
On the Consistent Migration of Unsplittable Flows:
Upper and Lower Complexity Bounds

Klaus-Tycho Foerster
ktfoerster@cs.aau.dk

Aalborg University, Denmark

Abstract—In consistent flow migration, the task is to change
the paths the flows take in the network, but without inducing
congestion during the update process. Even though the rise
of Software Defined Networks allows for centralized control of
path changes, the execution is still performed in an inherently
asynchronous system, the switches distributed over the network.

To this end, a multitude of scheduling systems have been
proposed since the initial papers of Reitblatt et al. (Abstractions
for Network Update, SIGCOMM ’12) and Hong et al. (SWAN,
SIGCOMM ’13). While the the complexity of consistently migra-
ting splittable flows is well understood, for the practically more
relevant unsplittable flows, few non-heuristic results are known
– and upper complexity bounds are missing.

We give a dynamic programming algorithm for unsplittable
flows, showing the containment in EXPTIME, for both computa-
tion time and schedule length. In particular, there are cases where
flows must switch between paths back and forth repeatedly: as
thus, flow migration is not just an ordering problem.

We also study lower bounds and show NP-hardness already
for two flows, via reduction from edge-disjoint path problems.

Lastly, we also discuss some practical application cases for our
dynamic programming algorithm, furthermore showing how it
can be extended to min-max load considerations.

I. INTRODUCTION

Traffic demands change all the time in networks [1], [2], [3],
requiring the use of good traffic engineering techniques unless
performance is to be sacrificed. As such, it can be necessary to
change the path allocation for live traffic flows. In fact, optimal
traffic engineering requires the ability to swap flow paths, if
traffic arrives in an online fashion [4].

The toolkit of Software Defined Networking (SDN) allows
the network operator to take central control of such network
reconfigurations, no longer relying on distributed protocols. To
this end, major operators such as Microsoft [1] or Google [2]
optimize their WAN traffic engineering every few minutes.
While the network will be in an enhanced state afterwards,
inconsistencies can occur during the network update, such as
blackholes, forwarding loops, or congestion [3], [5].

In this short paper, we focus on avoiding congestion during
the network update process. First studied by Hong et al. [1]
in SDNs, the problem is to move flows from their old to their
new paths, but without inducing bandwidth violations in the
process due to asynchrony, see Fig. 1 for an example.

There has been a wide landscape of system proposals, which
compute flow migration schedules in order to avoid transient
congestion, e.g., [1], [6], [7], [8], [9].

(a) The old flow paths drawn solid,
the new flow paths are dotted.

(b) If the new green bottom flow is
inserted first, congestion occurs.

Fig. 1. In this introductory example, all flows and edges have a size
resp. capacity of one. In 1a, two flows (in red and blue) are in the network,
which need to be moved for the green flow to be inserted without congestion.
If all three operations are issued simultaneously, the green flow could be
inserted before the other flows have moved, as in 1b. However, three updates
suffice to update consistently: first move the top red flow, then the middle
blue flow, and lastly insert the green flow.

However, while the computational complexity for splittable
flows is polynomial [10], no upper complexity bounds for
unsplittable flows are known [11, Table 3]. On the other end, it
is known that a linear number of unsplittable flows are NP-hard
to migrate consistently, but further lower bounds are unknown
as well, except in the related node-ordering model of Amiri et
al. [12], discussed in Section VI, along with related work.
Contribution. We present a dynamic programming algorithm
for the consistent migration of unsplittable flows, generating
a schedule of optimal length in exponential time (§ III). To
motivate our super-polynomial runtime, we show in § II that
flow migration is not just an ordering problem, but can require
to move flows back and forth repeatedly. In particular, already
the migration of two flows is an NP-hard problem. We inves-
tigate applications in § IV where our dynamic programming
algorithm has sub-exponential worst-case runtimes, extending
our approach min-max load considerations in § V. Lastly, we
conclude in § VII with an open complexity question.
Model A network N is a directed graph G = (V,E), |V | = n,
with edge capacities c(e). An unsplittable flow F is routed
along a simple path from s to t, with a multi-commodity
flow denoted by F = {F1, F2, . . . , Fk}, respecting capacity
constraints. We assume all flows to be unsplittable.

