
CASM-IR: Uniform ASM-Based Intermediate
Representation for Model Specification,

Execution, and Transformation

Philipp Paulweber, Emmanuel Pescosta?, and Uwe Zdun

University of Vienna
Faculty of Computer Science

Research Group Software Architecture
Währingerstraße 29, 1090 Vienna, Austria

{philipp.paulweber,uwe.zdun}@univie.ac.at

Abstract. The Abstract State Machine (ASM) theory is a well-known
formal method, which can be used to specify arbitrary algorithms, ap-
plications or even whole systems. Over the past years, there have been
many approaches to implement concrete ASM-based modeling and spec-
ification languages. All of those approaches define their type systems
and operator semantics differently in their internal representation, which
leads to undesired or unexpected behavior during the modeling, the ex-
ecution, and code generation of such ASM specifications. In this paper,
we present CASM-IR, an Intermediate Representation (IR), designed to
aid ASM-based language engineering which is based on a well-formed
ASM-based specification format. Moreover, CASM-IR is conceptualized
from the ground up to ease the formalization of ASM-based analysis and
transformation passes. The feasibility of CASM-IR solving the uniform
ASM representation problem is depicted. Based on our CASM-IR imple-
mentation, we were able to integrate a front-end of our statically inferred
Corinthian Abstract State Machine (CASM) modeling language.
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1 Introduction

In 1995 the Abstract State Machine (ASM) theory has been described by Gure-
vich [1] as a formal method based on transition rules, states and algebraic func-
tions. ASMs are used to describe formally the evolving of function states in a
step-by-step manner. This also explains why ASM theory was formerly called
Evolving Algebra [2]. Based on the ASM programming language model from
Gurevich, several tools with Domain-Specific Languages (DSLs) were created to
solve application-specific problems, which were summarized by Börger [3].
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The diversity of ASM-based applications1 is widespread, ranging from for-
mal specification semantics of programming languages, such as those for Java by
Stark et al. [4] or VHDL by Sasaki [5], compiler back-end verification by Lezuo
[6], software run-time verification by Barnett and Schulte [7], software and hard-
ware architecture modeling e.g. of Universal Plug and Play (UPnP) by Glässer
and Veanes [8], or even Reduced Instruction Set Computing (RISC) designs by
Huggins and Campenhout [9].

Despite this diversity in applications, over the past years, different ASM-
based language dialect were created to cover single or multiple application spe-
cific problem domains. This might not be perceived as a problem, as many
language users [10] like to choose among multiple language dialects. The prob-
lem however is that the language engineers [10] craft and design those languages
according to the needs of the language user and bind their implementations to
a specific execution environment technology, instead of generalizing the mathe-
matical foundation of the ASM-based languages in an independent model rep-
resentation. This, in turn, means that those languages are difficult to integrate
with each other [11], cannot easily be based on a common execution environment
technology, and establishing a common set of language tools is difficult.

Moreover, the binding to various execution environment technologies intro-
duces undesired and unexpected behaviors, e.g. if the same algorithm so to say is
specified with different ASM modeling languages and the model execution leads
to different floating point values or depending on the Integer representation to
different overflow states. To overcome this uniform ASM representation problem
a clear, precise, and formal intermediate model has to be introduced, which has
the ability to represent various ASM language constructs of different contexts.

The major advantages of such an approach are the generalization of ASM-
related analyzes, optimization, and transformation capabilities – first envisaged
by Lezuo et al. [12] – in one single uniform model. Furthermore, another benefit
for existing ASM languages is to directly reuse the numeric as well as the –
proposed by Lezuo [6] – symbolic execution of specified ASM models. A huge
disadvantage in the perspective of a language engineer is to port existing ASM
language implementations to such a uniform ASM model.

This paper focuses on the design, implementation, and integration of an
ASM-based Intermediate Representation (IR) model named CASM Intermediate
Representation (CASM-IR) to address the uniform ASM representation problem.
The main contribution of this paper is the definition of a well-formed ASM-based
IR model which is independent of language front-ends and provides a well-defined
type system, operator and built-in semantics.

