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ABSTRACT
Using mobile phones while walking for activities that require
continuous focus on the screen, such as texting, has become
more and more popular in the last years. To avoid colliding
with obstacles, such as lampposts and pedestrians, focus
has to be taken off the screen in regular intervals. In this
paper we introduce SpareEye, an Android application that
warns the smartphone user from obstacles in her way. We
use only the camera of the phone and no special hardware,
ensuring that it requires minimal effort from the user to use
the application during everyday life. Experimental results
show that we can detect obstacles with high accuracy, with
only some false positives and few false negatives.

Keywords
Obstacle avoidance; visual distraction; mobile devices.

Categories and Subject Descriptors
C.3 [Special Purpose and Application-Based Systems]:
Real-time and embedded systems.

1. INTRODUCTION
Mobile phones are no longer exclusively used as telephones,

but for a multitude of different applications. Whether it
be web browsing, sending short messages, using Twitter or
checking Facebook, these activities require the user to focus
on the screen of their phone instead of their surroundings. If
one looks around at a crowded place, very often one will see
people that are only paying attention to their phone while
walking – and only look up from time to time to check that
they will not crash into anything. It has been shown that us-
ing a phone, even for simple activities, causes inattentional
blindness [6]. While this can lead to amusing scenes for the
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bystanders and to popular youtube videos, severe injuries
can occur for the people that are tripping, falling down, or
colliding with someone while focussing only on their smart-
phones. According to a recent study, the number of pedes-
trians in the US who visited the emergency room in 2008
due to phone-related accidents increased fourfold compared
to 2006 [9].

Most of the previous work tackled the problem by equip-
ping the user with special hardware that detects obstacles.
As an example, CrashAlert uses a Microsoft Kinect to get
a depth map from the area in front of the user [5]. How-
ever, all approaches with extra hardware suffer from same
the drawback: the user has to take special hardware with
her that she normally would not carry along, requiring extra
effort and monetary investment.

Why not use something that the people that are focussing
on their smartphone already have and are using – the smart-
phone? In this paper we introduce SpareEye, an app that
uses the camera of a smartphone to provide users with more
safety for texting while walking. SpareEye detects obstacles
coming towards the phone and notifies the user so that she
can avoid them. We provide an algorithm that first separates
obstacles in an input image from background and estimates
their relative distance to the user. If the distance to an
obstacle decreases significantly between consecutive frames,
the user is given an auditory and a tactile warning. The
application is designed to run in the background while the
user is focusing on other tasks.

We did a field test with 21 participants, where we show
that our system works in a real life environment and can
be used to improve the safety of people focussing on their
smartphones while walking.

2. RELATED WORK
A common approach to detect obstacles is to use tech-

nology that can detect the depth of field in front of the
user. In [15], the authors use an array of custom-built ul-
trasound sensors combined with a vibration jacket and an
ARM9 based embedded system to help visually impaired
people to detect and avoid obstacles. They note that they
can detect obstacles in front of the user well, but not drop-
offs like staircases. Samsung recently acknowledged the im-
portance of obstacle detection for visually impaired users
and announced a cover for one smartphone model that uses



ultrasound to detect obstacles up to two meters away [14].
Earlier projects for mobile obstacle detection via ultrasound
were already started decades before, e.g., in 1991 [7].

The release of the Microsoft Kinect as an infrared-laser
with a CMOS sensors for depth-information has spawned
projects with similar goals, like [2] for visually impaired peo-
ple and CrashAlert to enhance peripheral alertness when
using mobile devices while walking [5]. In [5], a Kinect is at-
tached under a tablet and connected to a laptop, which then
sends information via bluetooth to the phone. Their appli-
cation assists the user in avoiding obstacles while focussing
on the screen by informing about the obstacles on the dis-
play. Hincapié-Ramos and Irani note in [5] that “technolog-
ical support for safer walking and multi-tasking is at large
unexplored”, and that “CrashAlert is one of the first explo-
rations of a safety-aware” walking user interface. By prac-
tical evaluation, they show that CrashAlert leads to safer
walking.

