(e′) = 1. Observe
that every routing between two successive waypoints has two
path options P , clockwise or counter-clockwise. We assign
one arbitrary path Pe to traverse e, and another arbitrary path
Pe′ to traverse e′. By removing the fully utilized e and e′, the
remaining graph is a tree with two leaves, where all routing is
fixed, cf. Lemma 2.

We now count the path assignment possibilities for e, e′:
by also counting the “empty assignment”, we have at most
(n+1)n options, where the optimal routing immediately follows
for each option. For these O(n2) possibilities, we pick the
shortest feasible one. I.e., BWRP can be solved optimally in
polynomial time on rings with unit capacity. To extend the
proof to constant capacities c(e) ∈ O(1), we use an analogous
argument, the number of options for assignments to e and e′

are now O
(
n2c(e)

)
∈ P. Thus, the lemma statement holds.

We now focus on the important case of cactus networks.
As mentioned earlier, our empirical study using the Internet
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Fig. 6. The permutation induced on the ring is
w1w′

2w
′
3w4w5. In the sub-problem, we have

s = t = w1. The numbers represent the order
of node traversal in the optimal route.

Topology Zoo1 data set shows that one third are cactus graphs.
Theorem 2: BWRP is optimally solvable in polynomial

time on cactus graphs with constant capacity.
Proof: The idea is to 1) shrink the cactus graph down

to a tree, 2) see if for the relevant subset of waypoints (to
be described shortly) the feasibility holds on that tree, 3)
reincorporate the excluded rings and find the optimal choice
of path segments within each ring, and 4) construct an optimal
route by stitching together the sub-routes obtained from the
tree and the segments from each ring.

Let C be the cactus graph (Fig. 4) and TC be the tree obtained
after contracting all the links on each rings. As a result of this
link contraction, those waypoints previously residing on rings
are now replaced by new (super) waypoints in TC (Fig. 5).
Each super node represents either a subtree of adjacent rings
or just an isolated ring. Let W ′ denote the waypoints in TC .
Observe that any feasible route in C through W corresponds
to one unique feasible route in TC through nodes in W ′. Next,
we show that either the feasible route in TC (if exists) can be
expanded to an optimal route for C, or there is no feasible route
in C at all. If TC is not feasible then we are done. Otherwise, let
R be the (unique) route in this tree. For each ring, R induces
some endpoints (Fig. 6), one endpoint on each node that is
either a) the joint of TC and the ring, or b) the joint with its
adjacent rings. Now we focus on the subproblem induced by
this ring and the new waypoint set W ′′ (to be specified) as
follows.

For each endpoint that is visited by R add a waypoint
to W ′′. Then, using the algorithm described in the proof of
Lemma 3, find an optimal route Rring visiting all the nodes
in W ′′ respecting the order imposed by R. If no such route
exists, the instance is not feasible. Otherwise, remove from R
every occurrence of the super node that represents this ring
to get a disconnected route. For each missing part, reconnect
the endpoints using the segment of Rring restricted to these
endpoints. Repeat this for every ring; denote the resulting route
as R′.

Finally, we argue that R′ is optimal. This is the case because
its pieces were taken from sets of sub-routes, where each
set, covers a disjoint–or more precisely, node-disjoint up to
endpoints–component of C. Moreover, the set of sub-routes
taken from an individual (disjoint) component (i.e. tree or ring)

1 See http://www.topology-zoo.org/.

is optimal on that component. Therefore the total length is
optimal.

We next turn our attention to graphs of constant treewidth.

D. Algorithms: Parametrized by Treewidth II/II

Let us quickly recap the results on undirected graphs of
bounded treewidth tw found so far:

1) For constant tw, we can compute walks for k ∈ O(log n)
waypoints, but those walks will not be optimal (shortest)
and the flow has to be of unit size. The same holds for
outerplanar graphs (a class with tw = 2) for k ∈ O(n).

2) For tw = 1 (≡ trees), one can compute shortest walks
with demand changes, even for k ∈ O(n) [14].

As pointed out in the beginning of Section III, many network
topologies have low treewidth, especially in the wide-area and
enterprise context (e.g., the Rocketfuel and Topology Zoo
networks [19]). We now tackle a problem we thus deem to
be realistic: in practice, the number of waypoints visited by a
given flow is likely to be a small constant.

