
Reducing the Latency-Tail of Short-Lived Flows:
Adding Forward Error Correction in Data Centers

Klaus-Tycho Foerster, Demian Jaeger, David Stolz, and Roger Wattenhofer
ETH Zurich, Switzerland

{foklaus, jaegerde, stolzda, wattenhofer}@ethz.ch

Abstract—TCP handles packet loss in the network by re-
transmitting lost packets, which in turn increases latency. Many
connections in data centers are short-lived and consist only of
a few packets (e.g., RPCs). Such connections suffer dispropor-
tionately from packet retransmissions. We address this issue by
introducing a new transport layer protocol called ATP: ATP
uses ample forward error correction at the beginning of a
connection, allowing short-lived flows to recover from packet loss
without retransmissions – but at the same time not congesting
long-lived flows. Our experiments show that in an environment
with background traffic, the latency’s 99th percentile can be
reduced by a factor of almost 20 while being fair to other TCP
connections.

Index Terms—FEC, Latency Tail, TCP, Data Centers

I. INTRODUCTION

When Microsoft Research examined the traffic of 1500
servers in a cluster for data mining [1], they found that while
more than 50 % of all the flows did not last for more than
100 ms, they did not contribute to more than 1 % of the
transferred data. Many flows were transmitting at a small rate,
50 % at 10 kB/s or less (cf. also [2], [3]). Even though such
little flows do not contribute significantly to the overall traffic
volume, they are important and especially affected by a lost
packet. The added latency of an additional RTT due to the
retransmission is proportionately larger for a small flow than
a large one. The authors of [1] state: “We do believe that TCP’s
inability to recover from even a few packet drops without
resorting to timeouts in low bandwidth delay product settings
is a fundamental problem that needs to be solved.” [1]

Similarly, a review of Facebook’s data center network
architecture showed that a single HTTP request can result in
dozens of cache and database lookups and almost 400 remote
procedure calls (RPCs) [4]. We assume that the vast amount
of small flows discovered is at least partially caused by RPCs.

As thus, we aim to reduce the latency of small flows within
data centers by introducing a new transport layer protocol
called Another Transport Protocol (ATP). Our goal is to reduce
the latency of small flows that is caused by packet loss. While
TCP always needs to perform a retransmission in the case of
a packet loss and the data transfer thus takes an additional
Round-trip Time (RTT), our protocol uses Forward Error
Correction (FEC) in order to avoid this latency.

Organisation of our short paper. We start by describing
the design of ATP in Section II, before providing a positive
performance evaluation of ATP in Section III. We then discuss
related work in Section IV, and lastly conclude in Section V.

II. DESIGN OF ATP: ANOTHER TRANSPORT PROTOCOL

In this section, we will describe the two most important
features of ATP, packet loss handling and congestion control.

A. ATP’s Packet Loss Handling

ATP has three different measures to handle lost packets:

Sender Timeouts. A timeout on the sender side occurs if
a byte of the stream does not get acknowledged within a
specified time. The timeout duration depends on the RTT. If
a byte times out, it will be retransmitted by the sender. The
protocol tries to avoid these timeouts when possible, as such
timeouts are comparatively large and so is the added latency.

Receiver Timeouts. If the receiver receives out-of-order pack-
ets, the received data stream will have gaps. If these gaps exist
for too long, they will trigger a timeout and the receiver sends a
retransmission request to the sender which then retransmits the
missing data. Subfigures 1a and 1b illustrate the two different
types of timeouts.

Forward Error Correction. In order to avoid timeouts even
in the case of packet loss, the protocol uses a simple systematic
block coding. Systematic codes contain the input data in the
output. This leads to no decoding overhead if all data is
received correctly. After sending multiple packets with plain
data, the protocol will insert a FEC packet which contains
the XOR of the previously sent data packets as illustrated in
Subigure 1c. If one of these packets is lost, the receiver can
restore the missing packet. These additional packets result in
an overhead leading to higher bandwidth requirement for the
same goodput. To minimize the overhead, the rate of the FEC
is adjusted by the protocol. At the start of a connection the
rate will be high, but it is decreased as the transfer speeds up
and there is no loss.