This work is organized as follows: In Section 2 we describe our research con-
text and the motivation of this paper. In Section 3 we describe our CASM-IR
model. Section 4 presents details about the current implementation and integra-
tion of the CASM-IR. Section 5 gives an overview of the related work regarding
IR’s of other ASM languages and tools. Finally, in Section 6 we conclude the
paper and outline the future work.

1 for ASM applications of various domains, see: http://web.eecs.umich.edu/gasm
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2 Motivation

The broader context of our research is the creation of a modern state-of-the-art
ASM modeling language implementation named the Corinthian Abstract State
Machine (CASM), as well as transformation and deployment of CASM specifi-
cations to executable artifacts2. The primary application context of this work is
the specification of embedded systems in a formal way. However, in the context
of CASM, we not merely focus on specific application contexts like embedded
systems, but rather aim to describe and specify arbitrary software and/or hard-
ware applications. This overall idea is not new, but our approach to achieve
this goal of generic transformations is different from a language engineering per-
spective, because we set our ASM-based IR into the center of the front-end
language development. Other ASM language approaches, which are described in
Section 5, do not, because they implement a forward directed transformation
from ASM to the desired target language like C or C++. The transformation
of ASM source specifications to specific target languages is by no means trivial.
It involves the mapping of a mathematical-based specification model to a real
executable program, which for itself resides in a specific execution environment.

To overcome this complex transformation, we proposed and followed a model-
based transformation approach in our earlier work [13], which defines four ab-
straction layers (illustrated in Figure 1). At the top resides the ASM Source
Modeling Language layer that includes besides the language grammar definition
the lexer, parser, type inference, type checker, and Abstract Syntax Tree (AST)
representation. A parsed input specification gets translated to the next layer,
the ASM-aware Intermediate Representation layer. At this abstraction layer the
CASM-IR, proposed in this paper, is defined. It allows us to analyze, transform
and optimize the input specification for ASM related properties.

The CASM-IR gets further transformed in the next layer called ASM-unaware
Intermediate Representation. At this abstraction layer the transformed specifi-
cation has no longer any knowledge about the semantics or behavior of ASMs.
Therefore it can be analyzed, transformed and optimized for traditional proper-
ties like execution speed or program size. In the final layer of Figure 1, the ASM-
unaware Intermediate Representation is mapped to various Software and/or
Hardware Target Languages. Those CASM system abstraction layers describe
a full transformation of an ASM specification to its desired target language. Due

2 for CASM project website, see: http://casm-lang.org
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to the proposed layered structure, it is possible to only use a sub-set of the full
functionality as well. For example, AST-based execution is used to recursively
walk over the in-memory AST representation and interpret the input specifica-
tion as it was parsed. In the context of AST-based execution, language engineers
can (re)use the type system from the ASM-aware IR layer and can rely on its de-
fined behavior and semantics. Therefore the CASM-IR can be used not only for
transformation and code generation purposes, but also for AST-based interpreter
applications. Furthermore, besides ASM-based languages, this proposed IR and
its functionality could be used for other functional programming languages as
well for their function definitions, type relations, numeric and symbolic compu-
tations. The approach to address the uniform ASM representation problem –
introduced and described in Section 1 – with the CASM-IR raises several con-
cerns regarding its existence and usefulness. First of all, the effort to investigate
into such an IR design arises from the fact that accordingly to the state-of-the-
art and to our knowledge no comparable IR for ASM languages with the focus
on well-formed, reusable, retargetable, and optimizable ASM specifications exist
yet. Second, as presented by Lezuo et al. [12], the optimization potential is huge
of ASM languages regarding redundancy eliminations, but still not covered and
addressed by any ASM language implementation in a unified manner.