Theorem 3: In undirected graphs with bounded treewidth
tw ∈ O(1) and a fixed number k ∈ O(1) of waypoints, we
can solve the shortest waypoint routing problem with demand
changes in a runtime of O(n).

Proof: Our proof will be via dynamic programming of
a nice tree decomposition [41] T = (T,X) of G. Using the
ideas and terminology of Kloks [34], a tree decomposition
is nice if each bag of T is either a leaf bag, a forget bag
(one node is removed from the separator), an introduce bag (a
node is added), or a join bag (its two children q1, q2 contain
the same nodes). For bags b, we thus define signatures σb,
representing already computed solutions of b, such that by
dynamically programming T bottom-up, we obtain an optimal
walk W at the root bag of T , if such a W exists.

In every optimal solution W , each path from a wi to a wi+1

will cross each separator b of G at most tw times. Due to
optimality, these individual paths will traverse every node at
most once. Hence, a signature σb only needs to represent the
at most k · tw crossings (endpoints) of partial paths through
the subgraph of b, and the link utilizations these paths use in
E(b). We additionally store if a path, for from wi to wi+1,
with only one endpoint in the signature, contains either wi

or wi+1. Note that at most one such path each will exist at
any time due to optimality. Due to k,tw ∈ O(1), we have



only O(1) different possible signatures for each bag b, with
each signature containing only O(1) elements. As common,
we assume that we can perform standard operations (additions,
comparisons etc.) of numerical values in constant time, else, an
extra logarithmic factor needs to be included in the total runtime.
We now present the required algorithms for the induction.

• Leaf bags b: In constant time, we can generate all valid
signatures, containing at most k paths (each without any
links). The only restriction is that if v ∈ V (b) is a
waypoint wi, its paths to wi−1 and wi+1 must exist.

• Forget bags b: Let v be the node s.t. for the child q of b
holds: V (q) \ {v} = V (b). If v is not a waypoint, then
the valid signatures of b are exactly those of q which
do not use v as endpoints. If v is a waypoint wi, then
additionally must hold: v must be an endpoint of a path
from wi−1 and the endpoint of a path to wi+1.

• Join bags b: We first 1) describe the program and then 2)
prove its correctness. 1): Given two valid signatures of b’s
children q1, q2, we perform all possible concatenations,
of endpoints of paths for the same wi to wi+1, at the
separator nodes V (b), checking a) that the union of the
link utilizations in E(b) respect the link capacities and b)
that no loops are created (we know the endpoints of each
(sub-)path and the their link utilizations in E(b), if they
share a link outside E(b), a signature of minimum size
will not), which results in valid signatures σb of b. 2):
Assume we missed some valid signature σb of b: Given σb,
we split the paths across the separator, resulting in valid
signatures σq1 , σq2 and their subpaths, a contradiction. For
an illustration of this procedure, we refer to Figure 7.

• Introduce bags b: Again, we first 1) describe the
algorithm and then 2) prove its correctness. 1): For each
signature σq of the child q of b, where V (q)∪{v} = V (b),
we first generate all possible combinations of empty
paths at v. Then, we distribute the link set of E(b)
over the endpoints in all possible variations, checking
if each distribution can generate some valid signature
by possibly moving the endpoints of the subwalks (and
possibly, concatenating some). If the answer is yes, we also
generate all possible signatures out of these distributions,
again by allowing to move the endpoints and allowing to

s1 s2 s3

w1 u

v w2

V (b)

Fig. 7. In this example, the separator is shown in the middle, containing
the nodes V (b) = V (q1) = V (q2) = {s1, s2, s3}. By splitting the path
from w1 to w2 along the separator, we obtain multiple paths per side, their
number being bounded by the size of the separator. Observe that when two
sub-paths, between the same set of waypoints, share a node, this node must
be an endpoint for both; otherwise, minimality is violated.

concatenate paths, always respecting capacity constraints.
As we only handle O(1) elements, we only perform O(1)
operations (covered below). 2): Again, assume we did not
program some valid signature σb of b. We then obtain
a valid signature of q by removing v, splitting all paths
that traverse it into two, or, if they have v as an endpoint,
cutting off v, or, if the path only contained v, by removing
these paths. As the reverse operation will be performed
by the prior algorithm, σb would have been obtained.