B. Congestion Control

An important feature of a reliable transport layer protocol
is its congestion control algorithm. If there is congestion in
the network, the protocol must adjust its send rate. The basic
principle is illustrated in Figure 2 and is the same for ATP
and TCP. The window size is the amount of unacknowledged
bytes the sender is allowed to transmit. Adjustment of this
window allows control of the transmission speed.

ATP’s Congestion Control. Our protocol increases its win-
dow based on a RTT without any congestion events. If during



{
acked

{sent long ago{
sent recently

Sender

(a) If a packet does not get acknowledged within
a certain time period, it will trigger a timeout and
the sender will send it again.

{
received

{ gap {
received

Receiver

(b) If a gap in the receiver stream persists for a
specified timeout period, the receiver will ask the
sender to resend the packet.

DATA FECDATA DATA DATA DATA FEC

(c) The FEC packets contain the bitwise XOR of
the plain data packets sent before.

Fig. 1. Timeouts can either happen at the sender or the receiver.

acked ready
{

{sent, not acked {1 2 3 4 5

(a) Packet 1 is already acknowledged, while 2 and
3 are not. Even though the sender has additional
data in its buffer, it is not allowed to send it.

acked ready

{sent, not acked{1 2 3 4 5

ACK 2{
(b) The sender now receives an acknowledgment
for segment 2. It now has only one unacknowl-
edged packet, while its window size is 2.

1 2 3 4 5
4

acked ready

{sent, not acked{ {
(c) The sender now sends packet 4, as there is
still space in the window. After sending the fourth
packet, all allowed packets have been sent.

Fig. 2. In this example the window size is the length of two packets. The sender is only allowed to send two packets and must wait until an acknowledgment
of a packet is received before the next packet can be sent.

a whole RTT no such event occurs and at least some data gets
acknowledged, the window will be increased by a constant
value corresponding to the maximum packet size. Since this
increase might not be fast enough for links with high latency,
at the start of a new connection the window is increased
with each newly acknowledged segment. However, in data
centers the RTT is usually very small, and an increase of the
RTT is most probably due to increased buffer latency. Since
Another Transport Protocol (ATP) then increases its window
size slower, the buffer will not fill up too fast. In the case
of a lost packet, there are, as mentioned in Section II-A,
three possible ways to get the data to the receiver: Either
by using the FEC information, by sending a retransmission
request to the sender, or if the sender experiences a timeout.
If the receiver needs to use a FEC packet due to a lost packet,
it will inform the sender about this event – the sender then
decreases its window by a small factor. If the receiver sends
a retransmission request or the sender has a local timeout, it
will decrease its window by a larger factor.

As the window is increased, the protocol will simultane-
ously reduce the FEC rate – since the network is not in a
congested state with losses. Conversely, if the window size is
decreased, the FEC rate is increased.

We note that the specific implementation details of ATP (in
C) are omitted in this short paper due to space constraints.
The main difference of ATP to TCP is the included forward
error correction, which is our central focus in this short paper.

III. PERFORMANCE EVALUATION

In this section, we first describe our testbed setup, before
comparing the performance of ATP and TCP for small flows
under various background traffic settings in Subsection III-A.
We analyze a large number of connections, showing that ATP
indeed reduces the tail latency of small flows. Lastly, we also
briefly show the fairness of ATP to TCP in Subsection III-B.

Testbed Setup. We evaluated the implementation of ATP on
a small testbed using up to four laptops and a single desktop
machine, depicted in Figure 3. All machines ran on Ubuntu

15.10 and had a Gigabit Ethernet interface. In each experiment,
the Ethernet pause frame functionality was disabled. When
comparing TCP with ATP, all the hardware helpers of the
NIC to support TCP were disabled.