A network update is a tuple (N,F ,F ′), where F describes
the old and F ′ the new flow paths. W.l.o.g., we can assume that
a flow Fi, F

′
i has the same size before and after the update [10],

[1], as else can could decrease its size before/increase after.
Due to asynchrony, the individual flows can update in

any order [1], [7], cf. Fig. 1. Hence, Hong et al. [1] call
a network update consistent, if no bandwidth violations occur
independently whether the flows are on their old or new path:

∀e ∈ E :
∑

1≤i≤k
max (Fi (e) , F

′
i (e)) ≤ c (e)

Lastly, a schedule of consistent network updates, using 2-
phase commits [3], is called a consistent flow migration, where
the flows may be on intermediate paths not contained in F ,F ′.

As such, we study the following problem in this paper:1

• Given a network N with old and new flow paths F ,F ′,
is there a consistent flow migration from F to F ′?

II. ORDER IS NOT EVERYTHING

Before presenting our EXPTIME-algorithm in Section III,
we would like to motivate with two examples why we
conjecture consistent flow migration not to be in NP.
• In Section II-A, we show that flow migration is already

NP-hard for two unsplittable flows, due to exponentially
many intermediate path options.

• In Section II-B, we show that flow migration is not an
ordering problem – flows need to be moved repeatedly.

A. Two flows are NP-hard

Taking a step back, in mathematical flow theory, splittable
flow problems usually turn out to be in P, while unsplittable
ones are mostly NP-hard, already for two flows [16]. Single-
source/destination problems are an (easier) exception though,
i.e., for a single flow. We will now show that the situation is
analogous for flow migration. By definition, a single flow can
always be migrated in a consistently in a single update:

Observation 1. For one flow, consistent migration is in P.

There is a large hardness-gap though. Except for in the
node-ordering model of Amiri et al. [12] (§VI-A), previous
work only showed consistent migration to be NP-hard for a
linear number of unsplittable flows, via, e.g, PARTITION [9].
We will now show the NP-hardness already for two flows, via
reduction from two two edge-disjoint path problem:

Theorem 1 ([17]). Let G = (V,E) be a directed graph, with
s1, t1, s2, t2 ∈ V . Finding two edge-disjoint paths, one from
s1 to t1, and one from s2 to t2, is NP-complete.

The fundamental underlying problem is that there can be
exponentially many path options between two nodes, turning
the joint optimization of already two paths intractable.

Theorem 2. For two flows, consistent migration is NP-hard.

Proof: Reduction from the two directed edge-disjoint path
problem: all edges and flows will have capacity or size of
1. For an instance I with G = (V,E), s1, t1, s2, t2 ∈ V , we
can assume w.l.o.g. that individual paths Pi from si to ti,
i ∈ {1, 2} exist. We add new nodes s, t, connecting both s1, s2
to s; s to t; and t to t1, t2. We now set F1 as s1, s, t, t1 and
F2 as s2, P2, t2, and set F ′1 as s1, P1, t1 and F ′2 as s2, s, t, t2.
In order to migrate the unsplittable flows consistently, we need
to “store” two edge-disjoint flows from si to ti, i ∈ {1, 2} in
I , else the capacity constraints on the edge from s to t would
be violated, finishing the reduction.

1We defer the case that N changes, e.g., due to link failure [5], [13] resp.
being taken offline for maintenance work [14] or variable link capacities [15].