3 CASM-IR

This section describes our ASM-based IR design that can be (re)used for design-
ing and building ASM-based and other possible functional related specification
languages. Before we go into the details of the model and the format of this IR,
we first outline the composition of our CASM system [13]. Figure 2 depicts a
more detailed overview of the sketched abstraction layers from Section 2 (see
Figure 1). A parsed ASM source – in our case the CASM language – gets trans-
lated to an AST representation and necessary type information gets inferred.
In order to do so, the CASM-IR – depicted as Model (IR) – needs to provide
type information for all possible operators and their type relations, which a



language front-end can use, to implement a type inference pass. Furthermore,
the CASM-IR model provides the ability to directly implement AST-based in-
terpreter applications on top of it, because language front-ends can access the
implemented run-time of the IR to evaluate expressions and terms.

If the execution shall be done directly using the IR model itself, a language
front-end just has to perform a model-to-model transformation from its AST-
based representation to an instance of this IR model. At this point the IR can
optimize the specification for ASM-related properties fully decoupled from the
original input specification in form of an AST representation. Some optimization
properties were proposed by Lezuo et al. [12]. Furthermore, then the IR instance
can be executed by the run-time implementation of the IR model.

For further processing (code generation) of the specification to a specific pro-
gramming target language, the IR instance can be transformed into an Emitting
Language (EL) model, as proposed in our earlier work [13]. Details about the
EL model are out of the scope of this paper.

3.1 Motivating Example

To better understand the solving of the research question regarding the uniform
ASM representation problem that CASM-IR deals with, we describe a small
ASM specification and point out the issues, which are addressed by the CASM-IR
design and implementation. Listing 1.1 on Page 6 depicts a valid (high-level)
CASM specification of a modeled swap algorithm3. It defines a rule swap (Line
6) and two nullary functions x (Line 3) and y (Line 4) of result type integer.
The init (Line 1) defines a single execution agent with starting top-level rule
swap. Rule swap defines a parallel block rule (Line 7-11) and three update rules.
The first two update rules (Line 8-9) are producing updates to swap the function
values from x and y. In the last update rule (Line 10), the ASM program function
gets updated with an undefined value, which results into a termination of the
specification, because the single execution agent top-level rule gets set to an
undefined value and therefore the ASM execution concludes the model execution.

To get a feel for the expressed swap algorithm ASM specification in other
ASM languages, we depict three further examples of the same algorithm modeled
in AsmL [14] (Listing 1.2), CoreASM [15] (Listing 1.3), and Asmeta [16] (Listing
1.4). Even in this small specification, several behaviors and definitions are im-
plicit and slightly different in the various ASM languages. E.g. the used function
program (Listing 1.1 at Line 10) is not an explicitly defined function in this valid
CASM specification, because this function definition is hidden from the language
user and it gets implicitly defined, because it depends on an agent type domain.
The type relation of this function would be a projection of the current agent type
domain to a stored top-level rule, which is similar in the CoreASM specification
(Listing 1.3 at Line 12). Furthermore, the initialization of this program function
to the rule swap is implicit as well. In CASM and CoreASM this is achieved
by setting the underlying agent through the init definition (Listing 1.1 at Line

3 for CASM concrete syntax description, see: http://casm-lang.org/syntax
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1 CASM init swap
2

3 function x : -> Integer
4 function y : -> Integer
5

6 rule swap =
7 {
8 x := y
9 y := x

10 program( self ) := undef
11 }

Listing 1.1. Swap Example (CASM)

1 var x as Integer
2 var y as Integer
3

4 swap()
5 x := y
6 y := x
7

8 Main()
9 swap()

10 step
11 // terminates after this step

Listing 1.2. Swap Example (AsmL)

1 CoreASM swap
2 use StandardPlugins
3 init swap
4

5 function x : -> Integer
6 function y : -> Integer
7

8 rule swap =
9 par

10 x := y
11 y := x
12 program( self ) := undef
13 endpar

Listing 1.3. Swap Example (CoreASM)

1 asm swap
2 import ../ STDL/StandardLibrary
3

4 signature:
5 dynamic controlled x : Integer
6 dynamic controlled y : Integer
7

8 definitions:
9 main rule swap =

10 par
11 x := y
12 y := x
13 endpar

Listing 1.4. Swap Example (Asmeta)

1, and Listing 1.3 at Line 3). Similar behavior can be achieved in Asmeta by
setting a certain rule to a main rule (Listing 1.4 at Line 9) or in AsmL which
forces the uses to define a Main() rule (Listing 1.2 at Line 8) which controls
the computation directly. Moreover, it can be observed that the swap examples
of CASM and CoreASM explicitly define the termination of the specification
whereas the swap examples written in AsmL and Asmeta do not.