ATP relies on a mechanism called Random Early Detection
(RED), which is a widely available in high performance
switches used in data centers. RED detects if a queue in
a switch gets larger and starts to drop packets before it is
completely full. This results in a fairer packet drop distribution
across multiple flows, and does usually not result in a drop
of consecutive packets – an essential property for ATP. The
testbed’s switches (Planet GSD-805) do not support RED,
hence the desktop machine is used to provide RED.

100 Mbps

1 Gbps

100 Mbps

1 Gbps1 Gbps 1 Gbps 1 Gbps

192.168.1.11 192.168.1.12 192.168.1.21 192.168.1.22

Desktop machine

Fig. 3. Depiction of the testbed we used for our experiments. One 100 Mbps
link is added between all tested connection for congestion control effects.

A. Comparison of ATP and TCP

The main goal of our design of ATP is to reduce the
latency of small flows, in the presence of larger flows. In
this subsection, we compare several small ATP connections
to TCP on different background traffic scenarios. We will see
that, especially in a slightly congested network, ATP often can
omit retransmissions and thus additional latency.

For each background traffic scenario, 1000 connections
were subsequently completed, each transferring 8.5 kB data
from 192.168.1.11 to 192.168.1.21. Background traffic was
sent permanently from 192.168.1.12 to 192.168.1.22. For each
connection the time for its completion was measured. Note that
for TCP connections, the time for the three-way handshake



1.0 10.0 100.0
Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e 
D

is
tri

bu
tio

n

ATP
TCP

(a) No other traffic in the network.

1 10 100 1000 10000
Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

ATP
TCP

(b) Background traffic of 192.168.1.12
permanently sending a large stream of
TCP data to 192.168.1.22.

1 10 100 1000 10000
Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

ATP
TCP

(c) Link loss of 1% on the Linux
machine acting as a switch. The loss
was introduced only in the direction
in which the data was sent, and not in
the acknowledgment direction.

1 10 100 1000 10000
Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

ATP
TCP

(d) Background traffic of 192.168.1.12
permanently sending a large stream
of UDP data to 192.168.1.22; Of all
the UDP packets sent, 1.5% were
dropped in the network.

Fig. 4. Comparison of the cumulative distribution functions of the connection completion times of ATP and TCP in various settings of background traffic.
ATP is depicted in blue, TCP in green. In these experiments, the sender sent a data stream of 8.5 kB 1000 times from 192.168.1.11 to 192.168.1.21 in
the network depicted in Figure 3. While TCP slightly outperforms ATP in cases of no background traffic, the latency tail of the completion times grows
considerably with heavy background traffic and data loss, letting ATP complete considerably faster than TCP. E.g., already in Subfigure 4c, ATP finishes a
bit after 10ms, while TCP takes about 1000ms to complete for the last flows.

was subtracted from the measured time, in order to have a
direct comparison to ATP, which does not perform such a
handshake.

No Background Traffic. In the first experiment, there is no
background traffic at all. The results shown in Subfigure 4a
demonstrate that TCP and ATP behave very alike. The median
and the mean of the flow duration is slightly lower for
TCP than for ATP, which is expected since ATP transmits
2 additional FEC packets for each connection.

TCP Background Traffic. In the second experiment, there is
background traffic originating from a large TCP stream. The
results are displayed in Subfigure 4b. Since TCP implements
a congestion control algorithm, the network will not be exces-
sively congested. Nevertheless, due to the small buffer size set
in the desktop machine (acting as a switch), some connections
experience packet loss. ATP can reconstruct the stream on
the receiver side and – apart from one single connection in
the whole sample – does not need to retransmit data at all.
This leads to a significantly lower 99th percentile of the flow
duration. TCP’s 99th percentile is at 210 ms while ATP’s is
at 11 ms. However, TCP’s 95th percentile is only 2% higher.