C1,S C1,T

S T

x1,S x1,T

C2,S C2,T

A

B

C1,P,0 C1,P,1

C1, x1,1C1, x1,0

C2,P,0 C2,P,1

C2, x1,0 C2, x1,1

FC1=F’C1 FC2=F’C2

FA

FB

FX1= F’X1

Variable x1

Clause C1 Clause C2

true

false

SA

SB

TA

TB

F’A

F’B

Fig. 2. Taken from [10, Figure 3]. In order to swap the green and blue
flow, s.t. they reach their new dashed paths, the purple variable flow must be
assigned in such a way that both clause flows can free up a swapping path. In
this case, the instance is not solvable, analogous to the formula (x1)∧ (¬x1).

B. Flows need to move back and forth repeatedly

As observed by Jin et al. [7, Appendix A], consistent flow
migration is in NP if every flow is only allowed to be moved
once: at most, every flow is moved in a solitary fashion,
meaning the total schedule length is linear.

Subsequently, Brandt et al. [10] devised an NP-hardness
reduction from 3-SAT, where some flows must be moved
twice: once to an intermediate path2, and secondly, to their
final path [10, Theorem 4.2]. The reduction relies on providing
free capacity for flow swaps, which requires solving 3-SAT.

It is easy to extend their construction, illustrated in Fig. 2, to
require some flows to be moved back and forth arbitrarily often.
Namely, we create instances from multiple 3-SAT formulas,
but let them all share the variable flows, depicted in purple in
Fig. 2. Then, the purple variable flows must cycle through the
corresponding formula truth assignments, switching back and
forth between both the true and the false paths repeatedly.

We cast our insights into the following Theorem 3.

Theorem 3. A consistent flow migration algorithm, which is
restricted to move each flow only a constant number of times,
cannot solve all feasible instances.

III. AN EXPTIME-ALGORITHM

As seen in Section II, polynomial algorithms, already for 2
flows, would imply P = NP. We thus go beyond polynomial
algorithms in this section, presenting an EXPTIME scheme.

As no containment in a complexity class is known [11, Table
3], it can make sense to consider restricted models of flow
migration, especially in light of Theorem 2. E.g., if every flow
may only move once, flow migration is in NP [7]. To this end,
the popular path models for flow migration are:
• Per-packet consistency [3], where flow packets may only

take the old or new path from F ,F ′, respectively.
• Each packet may only traverse the union of old and new

path [19], which we call mixed.
• No restrictions, which we call the general model.
Now, instead of analyzing the three models seperately, we

can cover them all with combined arguments. Interestingly,
our dynamic programming approach will also find an optimal
schedule with a minimum number of updates.

2Of independent interest might be an analogous flow migration scheme
inspired by Valiant load balancing [18], where flows are “parked” randomly.

Theorem 4. Via dynamic programming, unsplittable {per-
packet, mixed, general} consistent flow migration can be solved
with minimum schedule length in the following runtime, where
#paths denotes the maximum number of paths available:

O
((

(#paths)|F|
)2)

· poly(n) (1)

Proof: As each flow F ∈ F can only take #paths in the
network, there are only O(#paths|F|) many possibilities in
which state the network can be after an update. We store each
such state in a table, marking each state as not yet reachable,
except for F . We then traverse the table, beginning from the
initial state F , checking what other states are reachable. Similar
to the argumentation used when proving Dijkstra’s algorithm
(for unit edge lengths), we then continue from any state that
is reachable in one update. In further steps, we always take
a state F∗ of minimum schedule length, and see which other
states are reachable, marking F∗ as checked afterward. As thus,
we need to check only O

((
(#paths)|F|

)2)
many updates for

consistency (similar to running Dijkstra on a complete graph
where every edge has either cost 1 or ∞). For unsplittable
flows, each check can be performed in polynomial time.

Observe that the optimal schedule length is therefore
bounded by O

(
(#paths)2|F|

)
, if a feasible one exists. For

our next corollary, we quickly also introduce some notation:
following Immerman [20, p.26], EXPTIME is defined as⋃∞
k=1 DTIME

⌊
2n

k
⌋

, which can be simplified as 2poly(n).

Corollary 1. Both the computation and number of updates
needed, for an optimal scheduling of unsplittable {per-packet,
mixed, general} consistent flow migration, is in EXPTIME.