With head-mounted displays, one can display upcoming
obstacles as virtual objects within the display. In [11], the
authors use edge detection to display obstacle information
on a pair of glasses, intended to use for patients with tunnel
vision. With the upcoming availability of Google Glass [4],
more research might be conducted in this area for private
everyday use, as used, e.g., by aviators [13].

The difference between our work and the works mentioned
above is that they use dedicated hardware, whereas we do
not.

Another approach is to enhance the interface of appli-
cations correlated to the task the user is doing in the back-
ground, in this context also known as walking user interfaces
(WUIs), and to study the effects of walking on pressure-
based interaction [19]. A näıve way is to display the image
of the rear-facing camera in the background of the appli-
cation, but this requires modified versions of each desired
application. Furthermore, it does not work well in practice
according to [10], due to people not being able to process
too much information while multitasking.

In [8], the authors study dynamically changing button
sizes as the user moves and suggest user-specific personaliza-
tion after their evaluation. Their work relates to ours with
the goal of simplifying the use of smartphone apps while
walking. However, they only focus on enhancing the user
interface, and do not investigate the detection of obstacles.
A different method is to design a user interface that can be
used without looking at the screen of the phone at all [1,
18].

WalkSafe [17] uses the camera of a smartphone to warn
the user from incoming danger. However, it is only applied
to a very specific scenario, the detection of cars when cross-
ing a road, it requires the camera to point towards the car.
The authors use machine learning to differentiate cars from
empty roads and try to warn the user if danger is imminent.
Our solution is designed to work in a more general setting.

In [12], a smartphone-based pixel scanning scheme is used
to detect obstacles. The authors divide the image into three
regions (center, left, and right) and calculate the safe depth
for each region. The main difference to our work is that they
do not track obstacles over time, but just look at one image.
As such, they only warn when an obstacle is deemed close
enough. Our approach anticipates the obstacles movement
vector: e.g., the obstacle might move out of the image, even
though it is close, or the object will move quickly towards

(a) 0◦ (b) 90◦ (c) 45◦

Figure 1: The assumed way for a person to hold the
phone is shown in Figure 1(c). Then, the field of
view provides us enough information about the path
in front while leaving out far away details, such as
landscape, that we are not interested in.

the user, even though it is far away.
We would like to note that obstacle detection for blind

persons differs from obstacle detection for inattentionally
blind users. The first such electronic aids have been available
since the 1960s [16]. We refer to [3] for a comparative survey
of portable obstacle detection systems for blind people.

3. FIELD OF VIEW
In general, we do not make any assumptions regarding

the environment where our application is used, besides that
there has to be a proper video stream available. E.g., we
can not do much if it is too dark to see the obstacles or if
the vision is otherwise obscured.

Besides this “sanity” assumption, our solution requires
that the user holds the phone in an angle of approximately 45
degrees (where 90 degrees indicates that the screen is paral-
lel to the body of the user) and that the camera is pointing
towards the destination to where the user is walking. We
point out that it is rather straightforward to train a user to
hold the phone like this. In addition, the accelerometer can
be used to warn the user if the angle of the phone differs
too much from the required 45 degrees. The desired way to
hold the phone is illustrated in Figure 1(c).

For our purposes, holding the phone incorrectly yields two
difficulties. First, if the phone is pointed towards the ground
(see Figure 1(a)), we can not see the objects coming towards
the user early enough to give a warning. Second, if the phone
was pointed towards the horizon (see Figure 1(b)), the image
would contain a lot far away objects and the recognizing
task becomes a lot harder. Therefore, it is crucial for our
approach that the field of view extends only and at least up
to a few meters.

