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Abstract. Fuzz testing is an effective and scalable technique to per-
form software security assessments. Yet, contemporary fuzzers fall short
of thoroughly testing applications with a high degree of control-flow di-
versity, such as firewalls and network packet analyzers. In this paper,
we demonstrate how static program analysis can guide fuzzing by aug-
menting existing program models maintained by the fuzzer. Based on
the insight that code patterns reflect the data format of inputs pro-
cessed by a program, we automatically construct an input dictionary
by statically analyzing program control and data flow. Our analysis is
performed before fuzzing commences, and the input dictionary is sup-
plied to an off-the-shelf fuzzer to influence input generation. Evaluations
show that our technique not only increases test coverage by 10–15% over
baseline fuzzers such as afl but also reduces the time required to expose
vulnerabilities by up to an order of magnitude. As a case study, we have
evaluated our approach on two classes of network applications: nDPI, a
deep packet inspection library, and tcpdump, a network packet analyzer.
Using our approach, we have uncovered 15 zero-day vulnerabilities in
the evaluated software that were not found by stand-alone fuzzers. Our
work not only provides a practical method to conduct security evalua-
tions more effectively but also demonstrates that the synergy between
program analysis and testing can be exploited for a better outcome.
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1 Introduction

Software has grown in both complexity and dynamism over the years. For exam-
ple, the Chromium browser receives over 100 commits every day. Evidently, the
scale of present-day software development puts an enormous pressure on pro-
gram testing. Evaluating the security of large applications that are under active
development is a daunting task. Fuzz testing is one of the few techniques that
not only scale up to large programs but are also effective at discovering program
vulnerabilities.



Unfortunately, contemporary fuzzers are less effective at testing complex net-
work applications that handle diverse yet highly structured input. Examples of
such applications are protocol analyzers, deep packet inspection modules, and
firewalls. These applications process input in multiple stages: The input is first
tokenized, then parsed syntactically, and finally analyzed semantically. The ap-
plication logic (e.g., intrusion detection, network monitoring etc.) usually resides
in the final stage. There are two problems that these applications pose. First,
the highly structured nature of program input begets a vast number of control
flow paths in the portion of application code where packet parsing takes place.
Coping with diverse program paths in the early stages of the packet processing
pipeline, and exploring the depths of program code where the core application
logic resides is taxing even for state-of-the-art fuzzers. Second, the diversity of
program input not only amplifies the number of control flows but also demands
tests in breadth. For example, the deep packet inspection library, nDPI, ana-
lyzes close to 200 different network protocols [27]. In the face of such diversity,
generating inputs that efficiently test application logic is a hard problem.

Although prior work on grammar-based fuzzing [13, 16, 29] partly address
the problem of fuzz testing parser applications, they cannot be applied to testing
complex third-party network software for two reasons. First, existing grammar-
based fuzzers rely on a user-supplied data model or language grammar speci-
fication that describes the input data format. A fundamental problem with a
specification-based approach to fuzzing is that the formal grammar of program
input might not be available to begin with. Indeed, few network protocols have a
readily usable formal specification. Therefore, grammar-based fuzzing at present,
is contingent upon a data model that is—most often—manually created by an ex-
pert. Although proposals such as Prospex [7] that automatically create grammar
specifications from network traces are promising, they are designed with a single
protocol in mind. Automatic specification generation for diverse grammars has
not been attempted. A second problem with certain grammar-based approaches
that use whitebox testing is that they require significant software alterations,
and rely on implementation knowledge. For example, to conduct grammar-based
whitebox testing, parsing functions must be manually identified in source code,
and detokenization functions must be written. Although manual fallbacks may
be inevitable in the face of implementation diversity, prior approaches demand
significant software revisions, making them ill-suited for security evaluation of
third-party software.

In this paper, we demonstrate how the stated challenges can be addressed by
augmenting fuzzing with static program analysis. Being program centric, static
analysis can examine control flow throughout an application’s codebase, per-
mitting it to analyze parsing code in its entirety. This design choice makes our
approach well-suited for testing complex network applications. Our approach has
two key steps. First, we automatically generate a dictionary of protocol message
constructs and their conjunctions by analyzing application source code. Our
key insight is that code patterns signal the use of program input, and therefore
sufficient cues about program input may be gathered by analyzing the source



code. To this end, we develop a static analyzer that performs data and control-
flow analysis to obtain a dictionary of input constructs. Second, the dictionary
obtained from the first step is supplied to an off-the-shelf fuzzer. The fuzzer
uses the message fragments (constructs and conjunctions) present in the sup-
plied dictionary toward input generation. Although anecdotal evidence suggests
that a carefully constructed dictionary can dramatically improve a fuzzer’s ef-
fectiveness [35], program dictionaries at present are created by a domain-specific
expert. To make our analysis and test framework easily deployable on real-world
code, we have developed a plugin to the Clang/LLVM compiler that can (i) Be
automatically invoked at code compilation time, and (ii) Produce input dictio-
naries that are readily usable with off-the-shelf fuzzers such as afl. Indeed, our
work makes security evaluations accessible to non-domain-experts e.g., audit of
third-party code in the government sector.

We have prototyped our approach in a tool that we call Orthrus, and evalu-
ated it in both controlled and uncontrolled environments. We find that our anal-
ysis helps reduce the time to vulnerability exposure by an order of magnitude for
the libxml2 benchmark of the fuzzer test suite [15]. Furthermore, we use Orthrus
to conduct security evaluations of nDPI (deep packet inspection library), and
tcpdump (network packet analyzer). Input dictionaries generated via static code
analysis increase test coverage in nDPI, and tcpdump by 15%, and 10% respec-
tively. More significantly, input dictionaries have helped uncover 15 zero-day vul-
nerabilities in the packet processing code of 14 different protocols in the evaluated
applications that were not found by stand-alone fuzzers such as afl, and the Peach
fuzzer. These results lend credence to the efficacy of our approach in carrying
out security evaluations of complex third-party network software. Our prototype,
Orthrus, is available at https://www.github.com/test-pipeline/Orthrus.