Lossy Link In Subfigure 4c the desktop machine introduces
a loss rate of 1%. In such a case ATP will usually be able to
reconstruct the lost packets immediately. The 99th percentile
is at 2 ms, which is the same as in the case of no loss at all.
However, the 99th percentile of TCP is at over one second!
The reason for this is mainly due to the problem TCP has
when the last data packet is lost. The sender waits until a
timeout occurs. ATP’s last packet sent is a FEC packet, and
the second last is the stream’s last data packet. As long as both
of these last packets are not lost in the network, the worst that
can happen is a receiver timeout, which is significantly faster
than a sender timeout.

UDP Background Traffic The massive injection of UDP
packets into the network with a speed slightly above the
maximum link capacity congests the network heavily. It results
in a network that experiences 1.5% packet loss on average.

Additionally, all buffers are full, which makes retransmis-
sions more expensive. In contrast to experiments with TCP
background traffic, where the 95th percentile did not differ
extremely between TCP and ATP, the 95th percentile in this
experiment differs vastly: While with ATP 95 % of all flows
finish within 50 ms, TCP needs 340 ms. The 99th percentile
is at 53 ms for ATP and at 1134 ms for TCP. These results
are shown in Subfigure 4d.

Tail Latency Subfigures 4a to 4d show the cumulative distri-
bution of the latencies in different environments. Since the tails
of the distributions are not clearly visible, Figure 5 shows the
last percentiles. We see again, that in case there is congestion,
or if packet loss occurs in the network, ATP can reduce the
tail latency successfully.

90 95 97 99
Percentile

0.0000

0.0005

0.0010

0.0015

0.0020

La
te

nc
y 

[s
]

Background: None

90 95 97 99
Percentile

0.00

0.05

0.10

0.15

0.20

0.25

La
te

nc
y 

[s
]

Background: TCP

90 95 97 99
Percentile

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

nc
y 

[s
]

Background: Lossy

90 95 97 99
Percentile

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

nc
y 

[s
]

Background: UDP

TCP
ATP

Fig. 5. Tail latencies of ATP and TCP compared in different background
traffic scenarios. The different scenarios are described in Subsection III-A.

B. Fairness of Concurrent Connections
An important feature of a transport layer protocol is that

it does not starve other connections. If two connections are
started in parallel, both connections should use approximately
the same bandwidth. By its similarity in design to TCP, ATP
is fair to both ATP and TCP – which we also evaluated
experimentally in our network testbed.

Due to to space constraints in this short paper, we just briefly
review one experiment for TCP: In Figure 6, a TCP and an



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time [s]

0

20

40

60

80

100

Sp
ee

d 
[M

bp
s]

Goodput ATP
Goodput TCP
Total Goodput

Fig. 6. An ATP and a TCP connection transfer 20 MB of data each. ATP
from 192.168.1.11 to 192.168.1.21, TCP from 192.168.1.12 to 192.168.1.22.

ATP stream are started at the same time and both must transmit
20 MB of data. Looking at the whole connection duration the
link is shared in a fair way: the TCP stream finishes after
3.43s, while it takes ATP 1.18% longer to complete.

IV. RELATED WORK

Adding forward error correction (FEC) at the link layer is a
well studied concept in wireless networks, see, e.g., [5]. More
closely related to our work is applying FEC on a packet level
basis. The authors of [6], following an idea of [7], evaluated
the effect of applying FEC on the IP and TCP interface by
running simulations. If their new intermediate layer detects the
loss of the next segment of the TCP stream, it waits some time
for the arrival of an error correction packet and will rebuild
the missing IP packet. Used between two layers, the transport
layer protocol can not directly benefit from the additional
information provided by the applied FEC1. Additionally, their
solution adds latency, since the new intermediate layer waits
for potential correction packets. This and other [8] early
proposals focused on lossy links, rather than on data centers.