In order to implement e.g. an AST-based interpreter to execute this specifi-
cations a language engineer would have to implement a run-time kernel, which
handles those implicit defined behaviors. Furthermore, if we think about opti-
mizing such specifications, implicitly defined behaviors cannot be optimized and
addressed by transformation passes in a generic way.

Generally speaking we have discovered two implicit behaviors – initialization
of functions and agent life cycle handling. Latter is very important if we consider
synchronous and asynchronous multi-agent ASM specifications. To express ASM
specifications in a well-formed IR we present in the following sub-sections the
definition of our CASM-IR model and its textual representation.

3.2 Types, Constants, and Functions

Due to the fact that every ASM-based language will eventually be executed by a
real machine a term, expression or even a value will have a concrete type. Even
Gurevich [2] suggested his ASM language definition lacks explicit typing, and
it would be more practical to introduce such. Therefore, in the center of our
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CASM-IR model stands the type system with all of its possible type domains,
which we will call from now on just types4. An overview is depicted in Figure
3. We can observe that the type system defines very basic (Primitive) types like
Boolean or Integer up to very abstract ones (Template) like List or File.

Notable to mention here in contrast to other ASM languages is that CASM-IR
always tries to be as close as possible to the mathematical foundation of a type.
This means e.g. the Integer representation is represented as an arbitrary precise
Integer with range ]−∞,∞[. There is even the possibility – similar to the Ada
programming language – to restrict the type to a certain sub-range. Furthermore,
CASM-IR introduces a Binary type which can be used to represent any binary
bit-precise value with defined bit-size. Along with this type CASM-IR features
a set of Binary built-in5 arithmetic operations. In the implementation of Lezuo
et al. [12] this type was indirectly specified with Integer types by limiting built-
in operations over a predefined bit-size values and the language itself was not
aware of these operations. Another novel type in CASM-IR compared to other
languages is that it features a Reference type. All references to rules, functions,
and derived functions have to be typed to ensure type safety for indirect calls.
Due to the mathematical foundation of ASMs, all typed CASM-IR constants6

can have besides the type-specified (domain) content, an undefined value. Fur-
thermore, we directly include in CASM-IR the notion of symbolic values that
enable a clear definition of numeric as well as symbolic execution, whereas the
symbolic values are its own domain value as suggested by Lezuo [6].

States are modeled through the function definitions7. As defined in [17] every
ASM function has a name and an arbitrary type relation. By default every
function – accordingly to the ASM definition – is undefined over its type relation
domain and needs to be explicitly initialized in CASM-IR. Listing 1.5 on Page
8 depicts a constant @c0 of type Integer and value 123, a constant @c1 of type
Rule Reference with relation :→ V oid and an undefined value, and a function
foo with relation : Boolean ∗Rational→ Integer.

4 for CASM-IR type specification, see: http://casm-lang.org/ir/types
5 for CASM-IR built-in specification, see: http://casm-lang.org/ir/builtins
6 for CASM-IR constant specification, see: http://casm-lang.org/ir/constants
7 for CASM-IR function specification, see: http://casm-lang.org/ir/functions
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1 ;; integer constant ’123’
2 @c0 = i 123
3 ;; ’undefined ’ rule reference
4 ;; constant of relation : -> Void
5 @c1 = r< -> v > undef
6 ;; function definition ’foo ’
7 ;; with relation:
8 ;; Boolean * Rational -> Integer
9 @foo = < b * q -> i >

Listing 1.5. Constants and Functions

1 ;; enumeration type definition
2 bar = { A, B, C }
3 ;; setting agent type domain
4 ;; to enumeration type ’bar ’
5 .agent = bar
6 ;; function definition ’program ’
7 ;; with relation:
8 ;; bar -> RuleRef < -> Void >
9 @program = < bar -> r< -> v > >