Contributions:

– To address the challenges of fuzzing complex network software, we propose
a static analysis framework to infer the data format of program inputs from
source code.

– We propose a novel approach—the use of static program analysis—to aug-
ment fuzzing. To this end, we couple our analysis framework with an off-the-
shelf fuzzer.

– Finally, we prototype our approach and extensively evaluate its impact. Our
prototype achieves an improvement of up to 15% in test coverage over state-
of-the-art fuzzers such as afl, expedites vulnerability discovery by an order
of magnitude, and exposes 15 zero-day vulnerabilities in popular networking
software4. These results validate our proposition that static analysis can
serve as a useful fuzzing aid.

4 Ethical Considerations: Vulnerabilities found during our case studies have been re-
sponsibly disclosed to the concerned vendors who have subsequently patched them.

https://www.github.com/test-pipeline/Orthrus


2 Background

In this section, we provide a brief overview of static analysis, and fuzz testing
that is relevant to our work.
Static Analysis Our application of static analysis is closer to the notion of
static analysis as a program-centric checker [10]: Tools that encapsulate a notion
of program behavior and check that the implementation conforms to this notion.
Historically, static analysis tools aimed at finding programming errors encode a
description of correct (error-free) program behavior and check if the analyzed
software meets this description. In contrast, our analyses encode input-processing
properties of a program in order to extract features of the input message format.

Static analysis helps in analyzing the breadth of a program without concrete
test inputs. However, because static analysis usually encapsulates an approxi-
mate view of the program, its analysis output (bugs) has to be manually val-
idated. The analysis logic of a static analyzer may be catered to different use
cases, such as finding insecure API usages, erroneous code patterns etc. This
analysis logic is usually encoded as a set of rules (checking rules), while the
analysis itself is carried out by a static analyzer’s core engine.

Static program analysis includes, among other types of analyses, program
data-flow and control-flow analyses [1]. Data-flow analysis inspects the flow of
data between program variables; likewise control-flow analysis inspects the flow
of control in the program. While data-flow analysis may be used to understand
how program input interacts with program variables, control-flow analysis may
be used to understand how control is transferred from one program routine to an-
other. In practice, both data and control flow analyses are essential components
of a static analyzer.

Program data and control-flow may be analyzed at different program ab-
stractions. In our work, we focus on syntactic as well as semantic analysis, using
the program abstract syntax tree (AST), and control flow graph (CFG) respec-
tively. At the syntactic level, our analysis is performed on the program’s AST,
and at the semantic level, on the program’s CFG. A program’s AST represen-
tation comprises syntactic elements of a program, such as the If, For, While

statements, program variables and their data types etc. Each syntactic element is
represented as an AST node. All AST nodes, with the exception of the root and
the leaf nodes, are connected by edges that denote a parent-child relationship.
The CFG of a program unit represents its semantic elements, such as the control
flow between blocks of program statements. The CFG nodes are basic blocks:
Group of program statements without a branching instruction. The CFG edges
connect basic blocks that comprise a possible program path. The infrastructure
to obtain program AST, CFG, and perform analysis on them is available in
modern compiler toolchains.
Fuzz Testing Fuzzing is one of the most common dynamic analysis techniques
used in security assessments. It was introduced by Miller et al. to evaluate the ro-
bustness of UNIX utilities [22]. Ever since, fuzzing has seen widespread adoption
owing to its effectiveness in eliciting faulty program behavior. The first fuzzer
functioned without any program knowledge: It simply fed random inputs to the



program. In other words, it was a blackbox (program agnostic) fuzzer. Blackbox
fuzzers paved the way for modern fuzzers that are program aware.

State-of-the-art fuzzers build a model of the analyzed program as it is tested.
This model is used to guide testing more optimally, i.e., expend resources for
teasing out unexplored program paths. Techniques used to build a model of
the program under test may vary from coverage tracing (afl) [34], to constraint
solving (SAGE) [14]. Fuzzers may also expect the user to define a grammar
underlying the message format being tested. Examples of such fuzzers are the
Peach Fuzzer [29] and Sulley [28], both of which generate inputs based on a user
specified grammar. Fuzzers such as afl support the use of message constructs for
fuzzer guidance. However, unlike Peach, afl does not require a formal grammar
specification; it simply uses pre-defined constructs in the input dictionary toward
input mutation.

3 Program Analysis Guided Fuzzing

In this section, we first briefly outline our specific problem scope with regard to
protocol specification inference, then provide an overview of our approach, and
finally describe our methodology.
Problem Scope An application protocol specification usually comprises a state
machine that defines valid sequences of protocol messages, and a message format
that defines the protocol message. In our work, we focus on inferring the pro-
tocol message format only, leaving the inference of the state machine for future
work. Since file formats are stateless specifications, our work is applicable for
conducting security evaluations of file format parsers as well.
Approach Overview We demonstrate how fuzz testing of network applications
can be significantly improved by leveraging static analysis for test guidance. It
has already been suggested in non-academic circles that a carefully constructed
dictionary of parser input can dramatically improve a fuzzer’s effectiveness [35].
However, creating input dictionaries still requires domain expertise. We automat-
ically generate input dictionaries by performing static program analysis, supply-
ing it to an off-the-shelf fuzzer toward input generation. Indeed, our prototype
builds on legacy fuzzers to demonstrate the effectiveness of our approach.