We note that containment in NP is not even clear for two flows,
as the feasible state table has exponentially many entries.3

IV. POLYNOMIAL IMPLICATIONS

While showing unsplittable flow migration to be in
EXPTIME settled an open complexity question, exponential
runtimes are usually beyond reach for time-critical approaches.
We thus present two polynomial examples in this section.
Per-packet consistency for O(log n) unsplittable flows.
The popular per-packet consistency model by Reitblatt et al. [3]
restricts each flow to routing rules on either its old or its new
path. Hence, applying Term 1 with #paths = 2, we obtain a
runtime of O(2O(logn)) · poly(n) for unsplittable flows. I.e.,
this restricted flow migration problem is polynomial.
Mixed consistency of unsplittable flows in the data center.
The mixed model proposed by Nguyen et al. [19] can be seen
as an extension of per-packet consistency, as flow-packets may
now take any mix of the old and new routing rules. Still, in
the worst case, the old and new paths can intersect a linear
number of times, meaning #paths can be as high as 2Ω(n).

If we restrict ourselves to topologies of small path length
however, we can obtain tractable migrations of the mixed model.

3Another approach could be a combinatorial classification, conceptually
similar to solving the so-called 15-puzzle or multi-agent pathfinding [21].

E.g., in constant-level fat trees, using valley-free routing, each
path length is constrained to O(1). Hence, mixed consistent
flow migration of |F| unsplittable flows can be computed in a
runtime of O(2O(|F|)) · poly(n), allowing for O(log n) flows.

V. MINIMIZING TRANSIENT CONGESTION

In case our dynamic programming approach outputs that
no feasible schedule exists, there is no course of action
recommended on how to proceed. However, as observed
in, e.g., [9], we can then ask what the minimum transient
congestion is that the network has to endure for migration.
Min-max load with polynomial overhead. We reformulate
this idea by optimizing for the relative min-max load during
the migration process, implemented by scaling every edge
capacity by a global factor α ≥ 1. Observe that α only needs
to be chosen in a discrete range to cover all 2|F| possible
flow combinations, for every edge, then sorting the αs globally
by size. Hence, for unsplittable flows, we just need to test
O(|E| · 2|F|) different values of α, i.e., only an extra factor of
O(|F|+ log(|E|)) iterations, via binary search over the range.
As thus, polynomial algorithms remain polynomial.

Even if consistent migration is possible with α = 1, by
allowing for α < 1, we can minimize the relative maximum
load during the migration process with the same idea.
Traversing the pareto frontier. Using our dynamic program-
ming approach, we can now also evaluate the trade-off between
optimum schedule length and acceptable congestion or load,
completely exploring the problem space in both dimensions.

VI. FURTHER RELATED WORK

Dynamically changing the flow of traffic has also been
considered in traditional networks [22], [23], but it was not
before SDNs that consistency during the network update was
studied extensively in the context of flow migration.

The main selling point of SDNs is the separation of data and
control planes, allowing a (logically) centralized controller to
optimize previously distributed algorithms from an omniscient
point of view [24]. E.g., Google’s B4 [2] optimizes the
network based on global information every 2-3 minutes, using
customized hardware & protocols to perform the updates
quickly, thus minimizing turmoil effects during the update.
There is a multitude of consistency properties to check during
updates, with avoiding blackholes [5], loop freedom [5], [25],
[26], [27], [28], [29], [30] with waypointing [31], [32], [33],
packet coherence (rules from before and after the network
update do not mix) [3], [34], and bandwidth violations [1] being
the main focus of research [5]. Recent work also considered
consistent updates in optical networks [35], [15]. Model
checking is used to for consistent updates as well, but cannot
guarantee congestion freedom yet [36]. Time synchronization
has been studied in [4], [37], [38], [39]. For a summary of
the state of the art of consistent updates, we refer to [11]. In
specialized environments as single-tenant Data-Centers, one
can also take an orthogonal approach to network updates, by
scheduling all the traffic, eliminating the need for the migration
of flows [40], [41], [42].

