
RAID’17 | Static Analysis as a Fuzzing Aid

Static Analysis as a Fuzzing Aid
Bhargava Shastry, Markus Leutner, Tobias Fiebig, Kashyap Thimmaraju, Fabian

Yamaguchi, Konrad Rieck, Stefan Schmid, Jean-Pierre Seifert, Anja Feldmann

RAID’17 | Static Analysis as a Fuzzing Aid

Context
● We had good success against an SDN switch called

OvS
● 6 CVEs in about a month*

But, poor test coverage (< 5%)

* https://bshastry.github.io/2017/07/24/Fuzzing-OpenvSwitch.html

https://bshastry.github.io/2017/07/24/Fuzzing-OpenvSwitch.html

RAID’17 | Static Analysis as a Fuzzing Aid

Summary
In a nutshell, I will tell you

● Why handwritten parsers still exist?
● Why thorough testing of handwritten parsers is

challenging?
● Static analysis can improve test effectiveness
● Present evidence in favor

RAID’17 | Static Analysis as a Fuzzing Aid

Handwritten Parsing Code Considered Dangerous

● Heartbleed old wine, new bottle
● No memory safety guarantees in

C/C++

“... for complex [protocols] the recognition that
matches the programmer’s expectations can be
equivalent to the ‘halting problem’”

- Sassaman et al. 2011

RAID’17 | Static Analysis as a Fuzzing Aid

Why Handwritten Network Parsers in 2017?

Some educated guesses...

● Legacy code
● Informal specification

○ IETF RFCs are human readable
● Multi-protocol handling
● Complex protocol grammar

○ Hard to express as context-free specification

RAID’17 | Static Analysis as a Fuzzing Aid

Network Analysis Tools
● Handwritten parsers backbone of network analysis

tools
● Packet analyzers, NIDS etc.

○ Parse a few hundred network protocols

How do we test them thoroughly?

RAID’17 | Static Analysis as a Fuzzing Aid

Limitations of Existing Techniques
Optimal seed selection problem

● How diverse should seeds be?
● How to obtain seeds that are sufficiently diverse?

Analysis precision vs run time

● How to scale up analysis while reducing false
positives?

RAID’17 | Static Analysis as a Fuzzing Aid

Our Proposal
Static analysis guided fuzzing

● Exploits complementary nature of SA and fuzzing
○ SA to find what good seeds look like
○ Fuzzing to find bugs
○ No false positives and potentially high coverage!

RAID’17 | Static Analysis as a Fuzzing Aid

Challenges
How do I look for protocol message fragments?

● Identify tainted data-dependent program control flow

What do seeds look like?

● From this, find
○ (Constant) Tokens
○ Relation between tokens
○ Partial ordering (if any) between tokens

RAID’17 | Static Analysis as a Fuzzing Aid

Data-dependent Control Flow

int parse (const char * token1) {
 if (token1 == "INVITE")
 do_something ();
} Data

Data-dependent
Control Flow

RAID’17 | Static Analysis as a Fuzzing Aid

Tainted Control Flow

int parse (const char * token1) {
 if (token1 == "INVITE")
 do_something ();
}

int main (int argc, char *argv[]) {
 parse(argv[1]);
 parse(“TEST”);
}

Tainted
Input

RAID’17 | Static Analysis as a Fuzzing Aid

Identifying Tainted APIs
● Requires forward slicing

○ Intractable for large programs
● Our proposal

○ Apriori database of known taint sinks
○ Based on SANS/CERT secure coding guidelines
○ May also be developer supplied

RAID’17 | Static Analysis as a Fuzzing Aid

Now we know how to look for message
fragments in source code…

How to build a dictionary?