Figure 1 illustrates our analysis and test workflow. First, we statically ana-
lyze application source code and obtain a dictionary of protocol message con-
structs and conjunctions. Each item in the dictionary is an independent message
fragment: It is either a simple message construct, or a conjunction of multiple
constructs. For example, a constant string SIP/2.0 in the source code is inferred
as a message construct, while usages of another construct, say the constant string
INVITE, that are contingent on SIP/2.0 are inferred to be a conjunction of the
form INVITE SIP/2.0. Second, we supply the input dictionary obtained in the
first step to a fuzzer toward input generation. The fuzzer uses the supplied dic-
tionary together with an initial set of program inputs (seeds) toward fuzzing an
application test case. In contrast to prior work, our analysis is automatic, and
requires neither a hand-written grammar specification, nor manual software al-



Software
Static 

Analysis
Input 

Dictionary Fuzzer

int main() {
  read();
  process();
}

Test 
Program 

strcmp

hdr SIP/2.0

AND

strcmp

body INVITE

EQ

dl_type IPv4

AND

EQ

mac_ad MAC

SIP/2.0

INVITE

IPv4

MAC

SIP/2.0 + INVITE

IPv4 MAC

CONSTRUCTS

CONJUNCTIONS

Parser fuzzer

SIP/2.0

IPv4

+

Hdr
Data

SeedsORTHRUS

Fig. 1: Work-flow for program analysis guided fuzzing.

terations. Furthermore, the input dictionary obtained through our analysis may
be supplied as is to existing fuzzers such as afl, aflfast, and libFuzzer, making
our approach legacy compliant.

3.1 Input Dictionary Generation

The use of static program analysis for inferring program properties is a long-
standing field of research. However, the main challenge underlying our approach
is that our analysis must infer properties of the program input from applica-
tion source code. Although Rice’s theorem [17] states that all semantic program
properties are undecidable in general, we aim to make an informed judgement.
Program Slicing The first problem we encounter is an instance of the classical
forward slicing problem [12]: determining the subset of program statements,
or variables that process, or contain program input. Although existing forward
slicing techniques obtain precise inter-procedural slices of small programs, they
do not scale up to complex network parsers that exhibit a high degree of control
as well as data-flow diversity.

As a remedy, we obtain a backward program slice with respect to a pre-
determined set of program statements that are deemed to process program input.
These program statements are called taint sinks, since program input (taint)
flows into them. Since our analysis is localized to a set of taint sinks, it is tractable
and scales up to large programs. Naturally, the selection criteria for taint sinks
influence analysis precision, and ultimately decide the quality of inferred input
fragments. Therefore, we employ useful heuristics and follow reasonable design
guidelines so that taint sink selection is not only well-informed by default, but
can also benefit from domain expertise when required. We explain our heuristics
and design guidelines for taint sink selection in the next paragraph.
Taint Sinks We select a program statement as a taint sink if it satisfies one or
more of the following conditions:

1. It is a potentially data-dependent control flow instruction, such as switch,
if statements.



2. It is a well-known data sink API (e.g., strcmp), or an API that accepts
const qualified arguments as input.

3. It contains a constant assignment that contains a literal character, string, or
integer on the right hand side, such as
const char *sip = ‘‘SIP/2.0’’

Although these heuristics are simple, they are effective, and have two useful
properties that are crucial to generating an effective fuzzer dictionary. First,
they capture a handful of potential input fragments of high relevance by focusing
on program data and control flow. In contrast, a näıve textual search for string
literals in the program will inevitably mix-up interesting and uninteresting use of
data, e.g., strings used in print statements will also be returned. Second, although
our heuristics are straightforward, they capture a wide array of code patterns
that are commonly found in parsing applications. Thus, they constitute a good
default specification that is applicable to a large class of parsing applications. The
defaults that are built-in to our analysis framework make our solution accessible
for conducting security assessments of third-party network software.

Naturally, our heuristics may miss application-specific taint sinks. A promi-
nent example is the use of application specific APIs for input processing. As
a remedy, we permit the security analyst to specify additional taint sinks as
an analysis parameter. In summary, we facilitate entirely automatic analysis of
third-party software using a default taint specification, while opportunistically
benefiting from application-specific knowledge where possible. This makes our
analysis framework flexible in practice.

Analysis Queries In order to infer protocol message constructs, we need to
analyze data and control-flow around taint sinks. To facilitate fast and scalable
analysis, we design a query system that is capable of both syntactic and seman-
tic analysis. Fortunately, the infrastructure to obtain program AST, CFG, and
perform analysis on them is already available in modern compiler toolchains.
Thus, we focus on developing the analysis logic for performing backward pro-
gram slicing toward obtaining protocol message constructs.

Algorithm 1 illustrates our analysis procedure for generating an input dictio-
nary from source code. We begin by initializing our internal data-structures to
an empty set (lines 2−4). Next, we iterate over all compilable source files in the
code repository, and obtain their program AST and CFG representations (lines
8 − 9) using existing compiler routines. Based on our default set of taint sinks,
we formulate syntactic and semantic queries (described next) that are designed
to elicit input message constructs or their conjunctions in source code (line 6).
Using these queries, we obtain a set of input message constructs using syntactic
analysis (line 11), and a set of input message conjunctions using semantic analy-
sis (line 13) in each source file. The constructs and conjunctions so obtained are
added to the dictionary data structure (line 14− 15) and the analysis continues
on the next source file.
Syntactic Queries At the syntactic level, our analysis logic accepts functional
queries and returns input message constructs (if any) that match the issued



Algorithm 1 Pseudocode for generating an input dictionary.