Listing 1.6. Enum. and Agents

3.3 Agents, Rules, and Deriveds

ASM specifications can either be single or multi execution agent-based systems
[1]. Therefore we provide a model instance to declare only the agent type domain
that directly results in the desired behavior. For instance, if we would define
the agent type domain to a Boolean type, we would define two operational
agents. The agent type domain has an important role in the execution of all
ASM specifications because starting from a defined agent rule the nested rules
get called and so on. Furthermore, the defined agent domain is also used in a
special internal function named program to store the current agent top-level
rule as a rule reference. Listing 1.6 depicts how to set the model instance of the
current agent type domain. In Line 2 an enumeration type bar gets defined with
enumerators A, B, and C, and in Line 5 the agent type domain gets set to the
type bar. Therefore we have specified in this example a multi-agent ASM with
three agents. As already mentioned in Section 3.1 there is a special function
named program that controls the execution of the agents in its kernel of ASM
specifications which heavily depends on the agent type domain. Line 9 shows
the corresponding program function definition with the agent type domain bar.
The actual computation in ASMs is specified through transition rules. CASM-IR
also has the notion of rules, but only for the named rule definitions. Other ASM
rules like Update, Conditional, Forall, Choose, etc. are represented in CASM-IR
through nested blocks and instructions (see Section 3.4).

Another important specification component in CASM-IR are derived func-
tions or deriveds for short. It can be seen as a kind of typed macro to reuse
state-less or side-effect free calculations. This means, that in deriveds, no state
changes are allowed to be performed; ergo, no Update rules are allowed in derived
function definitions.

3.4 Blocks, Instructions, and Registers

All basic expressions and state-modifying rules are represented in CASM-IR as
Instructions in a Single Static Assignment (SSA) form. So produced results of
instructions are stored in registers and the type is directly yielded from the spec-
ified instruction. This conceptual idea is borrowed from the Low Level Virtual
Machine (LLVM) compiler IR design by Lattner and Adve [18]. So any instruc-
tion call can be specified by a resulting unique register name, an instruction name



1 %r0 = ;; ... calculation which yields result of type ’i’
2 %r1 = location < i -> i> @foo , i %r0 ;; yields type ’loc ’
3 %r2 = lookup loc %r1 ;; yields type ’i’
4 %r3 = ;; ... calculation which yields result of type ’i’ and uses ’%r2 ’
5 update loc %r1 , i %r3 ;; produces an update to function ’foo ’

Listing 1.7. Location-, Lookup-, and Update-Instruction

and possible instruction operands with explicit types. This also indicates that
the CASM-IR follows a register machine design and implementation approach.

Basic ASM rules like skip, choose, or the definition of execution semantics
(fork and merge) are represented as single instructions. Novel in CASM-IR is
that it explicitly models the reading (lookup) and writing (update) of ASM
function states by dedicated instructions. This allows to analyze and optimize
CASM-IR specifications as suggested by Lezuo et al. [12]. A location instruction
performs the function location calculation. How the location is calculated is not
fixed and has to be decided in the run-time implementation. E.g. a common
technique would be the calculation of a function location by a certain hashing
algorithm. The lookup instruction determines at a certain point in the specifica-
tion, which state value is assigned to a certain function depending on the nested
parallel and sequential execution semantics. The argument needed to perform
a lookup is a location constant. An update instruction produces a new location
and value pair, which gets applied to the surrounding (local) function state also
known as pseudo state [12]. Therefore, an update instruction needs, besides the
exact calculated function location, a value operand.

Listing 1.7 depicts an example usage of the location, lookup, and update in-
struction. In Line 2 a location calculation is performed for the function foo which
has accordingly to the type one Integer argument. At Line 3 the actual lookup
of the function value is performed. And in Line 5, a new update is performed
to the same location were the lookup was performed. Similar to traditional as-
sembler languages, the CASM-IR includes a call instruction as well, but this
call instruction is used for multiple invocation types. It is used to call specified
rules, derived functions, and pre-defined built-ins either directly by its name or
indirectly through a register value of a reference type. Besides the generic call
instruction there exist several instructions to perform intermediate calculations
of arithmetic, logical, and comparison operations8.