A. Node-ordering: Flow migration without header changes
Conceptually different yet strongly related to our work is the

node-ordering model of Amiri et al. [12]. Instead of using the
2-phase commit [3] technique as in our and prior work, they
propose a powerful new model: forwarding rules are modified
in the nodes themselves, switching from old to new. As thus,
they can omit modifying packet headers (“tagging”), making
their approach more versatile with less overhead. Amiri et
al. [12] prove that in the node-ordering model, NP-hardness
already holds for the migration of two flows on general graphs.
On directed acyclic graphs, they show NP-hardness in general,
but also provide an intricate polynomial algorithm for a constant
number of flows. A translation of complexity results between
both models would be of great interest for future work.

VII. CONCLUSION

In this paper, we studied upper and lower complexity bounds
for the consistent migration of unsplittable flows.

Regarding lower bounds, we proved that already two flows
pose an NP-hard problem. Furthermore, we showed that
consistent flow migration is not just an ordering problem,
it can be necessary to move flows back/forth arbitrarily often.

With respect to upper bounds, no results were previously
known to the best of our knowledge. Via dynamic programming,
we settled that optimal unsplittable consistent flow migration is
in EXPTIME, also extending our algorithm to min-max load
optimizations. Future work will have to cover if EXPTIME
is the correct answer, or if it is complete in NP or PSPACE.
Acknowledgments The author gratefully acknowledges Sebas-
tian Brandt for his comments and assistance on an earlier draft
of this manuscript. Klaus-Tycho Foerster is supported by the
Danish VILLUM FONDEN project ReNet.

REFERENCES

[1] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in SIGCOMM, 2013.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat,
“B4: experience with a globally-deployed software defined wan,” in
SIGCOMM, 2013.

[3] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM, 2012.

[4] T. Mizrahi and Y. Moses, “On the necessity of time-based updates in
SDN,” in ONS, 2014.

[5] K.-T. Foerster, R. Mahajan, and R. Wattenhofer, “Consistent updates
in software defined networks: On dependencies, loop freedom, and
blackholes,” in NETWORKING, 2016.

[6] S. Brandt, K.-T. Foerster, and R. Wattenhofer, “Augmenting flows for
the consistent migration of multi-commodity single-destination flows in
sdns,” Pervasive Mob. Comput., vol. 36, pp. 134–150, 2017.

[7] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network updates
(extended version),” in SIGCOMM, 2014.

[8] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz,
“zupdate: updating data center networks with zero loss,” in SIGCOMM,
2013.

[9] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient congestion
during network update in data centers,” in ICNP, 2015.

[10] S. Brandt, K.-T. Foerster, and R. Wattenhofer, “On consistent migration
of flows in sdns,” in INFOCOM, 2016.

[11] K.-T. Foerster, S. Schmid, and S. Vissicchio, “Survey of consistent
network updates,” CoRR, vol. abs/1609.02305, 2016.

[12] S. A. Amiri, S. Dudycz, S. Schmid, and S. Wiederrecht, “Congestion-free
rerouting of flows on dags,” CoRR, vol. abs/1611.09296, 2016.

[13] M. Borokhovich and S. Schmid, “How (Not) to Shoot in Your Foot with
SDN Local Fast Failover – A Load-Connectivity Tradeoff,” in OPODIS,
2013.

[14] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Foerster, A. Krishnamurthy,
and T. E. Anderson, “Understanding and mitigating packet corruption in
data center networks,” in SIGCOMM, 2017.

[15] R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, and P. Gill, “Run, walk,
crawl: Towards dynamic link capacities,” in HotNets, 2017.

[16] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and
multicommodity flow problems,” SIAM J. Comput., vol. 5, no. 4, pp.
691–703, 1976.

[17] S. Fortune, J. E. Hopcroft, and J. Wyllie, “The directed subgraph
homeomorphism problem,” Th. Comp. Sci, vol. 10, pp. 111–121, 1980.