1: function generate-dictionary(SourceCode, Builder)
2: dictionary = ∅
3: constructs = ∅
4: conjunctions = ∅
5: . Queries generated from internal database
6: queries = Q
7: for each sourcefile in SourceCode do
8: ast = frontendParse(sourcefile)
9: cfg = semanticParse(ast)
10: . Obtain constructs
11: constructs = syntactic-analysis(ast, queries)
12: . Obtain conjunctions of existing constructs
13: conjunctions = semantic-analysis(cfg, constructs)
14: . Update dictionary
15: dictionary += constructs
16: dictionary += conjunctions

17: return dictionary

18:
19: function syntactic-analysis(AST , Queries)
20: constructs = ∅
21: for each query in Q do
22: constructs += synQuery(AST , query)

23: return constructs
24:
25: function synQuery(AST , Query)
26: matches = ∅
27: while T = traverseAST(AST ) do
28: if Query matches T then
29: matches += (T.id, T.value)

30: return matches
31:
32: function Semantic-Analysis(CFG, Constructs)
33: conjunctions = ∅
34: . Obtain conjunctions in a given calling context
35: conjunctions += Context-Sensitive-Analysis(CFG, Constructs)
36: . Obtain productions in a given program path
37: conjunctions += Path-Sensitive-Analysis(CFG, Constructs)
38: return conjunctions

query. These queries are made against the program AST. A functional query is
composed of boolean predicates on a program statement or data type. As an
example, consider the following query:

stringLiteral(hasParent(callExpr(hasName(‘‘strcmp’’)))).

The query shown above searches for a program value of type string
(stringLiteral) whose parent node in the AST is a function call (callExpr),
and whose declaration name is strcmp. Thus, a functional query is essentially
compositional in nature and operates on properties of the program AST. There
are two key benefits of functional queries. First, their processing time is very
low allowing them to scale up to large codebases (see §4.1). Second, since large
parsing applications use a recurring pattern of code to parse input messages of
different formats, even simple queries can be efficient at building a multi-protocol
input dictionary.

Syntactic queries are useful for obtaining a list of simple input message con-
structs such as constant protocol keywords. However, these queries do not an-
alyze the context in which constructs appear in the program. Analyzing the



context brings us a deeper understanding of the input message format. As an
example, we may know which two constructs are used in conjunction with each
other, or if there is a partial order between grammar production rules involv-
ing these constructs. Deeper analysis of message constructs may infer complex
message fragments, allowing the fuzzer to explore intricate parsing routines. To
facilitate such context-sensitive analyses, we write context and path-sensitive
checkers that enable semantic queries.
Semantic Queries At the semantic level, a query accepts a list of input message
constructs as input, and returns conjunctions (if any) of constructs as output.
Semantic queries are made against a context-sensitive inter-procedural graph [30]
constructed on a program’s CFG. Each query is written as a checker routine that
returns the set of conjunctions that can be validated in the calling context where
the input construct appeared. As an example, consider the parsing code snippet
shown in Listing 1.1.

Listing 1.1: Sample parser code.

1 int parse(const char *token1 , const char *token2) {
2 if (token1 == "INVITE")
3 if (strcmp(token2 , "SIP /2.0"))
4 do_something ();
5 }

The parse function takes two string tokens as input and performs an op-
eration only when the first token is INVITE and the second token is SIP/2.0.
From this code, we can infer that there is a dependency between the two to-
kens, namely, that INVITE is potentially followed by the SIP/2.0 string. While
syntactic queries can only identify simple message constructs, semantic queries
can be used to make an inference about such message conjunctions. Together,
syntactic and semantic queries may be used to build a dictionary of the input
message format.
Implementation We have implemented our approach in a research prototype,
that we call Orthrus. Our query system is composed of tooling based on the
libASTMatchers, and the libTooling infrastructure in Clang (syntactic queries),
and checkers to the Clang Static Analyzer [20] (semantic queries).

3.2 Dictionary Based Fuzzing

An input dictionary can improve the effectiveness of fuzzing by augmenting
the program representation maintained by the fuzzer for test guidance. The
input fragments in the supplied dictionary enable input mutations that are well-
informed, and in some cases more effective at discovering new program paths
than purely random mutations. Contemporary fuzzers offer an interface to plug
in an application-specific dictionary. We use this interface to supply the input
fragments inferred by our analysis framework to the fuzzer.

Algorithm 2 presents the pseudocode for dictionary based fuzzing employed
by most present-day fuzzers. Dictionary based mutations may be performed
either deterministically (at all byte offsets in the input stream, line 4 − 5), or



Algorithm 2 Pseudocode for dictionary-based fuzzing.

1: function dictionary-fuzz(input, Dictionary, deterministic)
2: dictToken = Random(Dictionary)
3: if deterministic then
4: for each byteoffset in input do
5: fuzz-token-offset(input, dictToken, byteoffset)

6: else
7: byteoffset = Random(sizeOf(input))
8: fuzz-token-offset(input, dictToken, byteoffset)

9:
10: function fuzz-token-offset(input, dictToken, byteoffset)
11: . Token overwrites input byte
12: input[byteoffset] = dictToken
13: Program(input)
14: . Token inserted into input
15: InsertToken(input, byteoffset, dictToken)
16: Program(input)

non-deterministically (at a random byte offset, line 7−8). There are two kinds of
dictionary based mutations used by fuzzers: overwrite, and insert. In an overwrite
operation, the chosen dictionary token is used to overwrite a portion of a program
input in the fuzzer queue (line 12− 13). In an insert operation, the chosen token
is inserted into the queued input at the specified offset (line 15− 16). Typically,
fuzzers perform both mutations on a chosen token.

Fuzzers bound the runtime allocated to dictionary-based fuzzing routines. In
practice, fuzzers either use up to a certain threshold (typically a few hundred)
of supplied dictionary tokens deterministically, while using the rest probabilis-
tically, or pick each token at random. Thus, it is important that the size of the
supplied dictionary is small, and the relevance of the tokens is high. Our use of
demand-driven queries, and analyses of varying precision ensures that we supply
such a dictionary to the fuzzer.