Multiple instructions are compound to a Statement Block (SB) whereas the
execution semantics of the instructions is always sequential. Several blocks are
grouped together and form an Execution Semantics Block (ESB) which can
either have a parallel or sequential execution semantics. Additionally, every ESB
contains, besides the sub-blocks, an entry and an exit SB, in which the actual
execution semantics is specified by appropriate fork and merge instructions.
Figure 4 on Page 10 depicts the composition of rules, the ESB and SB blocks as
well as instructions.

8 for CASM-IR instr. specification, see: http://casm-lang.org/ir/instructions
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1 CASM -IR ;; CASM -IR specification header
2 a = { $ } ;; definition of enum. type ’a’
3 .agent = a ;; set agent type domain to type ’a’
4 @swap < -> v> ;; declaration of rule ’swap ’
5 @c0 = r< -> v> @swap ;; ’swap ’ rule reference
6 @c1 = a $ ;; agent constant of single agent
7 @c2 = r< -> v> undef ;; undefined rule reference
8 @c3 = a $ ;; agent constant of single agent
9 @program = <a -> r< -> v>> ;; ’program ’ function definition

10 @x = < -> i> ;; definition of function ’x’
11 @y = < -> i> ;; definition of function ’y’
12 @init -> v = { ;; definition of ’init ’ rule
13 lbl0: entry ;; ESB entry block of lbl0
14 fork par ;; fork instruction parallel
15

16 lbl1: %lbl0 ;; SB lbl1 in ESB lbl0
17 %r0 = location <a -> r< -> v>> @program , a @c1
18 update loc %r0 , r< -> v> @c0
19

20 exit: %lbl0 ;; ESB exit block of lbl0
21 merge par ;; merge instruction parallel
22 }
23 @swap -> v = { ;; definition of ’swap ’ rule
24 lbl2: entry ;; ESB entry block of lbl2
25 fork par ;; fork instruction parallel
26

27 lbl3: %lbl2 ;; SB lbl3 in ESB lbl2
28 %r1 = location < -> i> @y
29 %r2 = lookup loc %r1 ;; lookup of function ’y’
30 %r3 = location < -> i> @x
31 update loc %r3 , i %r2 ;; update of function ’x’
32

33 lbl4: %lbl2 ;; SB lbl4 in ESB lbl2
34 %r4 = location < -> i> @x
35 %r5 = lookup loc %r4 ;; lookup of function ’x’
36 %r6 = location < -> i> @y
37 update loc %r6 , i %r5 ;; update of function ’y’
38

39 lbl5: %lbl2
40 %r7 = location <a -> r< -> v>> @program , a @c3
41 update loc %r7 , r< -> v> @c2
42

43 exit: %lbl2 ;; ESB exit block of lbl2
44 merge par ;; merge instruction parallel
45 }

Listing 1.8. Swap Example (CASM-IR)

3.5 Motivating Swap Example in CASM-IR

In this section we present an example output of the transformed motivating
example swap CASM specification from Listing 1.1 to our CASM-IR. The per-
formed model-to-model transformation is implemented in the CASM front-end
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(see Section 4). It shall summarize several of the presented concepts and sketch
some optimization possibilities, which can be obtained through the represen-
tation of ASM specifications in the CASM-IR. Note that this presented trans-
formed motivated example is valid for the other presented ASM swap specifica-
tions as well (Listing 1.2, Listing 1.3, and Listing 1.4).