Each of the above programs be be run in a time of O(1),
assuming constant size b,tw, k ∈ O(1).

Furthermore, we implicitly assumed that for each signature,
we also store a representative set of paths s.t. their total length
is minimized. I.e., when generating signatures multiple times
for introduce and join nodes, we only keep representatives of
minimum total length. Hence, after dynamically programming
the nice tree decomposition T bottom-up, we consider all
solutions at the root node: If an optimal solution exists, it will
be represented by a signature, and thus, we can choose a walk
through the waypoints of minimum length.

It remains to prove the desired runtime of O(n): For constant
treewidth tw ∈ O(1), we can obtain a nice tree decomposition
of width O(tw) with O(n) bags in a runtime of O(n) using
the methods from [34], [36]. As the dynamic program requires
time O(1) for each of the O(n) bags, and as each of the O(1)
possible solutions can be checked in time O(n), the claim
follows.

IV. HARDNESS

In the previous Section III we presented various polynomial-
time algorithms for undirected and directed graphs. In this
section we present complementing hardness results, to clar-
ify the corresponding intractability bounds. In comparison,
previous work [14] provided NP-hardness results for general
graphs, leaving the finer details where the border lays between
polynomial-time algorithms and intractability to future work.

We begin by studying the treewidth of undirected graphs
in Section IV-A, followed by the NP-hardness on (un)directed
unicyclic graphs under flow-size changes in Section IV-B.
Lastly, we investigate general bidirected graphs in Section IV-C,
where hardness already strikes without flow-size changes, as
in Section IV-A on undirected graphs.

A. Hardness: Parametrized by Treewidth

We have shown that for a large graph family of treewidth at
most 2, the outerplanar graphs (which also include cactus
graphs for example), the routing paths can be computed
efficiently on undirected graphs. This raises the question
whether the problem can be solved also on graphs of treewidth
larger than 2, or at least for all graphs of treewidth at most 2.
While the latter remains an open question, in the following we
show that problems on graphs of treewidth 3 (namely series-
parallel graphs with an additional node connected to all other
nodes) are already NP-hard in general.



Theorem 4: The problem of routing through an arbitrary
number of waypoints is strongly NP-complete on undirected
graphs of treewidth at most 3.

Proof: We reduce the ordered waypoint routing problem
in graphs of treewidth at most 3 from the link-disjoint paths
problem in series-parallel graphs, the latter being strongly
NP-complete [42].

Let I be an instance of the link-disjoint paths problem
in a series parallel graph G with terminal pairs TI =
{(s1, t1), . . . , (sk, tk)}. We construct a new instance I of the
ordered waypoint problem as follows. Create a graph G′ := G,
then add one new node v to G′ and links {ti, v}, {sj , v}
for i, j ∈ [k], j 6= 1, i 6= k.

For simplicity, set for now s := s1, w1 := t1, w2 :=
v, w3 := s2, w4 := t2, w5 := v, . . . , t := tk, i.e., the order
of waypoints is s1, t1, v, . . . , v, si, ti, v, si+1, ti+1, v, . . . , tk,
with 3k− 2 waypoints in total. I.e., v “hosts” k− 1 waypoints,
with a degree of 2(k−1). We will show later in the proof how
to ensure at most one waypoint per node.
Claim: In any solution for I, the union of the k − 1 link-
disjoint walks from si via v to ti+1 occupy all links incident
to v.
Proof: Any walk from si via v to ti+1 must leave and enter v,
using two links. Hence, the union of all these k−1 link-disjoint
walks occupy all 2k − 2 links incident to v. �

We can now prove the theorem: If I is a yes-instance, then I
is a yes-instance as well: We take the k si, ti-paths from I ,
connect them in index-order with the k − 1 paths ti, v, si+1,
and obtain the desired ordered waypoint routing.

It is left to show that if I is a yes-instance, then I is a
yes-instance as well: Let I be a yes-instance. Define the path
from si to ti as in I . As these paths do not use v or any of the
links adjacent to it (otherwise the capacity of one of these links
would be exceeded), these paths show that I is a yes-instance.