4 Evaluation

In this section, we present our evaluation of Orthrus in both controlled and
uncontrolled environments. First, we (i) Quantitatively evaluate our analysis run
time towards dictionary generation, and (ii) Qualitatively evaluate the generated
dictionary tokens, for the codebases under test (§4.1). Second, we measure the
time to uncover vulnerabilities using Orthrus generated dictionaries in a set of
fuzzer benchmarks (§4.2). Third, we measure the test coverage achieved and
examine the vulnerabilities exposed by fuzzing production code with the aid of
Orthrus generated dictionaries (§4.3). We conclude this section with a discussion
of factors that may limit the validity of our approach and how we address them.

Measurement Infrastructure All measurements presented in this section
were performed on a 64-bit machine with 80 CPU threads (Intel Xeon E7-4870)
clocked at 2.4 GHz, and 512 GB RAM.



Software
Source

Lines of
Code

Compilation Dictionary Generation

Syntactic Semantic Total

c-ares 97k 2.11s 0.43s 20.14s 20.57s
libxml2 196k 17.95s 1.48s 23.09s 24.57s
openssl 278k 20.02s 6.45s 5m 37.24s 5m 43.69s
nDPI 27k 7.16s 2.14s 42.84s 44.98s
tcpdump 75k 2.99s 0.32s 9.04s 9.36s
woff2 39k 3.20s 3.58s 11.58s 15.16s

Table 1: Dictionary generation run time relative to code compilation time. Tim-
ing measurements have been averaged over ten runs and are presented in min-
utes(m) and seconds(s).

Software Taint Sink Query Input Fragments

libxml2
xmlBufferWriteChar(),
xmlOutputBufferWrite()

Obtain constant
argument

xml:lang=",
<!DOCTYPE,
<![CDATA[, xmlns

nDPI memcmp(), strcmp()
Obtain constant

argument

snort, America
Online Inc., last
message

Table 2: A sample of string input fragments extracted from the source code
of libxml2, and nDPI using syntactic queries. Extracted fragments are comma
separated.

4.1 Analysis Run Time and Effectiveness

Table 1 presents the run times of static analysis (both syntactic and semantic)
performed for dictionary generation for each of the code bases evaluated in this
paper. To put the run times in perspective, the run time of code compilation for
each code base is presented in the third column. Since semantic analysis is com-
putationally more expensive than syntactic analysis, it dominates the dictionary
generation run time . However, in relation to fuzzing run time that is usually
in the order of days, the time required for dictionary generation (at most a few
minutes across our data-set) is negligible.

Table 2 presents a sample of input fragments (constructs) extracted from the
source code for libxml2, and nDPI for which dictionary-based fuzzing showed
substantial improvement in test coverage and outcome. In the interest of space
and visual clarity, we have excluded fragments extracted from tcpdump since
they mainly comprise binary input. Listing 1.2 shows one of the syntactic queries
applied to the nDPI, and libxml2 codebases that resulted in the sample fragments
presented in Table 2. Our analysis heuristics have helped build an XML input
dictionary that is similar in content to the manually created XML dictionary for



afl. Moreover, using backward slicing from familiar taint sinks such as memcmp, we
have been able to extract protocol fragments (such as the string literal America
Online Inc. used by nDPI to fingerprint instant messaging traffic) that have
been instrumental in increasing test coverage.

Listing 1.2: Syntactic query issued on nDPI and libxml2 codebases. The query
returns string literals passed as arguments to taint sinks such as strcmp.

1 // Obtain string literals passed to POSIX APIs "strcmp", and
2 // "memcmp", and libxml2 APIs " xmlBufferWriteChar ", and
3 // " xmlOutputBufferWrite ".
4 StatementMatcher StringMatcher =
5 stringLiteral(
6 hasAncestor(
7 declRefExpr(
8 to(namedDecl(
9 anyOf(hasName("strcmp"),

10 hasName("memcmp"),
11 hasName("xmlBufferWriteChar"),
12 hasName("xmlOutputBufferWrite")
13 )
14 )
15 )
16 )
17 )
18 ).bind("construct");

4.2 Benchmarks: Time to Vulnerability Exposure

To enable independent reproduction, we briefly document our evaluation
methodology.

Fuzzer Test Suite In order to measure the time required to expose program
vulnerabilities, we used the fuzzer test suite [15]. The fuzzer test suite is well-
suited for this purpose because it provides a controlled environment in which
timing measurements can be done, and contains test cases for several known
high-profile vulnerabilities. Indeed, the test suite has been used for benchmarking
the LLVM libFuzzer [21], that we use as a baseline in our evaluation. The specific
vulnerabilities in the test suite that feature in our evaluation are: CVE-2014-
0160 [23] (OpenSSL Heartbleed), CVE-2016-5180 [25] (buffer overflow in the c-
ares dns library), CVE-2015-8317 [24] (buffer overflow in libxml2), and a security-
critical bug in Google’s WoFF2 font parser [6].

Test Methodology For each test case, our evaluation was performed by mea-
suring the time to expose the underlying vulnerability in two scenarios: (i) The
baseline fuzzer alone; and (ii) The baseline fuzzer augmented with an Orthrus
generated dictionary. Our approach is deemed effective when the time to expose
vulnerability reduces in comparison to the baseline, and is ineffective/irrelevant
when it increases or remains the same in comparison to the baseline. Timing
measurements were done using Unix’s time utility. In order to reduce the effect
of seemingly random vulnerability exposures, we obtained at least 80 timing
measurements for each test case in both scenarios. Measurements for each test
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Fig. 2: Comparison of time required to expose vulnerability using libFuzzer as
the baseline.

case were carried out in parallel, with each experiment being run exclusively on a
single core. The input dictionary generated by Orthrus was supplied to libFuzzer
via the -dict command line argument. Finally, to eliminate the effect of seed
corpuses on measurement outcome, we strictly adhered to the selection of seed
corpuses as mandated by the fuzzer test suite documentation.