Listing 1.8 on Page 10 visualizes a CASM-IR instance, where the missing
definitions and implicit behaviors from Listing 1.1 are explicitly specified. In
the transformed specification we can observe that first of all the agent type
domain gets set to a enumeration type named a (Line 3) with the name $ (Line
2). This means that the agent type domain consists of only one concrete value
and hence we have a single execution agent ASM specification. Thereafter, a
forward declaration of the rule swap is specified (Line 4) because the next listed
constants (Line 5-8) contain the symbol of the swap rule to define a rule reference
constant. Next, three functions are defined. The program function (Line 9) with
the previous defined agent type domain that stores the ASM agent top-level
rule reference. After that the functions x (Line 10) and y (Line 11) are defined
accordingly to the originally input specification. Before the definition of the
swap rule gets defined, the initialization of the ASM state has to be specified,
which at least has to set the correct starting rule of the agents. Note that all
function states in ASMs are by default undefined. Last but not least the rule
swap gets defined. It contains a parallel execution semantics block with three
trivial statements and several location, lookup and update instructions.

Regarding the optimization potential in this revised example we can detect
several possible ASM-related optimizations. The most obvious one would be a
hoisting optimization of redundant location calculations, because the location of
nullary functions will always be the same. The calculation e.g. of the location of
function y at register %r1 (Line 28) could be moved up before the fork instruction
of the entry section at lbl2 (Line 24). And the location calculation of function
y at the register %r6 (Line 36) can be removed and all its uses can be replaced
by %r1. The same applies for the location of function x and register %r3 and %r4

(Line 30, Line 34).

4 Implementation and Integration

Figure 5 depicts the CASM system implementation libraries visualized as a li-
brary dependency graph. The CASM run-time and back-end libraries are based



on corresponding CASM unaware Just-in-time Emitting Language (CJEL) li-
braries (situated one layer below the CASM libraries). The CJEL layer is not
described in this paper. All libraries are implemented in C++11/14 standard.

The implementation of the CASM-IR model consists of two major base
classes - Type and Value. The type system and type hierarchy is implemented
according to the definition presented in Section 3.2. All other model instances
are sub-classes of the Value class. This design approach was borrowed again from
the LLVM compiler project where everything is a value [18]. Furthermore, every
value has a type. The CASM-IR implementation provides a rich Application
Programming Interface (API) to provide certain information to front-end im-
plementations. To be more precise here, for every instruction and built-in, it is
possible to fetch all defined type relations through an internal type map struc-
ture. This enables a clean separation between a front-end language definition
and the IR internals.

Based on the CASM-IR, we have designed our CASM language front-end.
Compared to the CASM language implementations from Lezuo et al. [12] the
AST has resulted in a much simpler and clearer design then before, because all
type, operator, and built-in design decisions were already made in the CASM-IR
implementation. Therefore the AST only focuses on the input language itself.
CASM is a statically strong inferred typed language. Hence, the difference be-
tween the front-end CASM input specification language and the CASM-IR model
is that the front-end language requires a symbol resolver, type checker and type
inference pass to fully type the parsed input specification AST representation.
In the analyzer passes we use the provided API of the CASM-IR to query and
check if certain types, built-ins, and operators exist. Furthermore, during type
inference, the front-end can infer the correct type through the pre-defined type
relations of the specified CASM-IR operators. E.g. if a type is not possible to be
inferred in the front-end, the possible types can be retrieved from the CASM-IR
and used as helpful debugging information for language users.

Besides type inference and other analyzes done by the front-end implemen-
tation, the most important benefit of targeting the CASM-IR is that a language
front-end engineer can directly call evaluation instrumentation functions of the
CASM-IR to perform calculations of operator instructions and built-ins.

5 Related Work

One of the best-known ASM implementations is the Asmeta9 tool-set with the
AsmetaL language [16]. The core of Asmeta is designed and implemented using
the Eclipse Modeling Framework (EMF) Ecore meta-model10. Based on the
Ecore meta-model, the ASM language model of Asmeta is directly described
as an instance (model). Therefore, the execution and precise calculation of the
implemented ASM simulator is bound to the run-time implementation of the
Ecore meta-model and its EMFs Java interface realizations.