On the other hand, the treewidth of G′ is at most the
treewidth of G plus 1 (we can just put v in all bags of an optimal
tree decomposition of G). To obtain at most one waypoint on
v, we create k − 1 cycles of length four, placing a waypoint
on each, and merging another node with v. This construction
does not increase the treewidth and also retains earlier proof
arguments. As series-parallel graphs have a treewidth of at
most 2 [43, Lemma 11.2.1], G′ has a treewidth of at most 3.
As the problem is clearly in NP, with the reduction being
polynomial, the proof is complete.

We conjecture that it is possible to directly modify the proof
presented in [42], to prove that the feasibility of the waypoint
routing problem is hard even in series-parallel graphs.

B. Hardness: Flow-size changes and a single cycle

In case of non-flow conserving waypoints, NP-hardness
strikes earlier already, namely on unicyclic graphs, which
contain only one cycle, and thus have tw ≤ 2.

Theorem 5: On undirected unicyclic graphs in which
waypoints are not flow-conserving, computing a route through
O(n) waypoints is weakly NP-complete, even if all waypoints

can just increase (or, just decrease) the flow size by at most a
constant factor.

Proof: Reduction from the weakly NP-complete PARTI-
TION problem [44], where an instance I contains ` non-negative
integers i1, . . . , i`,

∑`
j=1 ij = S, with the size of the binary

representation of all integers polynomially bounded in `.
We begin with the case that waypoints can change the flow

size arbitrarily. W.l.o.g., let ` be even and i1 ≤ i2 ≤ · · · ≤ i`.
We create two stars (denoted left and right star) with 1 + `/2
leaf nodes each, where all links have a capacity of S. We
connect both star center nodes in a cycle, with the cycle links
having a capacity of S/2 each, respectively.

Next, we place s, here also identified as w1, on a leaf of
the left star and t on a leaf in the right star. To distribute the
remaining `− 1 waypoints w2, . . . , w`, corresponding to the
integers, we place the ones with even indices on leaves in the
left star, and those with odd indices in the right star.

Suppose the routing starts with a size of i1, is changed to
i2 by w2 and so on. Then, solving the PARTITION instance I
is equivalent to computing a waypoint routing, as the paths
going along the cycle have to be partitioned into two sets, each
having a combined demand of S/2.

So far, we assumed that waypoints can change the flow size
arbitrarily – but hardness also holds if each waypoint can just
increase (or, just decrease) the flow size by a constant amount.
In order to do so, we replace the leaf nodes of the stars with
paths of O(logS) waypoints, which are used to increase the
demands to the desired size.

The directed graph case is analogous by putting all waypoints
to one star, creating the same amount of intermediate dummy
waypoints in the other star, which do not change the flow size,
and replacing all undirected links with two directed links of
opposite directions and identical capacity.

Corollary 3: On directed graphs, with the underlying
undirected graph being unicyclic and where waypoints are not
flow-conserving, computing a route through O(n) waypoints
is NP-complete, even if all waypoints can just increase (or,
just decrease) the flow size by at most a constant factor.

For these two proofs, we used flow sizes that can be
exponential in the graph size (binary encoded). Nonetheless,
we refer to Table II, which shows that the problem also stays
strongly NP-complete on general graphs.

C. Hardness: Bidirected graphs without flow-size changes

It follows from the earlier Corollary 3 that waypoint routing
is already NP-hard on unicyclic bidirected graphs, when
allowing flow-size changes. It remains to study NP-hardness
in the case that the flow-size remains unchanged:

Theorem 6: Solving BWRP optimally is NP-hard.
Proof: Reduction from the NP-hard link-disjoint path

problem on bidirected graphs G = (V,E) [16]: given k
source-destination node-pairs (si, ti), 1 ≤ i ≤ k, are there
k corresponding pairwise link-disjoint paths?

For every such instance I , we create an instance I ′ of BWRP
as follows, with all unit capacities: Set s = s1 and t = tk,



# Waypoints Feasible Optimal Demand Change Feasible Optimal

Undirected
1 P Strongly NPC

constant P ?
arbitrary Strongly NPC

Directed
1

Strongly NPCconstant
arbitrary

TABLE II
OVERVIEW OF THE COMPLEXITY LANDSCAPE FOR WAYPOINT ROUTING IN GENERAL GRAPHS AS PROVIDED BY [14].

also setting waypoints as follows: w1 = t1, w3 = s2, w4 = t2,
w6 = s3, w7 = t3, . . . , w3k−3 = sk. We also create the
missing k−1 waypoints w2, w5, w8, . . . , w3k−4 as new nodes
and connect them as follows, each time with bidirected links
of weight γ: w2 to w1 = t1 and w3 = s2, w5 to w4 = t2 and
w6 = s3, . . . , w3k−4 to w3k−3 = sk and w3k−5 = tk−1. I.e.,
we sequentially connect the end- and start-points of the paths.