Results Figure 2 presents our test results as box plots. The baseline box plot
(libFuzzer) is always on the left of the plot, and results for libFuzzer augmented
with Orthrus (Orthrus) on the right. The Orthrus generated input dictionary
brought down the time to expose a buffer overflow in the libxml2 library (CVE-
2015-8317) by an order of magnitude (from a median value of close to 3h using
the baseline to a median value of 5 minutes using our approach). For all the
other test cases, the median time to expose vulnerability was lower for Orthrus
in comparison to libFuzzer. In addition, Orthrus shrunk the range of timing
variations in exposing the vulnerability.

To understand the varying impact of the supplied dictionary on the time
to vulnerability exposure, we studied each of the tested vulnerabilities to un-
derstand their root cause. Our approach consistently brought down the time to
exposure for all vulnerabilities that were triggered by a file or protocol mes-
sage specific to the application under test. Thus, our approach worked well in
scenarios where knowledge of the input format was crucial to eliciting the vul-
nerability. Furthermore, in scenarios where our approach did not substantially
lower the time to vulnerability exposure, the time penalty incurred by our ap-
proach, owing to the test time dedicated to dictionary mutations, was marginal.



In summary, we find that static program analysis can improve bug-finding effi-
ciency of fuzzers for those class of bugs that are triggered by highly structured
input (commonly found in network applications, and file format parsers), while
not imposing a noticeable performance penalty.

4.3 Case Study

To investigate the practical utility of Orthrus, we conducted a case study of two
popular network applications, namely, nDPI, and tcpdump. These applications
were selected because they are not only deployed in security-critical environ-
ments but also parse potentially attacker-controlled data. For each application,
we conducted multivariate testing using baseline fuzzers such as afl and aflfast [3]
with and without an Orthrus generated dictionary.

The chosen applications were also fuzzed using the Peach fuzzer [29], a state-
of-the-art fuzzer for protocol security assessments. Since grammar specifications
for the set of protocols parsed by tcpdump, and nDPI were not publicly available,
we enabled Peach fuzzer’s input analyzer mode that automatically infers the
input data model. Such an evaluation was aimed at comparing Peach fuzzer
with Orthrus in scenarios where a data model specification is not available.
However, the community edition of the Peach fuzzer that we had access to, is
not geared toward long runs. In our Peach-based experiments, we could not
achieve a run time of longer than 24 hours. This prevents a fair comparison of
the two approaches. Therefore, we document results of our Peach experiments
for reference, and not a comparative evaluation.

Evaluation Methodology We evaluated Orthrus using two metrics, namely,
test coverage achieved, and the number of program vulnerabilities exposed. Test
coverage was measured as the percentage of program branches that were dis-
covered during testing. Since fuzzers often expose identical crashes, making it
non-trivial to document unique vulnerabilities, we semi-automatically dedupli-
cated fuzzer crashes in a two-step process. First, we used the concept of fuzzy
stack hashes [26] to fingerprint a crash’s stack trace using a cryptographic hash
function. Second, crashes with a unique hash were manually triaged to deter-
mine the number of unique program vulnerabilities. We used two elementary
seeds (bare-bone IPv4, and IPv6 packets) to fuzz tcpdump, and nDPI. Tests
involving the fuzzers afl and aflfast were conducted in a multi-core setting.

Fuzzing Duration Dictionary based mutations get a fraction of the total fuzz
time of a fuzzer. Thus, to fully evaluate our approach, we ran the fuzzer con-
figurations (except Peach) until each unique program input synthesized by the
fuzzer was mutated with the supplied dictionary constructs at least once. Owing
to the relatively poor execution throughput of the evaluated software (under 100
executions per second), we had to run each fuzzer over a period of 1 week in
which time the supplied dictionary was utilized at least once for each unique
input.



Table 3: Test coverage achieved (in %) by different fuzzing configurations.

Software afl afl-orthrus aflfast aflfast-orthrus Peach-
analyzer

tcpdump 80.56 90.23 (+ 9.67) 71.35 78.82 (+7.47) 6.25
nDPI 66.92 81.49 (+14.57) 64.40 68.10 (+3.70) 24.98

Utilities CERT’s exploitable [11] utility was used for crash deduplication. We
used AddressSanitizer [2] as a debugging aid; this expedited the bug reporting
process.

Evaluated Software We evaluated nDPI revision f51fef6 (November 2016),
and tcpdump trunk (March 2017).

Test Coverage Our test coverage measurements present the fraction of all
program branches (edges) covered by test cases generated by a fuzzer configura-
tion. We have evaluated Orthrus against two baselines, namely, afl, and aflfast.
Therefore, our measurements have been obtained for afl, afl augmented with
Orthrus-generated input dictionary (afl-Orthrus), aflfast, aflfast augmented with
Orthrus-generated input dictionary (aflfast-Orthrus), and the Peach fuzzer with
a binary analyzer data model. Table 3 shows the test coverage achieved by differ-
ent fuzzer combinations for tcpdump, and nDPI, while Figure 3 visualizes code
coverage over time. Program coverage was measured when there was a change in
its magnitude. Due to the relatively short running duration of the Peach fuzzer,
we have excluded its coverage visualization.