9 for Asmeta project, see: http://asmeta.sourceforge.net
10 for EMF project, see: http://eclipse.org/modeling/emf

http://asmeta.sourceforge.net
http://eclipse.org/modeling/emf


Another notable ASM design and implementation is CoreASM11 originally
developed by Farahbod et al. [15]. The focus of CoreASM is to provide a flex-
ible and extensible ASM implementation and to be as near as possible to the
described ASM method by Börger [17]. CoreASM is implemented in Java and
its IR and run-time is directly bound to the Java Virtual Machine (JVM). Mi-
crosoft research designed and implemented an ASM language named AsmL12

[14]. AsmL is implemented and based to the .NET framework.

Besides CASM-IR, which solves a uniform ASM intermediate representation
to be language front-end independent, Arcaini et al. [19] proposed a Unified Ab-
stract State Machines (UASM) language syntax. Their approach is to unify the
front-end ASM syntax representation and this is in the perspective of CASM-IR
yet another ASM front-end input specification. Similar to the ASM language pro-
posed by Anlauff [20], the eXtensible ASM (XASM) language13, which compiles
XASM specifications to C.

Lezuo et al. [21] introduced in 2013 the CASM language. The origin of this
language was that all the (publicly available) existing ASM tools were impracti-
cable for industrial sized applications [22]. The tool-chain presented by Lezuo et
al. [12] focuses like the other ASM designs only on the input specification itself,
thus those research results were not directly usable by other ASM-based language
frameworks. The latter motivated, as already stated in Section 2, to rethink the
proposed ASM language engineering designs and implementations, leading to
our model-based transformation approach [13] for the CASM language14.

Different representation and transformation approaches have been investi-
gated in the AsmGofer language by Schmid [23], which is based on the pro-
gramming language Gofer (similar to Haskell), and the ASM Workbench with
the ASM-SL language introduced by Del Castillo [24], which is implemented in
Standard ML. The ASM-SL has been explored further by Schmid [25] to rep-
resent and encode specifications in C++. The translation (compilation) scheme
was limited to a double buffering concept and therefore unable to encode mixing
sequential and parallel rules. CASM-IR solves this by using block-level nested
fork and merge instructions to control the update-set behavior.

Another transformation scheme for ASMs was presented by Bonfanti et al.
[26] to represent and encode AsmetaL specifications in C++ code targeting Ar-
duino platforms. Their code generator directly converts the ASM specification to
the desired target language and run-time environment. By targeting a different
target run-time environment, platform, or architecture the encoded and imple-
ment ASM behavior would have to be re-implemented in every code generator.

Important to point out is that CASM-IR tries to establish a mid-end IR for
ASM-based languages similar to the approach for classical programming lan-
guage IR models such as GCCs GENERIC and GIMPLE by Merrill [27] or the
LLVM IR by Lattner and Adve [18].

11 for CoreASM open-source project, see: http://github.com/coreasm
12 for AsmL documentation and project, see: http://asml.codeplex.com
13 for XASM documentation, see http://sourceforge.net/projects/xasm
14 for CASM open-source project, see: http://github.com/casm-lang
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6 Conclusion

We have presented in this paper CASM-IR, a statically and strongly typed, well-
formed ASM-based IR, to provide the ability for ASM-based language engineers
to specify the internals of their ASM language in a well-defined representation
model. Besides the type system, agent, functions, deriveds, rules, blocks, and
instruction semantics, we discussed ASM properties, which are indirectly repre-
sented in ASM source languages and made explicitly and typed in the CASM-IR.
There are several other issues regarding implicit behavior in ASM-based high-
level languages we could point out, but it would go beyond of the scope of this
paper. We have given a short overview of our implementation, corresponding
libraries, and discussed the usefulness of our approach.

Regarding the CASM-IR itself, there is a lot of future work in the direction
of the type system. The providing of types like trees, sets, bags, and so on,
is still an open topic. We are already working on the implementation, formal
definition and verification of ASM-related optimization transformations based on
the gained knowledge from Lezuo et al. [12] for our CASM-IR. Another research
direction we are working on is the byte-code representation of the CASM-IR.
This would allow the implementation of very compact virtual machines for ASM-
based specifications.
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