Observe that BWRP is feasible on I ′ if I is feasible: We
take the k link-disjoint paths from I and connect them via the
k − 1 new nodes in I ′.

We now set γ to some arbitrarily high weight, e.g., 3k times
the sum of all link weights. I.e., it is cheaper to traverse every
link of I even 3k times rather than paying γ once. Thus, if I
is feasible, the optimal solution of I ′ has a cost of less than
2 · k · γ.

Assume I is not feasible, but that I ′ has a feasible solution
R. Observe that a feasible solution of I ′ needs to traverse the
k− 1 new waypoints, i.e., has at least a cost of 2(k− 1)γ. As
I was not feasible, we will now show that traversing every new
waypoint w2, w5, . . . only once is not sufficient for a feasible
solution of I ′. Assume for contradiction that one traversal of
w2, w5, . . . suffices: for each of those traversals of such a wj , it
holds that it must take place after traversing all waypoints with
index smaller than j. Hence, we can show by induction that
the removal of the links incident to the waypoints w2, w5, . . .
from R contains a feasible solution for I . Thus, at least one
of the waypoints w2, w5, . . . must be traversed twice, i.e., R
has a cost of at least 2 · k · γ.

We can now complete the polynomial reduction, by studying
the cost (feasibility) of an optimal solution of I ′: if the cost
is less than 2 · k · γ, I is feasible, but if the cost is at least
2 · k · γ (or infeasible), I is not feasible.

While many BWRP instances are not feasible (already
in Figure 3), we conjecture that the feasibility of BWRP
with arbitrarily many waypoints is NP-hard as well. This
conjecture is supported by the fact that the analogous link-
disjoint feasibility problems are NP-hard on undirected [44],
directed [26], and bidirected graphs [16], also for undirected
and directed ordered waypoint routing, see Table II.

V. RELATED WORK

While waypoint routing has recently received much attention
in the literature, especially in the context of service function
chaining [7], [9], [45], [46], we are not aware of any systematic
study of the underlying algorithmic problem besides [14] which

however does not consider special network families. We provide
Table II for an overview of their results on general graphs.

In particular, our work is different from existing literature on
the computation of routes through unordered waypoints [31]:
the computation of shortest (link- and node-disjoint) paths and
cycles through a set of k waypoints is a classic problem [47]
which has traditionally been motivated by many different appli-
cations. Well-known results include, e.g., linear-time algorithms
for k = 3 waypoints [26], [48] polynomial-time algorithms
for constant k [24], polynomial-time deterministic algorithms
to compute feasible paths for small k = O((log logn)1/10),
or a randomized algorithm (based on algebraic techniques) to
compute a shortest simple cycle through a given set of k nodes
or links in an n-node undirected network. These approaches
however cannot be applied to compute routes through ordered
waypoints.

Our work is also different from existing work which
focuses on how to admit and allocate multiple walks, e.g.,
using randomized rounding and tolerating some capacity
augmentation [49], [50], [51]. There are also extensions to
more complex requests such as trees [51], [52]. In contrast, we
in this paper focus on the allocation of a single walk, without
violating capacity constraints.

Bibliographic Note. A first version of the results on bidirected
graphs was presented at the Algocloud workshop [53].

VI. CONCLUSION

Waypoint routing is emerging as an important concept
in various applications, however, the underlying algorithmic
problem is not well-understood. With this paper, we have
made a first step to put the waypoint routing problem into
perspective. We presented a comprehensive characterization
of the algorithmic complexity of the problem regarding the
“special” network families which support a polynomial-time
solution. In particular, we presented algorithms and hardness
results for networks of different treewidth, and discussed
implications of more directed networks. In our future work,
we aim to investigate the implications of waypoint routing on
specific applications, in particular, Traffic Engineering.
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