As shown in Figure 3, the obtained coverage measurements for tcpdump,
and nDPI, approach a saturation point asymptotically. For both tcpdump, and
nDPI, the growth rate in test coverage is higher initially, tapering off asymptot-
ically to zero. The test coverage curves for afl-Orthrus and aflfast-Orthrus have
a higher initial growth rate compared to their respective baselines, namely, afl,
and aflfast. This results in a consistent increase in overall test coverage achieved
by Orthrus in comparison to the baseline fuzzers, as shown in Table 3. For nDPI,
Orthrus’ input dictionary increases test coverage by 14.57% over the afl fuzzer.
In the case of tcpdump, this increase in test coverage is 9.67%. Orthrus’ en-
hancements in test coverage over aflfast for nDPI, and tcpdump are 3.7%, and
7.47% respectively. Although aflfast is a fork of afl, the supplied input dictionary
has a lesser effect on the former than the latter. To understand this anomaly,
we examined the source code of afl, and aflfast. afl performs dictionary-based
mutations on all inputs in the fuzzer queue at least once. However, aflfast per-
forms dictionary-based mutations on a given input in the queue, only when the
input’s performance score (computed by the aflfast algorithm) is above a certain
threshold. We determined that the threshold used by aflfast is too aggressive,
resulting in too few inputs in the fuzzer queue undergoing dictionary mutations.
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Fig. 3: Test coverage as a function of time for tcpdump 3a, and nDPI 3b, for
different fuzzing configurations. Program coverage measurements were made only
when there was a change in its magnitude.

Vulnerabilities Exposed Table 4 shows the number of vulnerabilities exposed
in nDPI, and tcpdump, across all fuzzing configurations. In the case of tcpdump,
the positive impact of the Orthrus generated dictionary is evident. afl, and afl-
Orthrus, exposed 15, and 26 unique vulnerabilities respectively. 10 out of the 11
additional vulnerabilities exposed by afl-Orthrus, were exclusively found by it,
i.e., it exposed 10 vulnerabilities in tcpdump not found by stand-alone afl. aflfast,
and aflfast-Orthrus configurations exposed 1 and 5 vulnerabilities respectively.
aflfast-Orthrus exposed 4 vulnerabilities that were not exposed by stand-alone
aflfast. In the case of nDPI, afl-Orthrus exposed 4 vulnerabilities that were not
found by stand-alone afl, while aflfast-Orthrus exposed 1 such vulnerability. For
both nDPI, and tcpdump, aflfast-Orthrus finds fewer number of vulnerabilities
overall in comparison to its baseline. We conjecture that the fuzz schedule alter-
ations carried out in aflfast [3] influence the scheduling of dictionary-mutations,
resulting in the observed drop.

Table 5 documents those vulnerabilities found using Orthrus generated dic-
tionaries that were not found by stand-alone fuzzing of tcpdump, and nDPI.
The number of exposed vulnerabilities that may be exclusively attributed to
Orthrus are 10, and 5, for tcpdump, and nDPI respectively. Overall, Orthrus



Table 4: Number of bugs and vulnerabilities exposed by different fuzzing configu-
rations. For Orthrus-based fuzzer configurations, the number of bugs exclusively
found by them is shown in brackets.

Software afl afl-orthrus aflfast aflfast-orthrus Peach-
analyzer

tcpdump 15 26 (+10) 1 5 (+ 4) 0
nDPI 26 27 (+ 4) 24 17 (+ 1) 0

Table 5: Vulnerabilities exposed exclusively using Orthrus generated dictionar-
ies in afl, and aflfast, for tcpdump, and nDPI. All the vulnerabilities result in a
buffer overflow. Number in square brackets indicates the number of vulnerabili-
ties found.

Software Vulnerable Component

IPv6 DHCP packet printer
IPv6 Open Shortest Path First (OSPFv3) packet printer

IEEE 802.1ab Link Layer Discovery Protocol (LLDP) packet printer
ISO CLNS, ESIS, and ISIS packet printers [2]

IP packet printer
ISA and Key Management Protocol (ISAKMP) printer

IPv6 Internet Control Message Protocol (ICMPv6) printer
Point to Point Protocol (PPP) printer

tcpdump

White Board Protocol printer

ZeroMQ Message Transport Protocol processor
Viber protocol processor

Syslog protocol processor
Ubiquity UBNT AirControl 2 protocol processor

nDPI

HTTP protocol processor

generated dictionaries exposed vulnerabilities in 14 different network protocols
across the two codebases. Some of the exposed vulnerabilities are in the process-
ing of proprietary protocol messages such as the Viber protocol. All the exposed
vulnerabilities resulted in buffer overflows, and were immediately reported to the
respective vendors. These results are a testament to the efficacy of our approach
in increasing the breadth of testing for complex network applications without
requiring domain-specific knowledge.

Preliminary Results for Snort++ We used Orthrus to perform dictionary-
based fuzzing of snort++, a C++ implementation of the popular snort IDS. Base-
line fuzzing with afl-fuzz helped find a single vulnerability (CVE-2017-6658) in
the snort++ decoder implementation. In contrast, the Orthrus generated dictio-
nary has helped find an additional vulnerability (CVE-2017-6657) in the LLC
packet decoder implementation of snort++ [31].



4.4 Limitations

Although our evaluations show that static analysis guided fuzzing is beneficial,
our positive results may not generalize to other parsing applications. However,
our evaluation comprising six different parser implementations provides strong
evidence that our approach can make fuzz testing more effective. Automatically
generated parsers (e.g., yacc-based parsers) may contain code that is structurally
different than hand-written parsers that we have evaluated. We believe that their
analysis may be carried out at the specification level than at the source code level.
Furthermore, we make use of simple heuristics to infer input message fragments
from source code. Thus, our analysis may miss legitimate input fragments (false
negatives), and/or add irrelevant tokens to the input dictionary (false positives).
However, we take practical measures to keep the number of false positives/neg-
atives low. For example, our design incorporates practical security advice given
by reputed institutes such as CERT [5] that have been compiled over years of
source code audits. In our case study, we make use of a small (yet relevant) seed
set to bootstrap fuzzing. It is possible that a diverse seed set improves the per-
formance of our baseline fuzzers. Having said that, we have carefully analyzed
the additional coverage achieved solely through the use of the supplied dictio-
nary to ensure that the presented increments can be attributed to our method.
In addition, we have manually triaged all vulnerabilities found exclusively using
dictionary-based fuzzing to ensure causality, i.e., they were ultimately exposed
due to the use of specific tokens in the supplied dictionary.