RAID’17 | Static Analysis as a Fuzzing Aid

Dictionary Generation
● Constant tokens

○ Syntactic code analysis sufficient
○ Fast wrt compilation time

● Token relationship and ordering
○ Requires semantic code analysis
○ Slow wrt compilation time

RAID’17 | Static Analysis as a Fuzzing Aid

Extracting Constant Tokens
bool FuzzMe(const uint8_t
*Data, size_t Size) {
 return Size >=1 &&

 Data[0] == 'F' &&
 Data[1] == 'U' &&

}

EQ

AND

Data[0] ‘F’

EQ

Data[1] ‘U’

Source
Code AST

RAID’17 | Static Analysis as a Fuzzing Aid

Extracting Constant Tokens
Algorithm

● Make a pass over source code
● Obtain abstract syntax tree
● From AST, obtain constant tokens in “hot path”

RAID’17 | Static Analysis as a Fuzzing Aid

Extracting Constant Tokens

EQ

AND

Data[0] ‘F’

EQ

Data[1] ‘U’

AST

‘F’

‘U’

Dictionary

RAID’17 | Static Analysis as a Fuzzing Aid

Inferring Token Relationship and Ordering
● In what context is a given constant token used?

○ E.g., “INVITE” follows “SIP 2.0”
● What do productions in the protocol grammar look

like?
○ E.g., “SIP 2.0 INVITE”

This requires semantic code analysis

RAID’17 | Static Analysis as a Fuzzing Aid

Extracting Token Productions
Algorithm

● Make a pass over source code
● Obtain control flow graph
● From CFG, identify dependencies between tokens

RAID’17 | Static Analysis as a Fuzzing Aid

Extracting Token Productions

‘FU’

Dictionary

IF DATA[0] == ‘F’

IF DATA[1] == ‘U’

TRUE

RETURN

FALSE

CFG

‘FX’

‘X’

RAID’17 | Static Analysis as a Fuzzing Aid

Evaluation
● Chose three state-of-the-art fuzzers

○ libFuzzer, afl-fuzz, afl-fuzz-fast [CCS’16]
● Methodology: Measure fuzzer findings with and

without dictionary
● Both controlled and uncontrolled tests

○ Controlled: Time to find known vulnerabilities
○ Uncontrolled: Vulnerabilities and test coverage for

production code

RAID’17 | Static Analysis as a Fuzzing Aid

Results: Controlled Set Up
● openssl, c-ares, libxml2,

woff2
● Orthrus consistently reduce

time-to-vuln-exposure
● High opportunity cost

when bug is in parsing path!

RAID’17 | Static Analysis as a Fuzzing Aid

Results: Uncontrolled Set Up

tcpdump

RAID’17 | Static Analysis as a Fuzzing Aid

Results: Number of Discovered Vulnerabilities

Software afl afl-Orthrus aflfast aflfast-Orthrus

tcpdump 15 26 (+10) 1 5 (+4)

nDPI 26 27 (+4) 24 17 (+1)

Found a new zero-day in snort++ post submission!

RAID’17 | Static Analysis as a Fuzzing Aid

Impact: tcpdump 4.9.2
● Fuzzed by eight independent teams
● 92 CVEs discovered in total
● We discovered 43 CVEs using Orthrus

We found just under 50% of them!

RAID’17 | Static Analysis as a Fuzzing Aid

Conclusions
● Exhaustive testing of network parsers important
● Our heuristics capture protocol message fragments,

feeding it to a fuzzer
● Static analysis can augment fuzzing effectively

○ Test coverage increased 10-15%
○ Tens of new zero-day vulnerabilities
○ Fast analysis, one-time cost

RAID’17 | Static Analysis as a Fuzzing Aid

Future Work
● Scale up evaluation (parsers on GitHub!)
● Evaluate yacc generated parsers
● Port to Java-based parsers
● Automated parser test-case generation

RAID’17 | Static Analysis as a Fuzzing Aid

Questions?
Thank you!

RAID’17 | Static Analysis as a Fuzzing Aid

Analysis Run Time

RAID’17 | Static Analysis as a Fuzzing Aid

Syntactic vs Semantic Analysis Run Time

RAID’17 | Static Analysis as a Fuzzing Aid

Test and Analysis Techniques
● Fuzz testing

○ Requires diverse seeds but provides actionable
diagnostics

● Static analysis
○ Can analyse entire codebase but suffers from false

positives