Recently, multiple projects have attempted to reduce the la-
tency of flows within a data center. The HULL architecture [9]
trades 10 % of the links’ bandwidth for reduced latency. If the
traffic load on a link arrives at 90 % of the total capacity, a
NetFPGA sets the Explicit Congestion Notification (ECN) flag
and TCP will slow down. This avoids the filling of the switch’s
queues and will thus reduce latency. Fastpass [10] lets each
sender delegate control to a centralized arbiter which decides
when a packet has to be sent and which paths it should take.
This results in a single point of failure, or at least a non trivial
handover from the primary to the secondary controller. Both of
these suggestions need adaption of the intermediate network
infrastructure itself, while our approach has the advantage of
only requiring software adjustments at the endpoints.

Lastly, for a recent discussion of the impact of the latency
tail, also beyond a data center setting, we refer to [11].

V. CONCLUSION AND OUTLOOK

We designed and implemented a transport layer protocol
called ATP, which provides the same functionalities as TCP: A
reliable transfer of a data stream within an IP network without

1This can be addressed by using Explicit Congestion Notification (ECN)
messages, as suggested by the authors.

congesting the network, and with fairness to other ATP, as well
as TCP streams. The design goal was to reduce the latency tail
of small flows within data centers.

The protocol uses a simple systematic block coding. After
sending a variable number of data packets, a FEC packet is
sent, containing the XOR of the previously sent data packets.
This allows the immediate reconstruction of the stream, if
the network dropped a packet and thus reduces the need for
retransmissions. ATP uses a sliding window mechanism to
control its send rate. Whenever a packet loss occurs, the send
rate is decreased and the same time the FEC rate is increased.

In a small testbed, we evaluated the performance of ATP and
verified that it behaves fairly to other connections. In a series
of multiple small data transfers, ATP often outperforms TCP,
since it is able to avoid retransmissions. In an environment
which has TCP background traffic, ATP’s 99th percentile of
the flow completion time is at 11 ms, while TCP’s is at 210 ms.
The additional FEC information induces a small overhead on
the network’s load, but the latency decrease can improve the
user experience. ATP needs no central controller, or changes
to the intermediate hardware, and only relies on software
adjustments on the end-hosts.

A next step of using packet based FEC information to
shrink the latency of small flows would be to include ATP’s
functionality as a TCP extension. This would guarantee back-
ward compatibility with hosts that do not support ATP. It is
furthermore possible to augment ATP’s implementation by a
priority-aware congestion control algorithm.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments. Klaus-Tycho Foerster was partially
supported by Microsoft Research.

REFERENCES

[1] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Internet
measurement conference. ACM, 2009.

[2] A. Feldmann, J. Rexford, and R. Cáceres, “Efficient policies for carrying
web traffic over flow-switched networks,” IEEE/ACM Trans. Netw.,
vol. 6, no. 6, pp. 673–685, Dec. 1998.

[3] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 50–61, 2011.

[4] N. Farrington and A. Andreyev, “Facebook’s data center network archi-
tecture,” in IEEE Optical Interconnects Conf. IEEE, 2013.

[5] B. Liu, D. Goeckel, and D. Towsley, “Tcp-cognizant adaptive forward
error correction in wireless networks,” in GLOBECOM. IEEE, 2002.

[6] H. Lundqvist and G. Karlsson, “TCP with end-to-end FEC,” in Com-
munications, 2004 International Zurich Seminar on. IEEE, 2004.

[7] C. Huitema, “The case for packet level fec,” in TC6 WG6.1/6.4 Fifth
International Workshop on Protocols for High-Speed Networks V, 1997.

[8] O. Tickoo, V. Subramanian, S. Kalyanaraman, and K. K. Ramakrishnan,
“LT-TCP: end-to-end framework to improve TCP performance over
networks with lossy channels,” in IWQoS, 2005.

[9] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: trading a little bandwidth for ultra-low latency
in the data center,” in NSDI, 2012.

[10] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
pass: A centralized zero-queue datacenter network,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, pp. 307–318, 2015.

[11] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, 2013.