5 Related Work

Multiple techniques have been proposed to improve the effectiveness of fuzzing.
For our discussion of related work, we focus on approaches that infer the pro-
tocol specification, use grammar-based fuzzing, or query-driven static analysis
approaches.
Inferring Protocol Specification There are two problems underlying proto-
col specification inference: Inferring the protocol (i) Message format; and (ii)
State machine. Prior work, with the exception of Prospex [7] has focused solely
on the message format inference problem. Broadly, two approaches have been
proposed to automatically infer the protocol specification. The first approach
relies entirely on network traces for performing the inference, exemplified by the
tool Discoverer [8]. As other researchers have noted, the main problem with this
approach is that network traces contain little semantic information, such as the
relation between fields in a message. Therefore, inference based entirely on net-
work traces is often limited to a simple description of the message format that
is an under-approximation of the original specification. The second approach,
also a pre-dominant one, is to employ dynamic program analysis in a setting
where the network application processes sample messages, in order to infer the
protocol specification. Proposals such as Polyglot [4], Tupni [9], Autoformat [19],
Prospex [7], and the tool by Wondracek et al. [32] fall into this category. In com-
parison to our work, these proposals have two shortcomings. First, they require



dynamic instrumentation systems that are often proprietary or simply inacces-
sible. Dynamic instrumentation and analysis often requires software expertise,
making it challenging for auditing third-party code. In contrast, we show that our
analysis can be bundled into an existing compiler toolchain so that performing
protocol inference is as simple as compiling the underlying source code. Second,
prior work with the exception of Prospex, have not specifically evaluated the im-
pact of their inference on the effectiveness of fuzz testing. Although Comparetti
et al. [7] evaluate their tool Prospex in conjunction with the Peach fuzzer, their
evaluation is limited to finding known vulnerabilities in controlled scenarios. In
contrast to these studies, we extensively evaluate the impact our inference on the
effectiveness of fuzzing, both quantitatively in terms of test coverage achieved,
and time to vulnerability exposure, and qualitatively in terms of an analysis of
vulnerabilities exclusively exposed using our inference in real-world code.

Grammar-based Fuzzing Godefroid et al. [13] design a software testing tool
in which symbolic execution is applied to generate grammar-aware test inputs.
The authors evaluate their tool against the IE7 JavaScript interpreter and find
that grammar-based testing increases test coverage from 53% to 81%. Although
their techniques are promising, their work suffers from three practical difficul-
ties. First, a manual grammar specification is required for their technique to be
applied. Second, the infrastructure to perform symbolic execution at their scale
is not publicly available, rendering their techniques inapplicable to third-party
code. Third, their approach requires non-trivial code annotations, requiring a
close co-operation between testers and developers, something that might not al-
ways be feasible. In contrast, we solve these challenges by automatically inferring
input data formats from the source code. Indeed, we show that more lightweight
analysis techniques can substantially benefit modern fuzzers. Langfuzz [16] uses
a grammar specification of the JavaScript and PHP languages to effectively
conduct security assessments on the respective interpreters. Like Godefroid et
al., the authors of Langfuzz demonstrate that, in scenarios where a grammar
specification can be obtained, specification based fuzzing is superior to random
testing. However, creating such grammar specifications for complex network ap-
plications manually is a daunting task. Indeed, network protocol specifications
(unlike computing languages) are specified only semi-formally, requiring proto-
col implementors to hand-write parsers instead of generating them from a parser
generator. Such practical difficulties make grammar (specification) based fuzzing
challenging for network applications.

Query Based Program Analysis Our static analysis approach is inspired by
prior work on the use of queries to conduct specific program analyses by Lam
et al. [18], and automatic inference of search patterns for discovering taint-style
vulnerabilities from source code by Yamaguchi et al. [33]. At their core, both
these works use a notion of program queries to elicit vulnerable code patterns
from source code. While Lam et al. leverage datalog queries for analysis, Ya-
maguchi et al. employ so called graph traversals. In contrast to their work, we
leverage query-driven analysis toward supporting a fuzzer instead of attempting
static vulnerability discovery.



6 Conclusions and Future Work

In this paper, we demonstrate how static analysis guided fuzzing can improve
the effectiveness of modern off-the-shelf fuzzers, especially for networking appli-
cations. Code patterns indicate how user input is processed by the program. We
leverage this insight for gathering input fragments directly from source code.
To this end, we couple a static analyzer to a fuzzer via an existing interface.
Using input dictionaries derived from semantic and syntactic program analysis
queries, we are able to not only increase the test coverage of applications by
10–15%, but also reduce the time needed to expose vulnerabilities by an order of
magnitude in comparison to fuzzers not supplied with an input dictionary. We
leverage our research prototype to fuzz two high-profile network applications,
namely, nDPI, a deep packet inspection library, and tcpdump, a network packet
analyzer. We find 10 zero-day vulnerabilities in tcpdump, and 5 zero-day vul-
nerabilities in nDPI that were missed by stand-alone fuzzers. These results show
that our approach holds promise for making security assessments more effective.

Our work highlights the need for a stronger interaction between program
analysis and testing. Although our study describes one way in which program
analysis can enhance fuzzing, exploiting their reciprocal nature poses some inter-
esting problems such as directing static analysis on code portions that have not
been fuzzed. This is one avenue for future work. A logical follow up of our work
will be to infer the protocol state machine in addition to its message format, and
leverage the additional insight for conducting stateful fuzzing. Leveraging our in-
ference algorithm toward conducting large-scale analysis of open-source C/C++
parser implementations is another avenue for future work that will shed light on
the security dimension of an important software component. Indeed, targeting
our analysis at the binary level will help us evaluate its efficacy against closed
source applications.
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