[18] L. G. Valiant, “A scheme for fast parallel communication,” SIAM J.
Comput., vol. 11, no. 2, pp. 350–361, 1982.

[19] T. D. Nguyen, M. Chiesa, and M. Canini, “Decentralized fast consistent
updates,” in SOSR, 2017.

[20] N. Immerman, Descriptive complexity. Springer, 1999.
[21] K.-T. Foerster, L. Groner, T. Hoefler, M. König, S. Schmid, and

R. Wattenhofer, “Multi-agent pathfinding with n agents on graphs with
n vertices: Combinatorial classification and tight algorithmic bounds,” in
CIAC, 2017.

[22] E. Anderson and T. E. Anderson, “On the Stability of Adaptive Routing
in the Presence of Congestion Control,” in INFOCOM, 2003.

[23] R. Gao, D. Blair, C. Dovrolis, M. Morrow, and E. W. Zegura, “Inte-
ractions of intelligent route control with TCP congestion control,” in
NETWORKING, 2007.

[24] K. Kirkpatrick, “Software-defined networking,” CACM, vol. 56, no. 9,
pp. 16–19, 2013.

[25] S. A. Amiri, A. Ludwig, J. Marcinkowski, and S. Schmid, “Transiently
consistent SDN updates: Being greedy is hard,” in SIROCCO, 2016.

[26] S. Dudycz, A. Ludwig, and S. Schmid, “Can’t Touch This: Consistent
Network Updates for Multiple Policies,” in DSN, 2016.

[27] K.-T. Foerster, T. Luedi, J. Seidel, and R. Wattenhofer, “Local checkabi-
lity, no strings attached: (a)cyclicity, reachability, loop free updates in
sdns,” Theoretical Computer Science, 2016.

[28] K.-T. Foerster and R. Wattenhofer, “The power of 2 in consistent network
updates: Hard loop freedom, easy flow migration,” in ICCCN, 2016.

[29] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling Loop-free
Network Updates: It’s Good to Relax!” in PODC, 2015.

[30] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure,
“Lossless migrations of link-state igps,” Trans. Netw., vol. 20, no. 6, pp.
1842–1855, 2012.

[31] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid, “Transiently Secure
Network Updates,” in SIGMETRICS, 2016.

[32] A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good Network
Updates for Bad Packets: Waypoint Enforcement Beyond Destination-
Based Routing Policies,” in HotNets, 2014.

[33] S. Vissicchio and L. Cittadini, “FLIP the (Flow) Table: Fast LIghtweight
Policy-preserving SDN Updates,” in INFOCOM, 2016.

[34] P. Cerny, N. Foster, N. Jagnik, and J. McClurg, “Optimal consistent
network updates in polynomial time,” in DISC, 2016.

[35] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and
J. Rexford, “Optimizing bulk transfers with software-defined optical
WAN,” in SIGCOMM, 2016.

[36] J. McClurg, H. Hojjat, P. Cerný, and N. Foster, “Efficient Synthesis of
Network Updates,” in PLDI, 2015.

[37] T. Mizrahi, O. Rottenstreich, and Y. Moses, “Timeflip: Using timestamp-
based TCAM ranges to accurately schedule network updates,” Trans.
Netw., vol. 25, no. 2, pp. 849–863, 2017.

[38] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates in
software-defined networks,” Trans. Netw., vol. 24, no. 6, pp. 3412–3425,
2016.

[39] J. Zheng, G. Chen, S. Schmid, H. Dai, and J. Wu, “Consistent network
updates in timed sdns,” IEEE J. Sel. Areas Commun, 2017.

[40] S. Ghorbani and M. Caesar, “Walk the line: Consistent network updates
with bandwidth guarantees,” in HotSDN, 2012.

[41] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring
for wide area networks,” in SIGCOMM, 2014.

[42] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: a centralized ”zero-queue” datacenter network,” in SIGCOMM,
2014.