4. OBSTACLE TRACKING
The general idea of our approach is to first detect the back-

ground of an image. The second step is to detect areas in the
image that significantly differ from the background and es-
timate the distance from the user to each area. If an area is
continuously and quickly getting closer to the user, the user
is warned of a possible collision. Our tests were performed
using a Samsung Galaxy Nexus, which manages around four
frames per second while running our application. For sim-
plicity, we assume in the description of our algorithm that



Figure 2: The input image on the top is transformed
into super pixels and the result is shown on the bot-
tom image. The areas are depicted as a set of super
pixels colored by the average color value in the cor-
responding area. If a super pixel belongs to an area
with less than 13 super pixels, the pixels within the
super pixel are drawn as in the original image.

the time delay between two successive frames is a constant.
The basic building blocks of our algorithm are blobs in an

image. A blob corresponds to an area in an image where
the color deviation is relatively small. To find blobs from
the image, we partition the input image into small disjoint
super pixels of equal size to provide efficient processing. For
our purposes, we observed that choosing a super pixel count
of approximately 600 (20 × 30) super pixels provides good
detection rate while preserving a reasonable frame rate. The
color values of the super pixel correspond to the average
values of the color values of the pixels within the super pixel.

To decide whether two adjacent super pixels s1 and s2
belong to the same blob, we compare the color values of s1
and s2 and if the values differ for less than a threshold, we
consider the super pixels similar. Similar super pixels are
then merged into a blob. To avoid detecting blobs from the
noise in the image, we first use a Gaussian filter to blur the
image and in addition, we discard all blobs with less than
13 super pixels in them. Dividing an image into areas is
illustrated in Figure 2.

4.1 Obstacles and Background
As the first step towards detecting objects that the user

might run into, we investigate which areas in the image cor-
respond to obstacles that the user might collide with. The
first observation is, that since we only have vision towards
one direction, we ignore objects coming from sides and fo-
cus on objects in front of the user. We focus on the case

where the object is initially relatively far from the user and
we can detect it coming towards the user. In other words, if
the user walks into an object that is right next to her when
starting the application, or if the user walks into an object
right after turning, we do not consider this as a failure of
the system.

From the previous assumptions, we get into the most cru-
cial assumption in our work. We assume that if an area
in the image touches the bottom line of the picture, i.e., is
next to the user, we consider it as part of the background.
As depicted in Figure 2(a), in a usual setting, the nearby
floor area is considered as a large background area and an
anomaly, the white trash bin, is tracked. We show in our
experiments that we are able to detect obstacles with high
accuracy and that false positives occurred by patterns of the
floor or noise in the image are relatively rare.

4.2 Tracking Areas
One of the most important attributes of a blob is the cen-

ter of mass that is the average of the coordinates of the pixels
contained in the blob. We use this attribute to detect the
movement of an area in successive images. The basic idea is
that with a high enough frame rate in the video stream, an
object does not move much between successive images and
therefore, we can identify same areas in successive pictures.
Another assumption required here is that the lightning con-
ditions do not change much between two successive images.
From a practical perspective, this means that after turning
on or off some lights in a room, the system needs a few
frames to adapt and therefore the change in the lightning
conditions might cause a false alarm.

In more detail, for two successive images I1 and I2, we
compute the areas in the image and the centers of mass for
each area. Then, we compare the average color values of
each area in I1 to each area in I2 and whenever there is a
difference of at most ∆ units in the average values for each
color channel, we add the pair of areas in a set of candidate
matches. Then, if the distance is at most d, these areas
are considered a valid match which indicates that they are
the same area. According to our empirical tests, setting d
to approximately one fourth of the screen width provides
reliable matchings. In the case of multiple possible matches,
each area is paired at most once in a greedy manner, which
indicates that a new area is paired to the first applicable
existing area that is found. The tracking and pairing of the
areas is depicted in Figure 3.

4.3 Warning
The final step of the tracking process is to decide whether

or not a tracked obstacle will collide with the user. As men-
tioned before, we are only interested in obstacles that the
user is approaching or vice versa. Therefore, we measure the
distance from each object o that is tracked in the image to
the low edge of the image. Then we can measure the dif-
ference in the distances of object o in successive images. A
high difference in the distances indicates that either object
o is approaching really quickly or it is already quite close
and even a relatively slow approaching speed results in a
significant difference in the distance.

In addition, we do not have to care about objects passing
the user without colliding. In other words, if the walking
path of the user does not cross the path or location of the
obstacle, no warning is needed. We model the movement of



Figure 3: The yellow arrows depict the movement
of the centers of masses of the objects and the black
arrows correspond to the point where the object will
go out of the field of view. The tracked objects are
denoted by a red rectangle and their centers of mass
are shown with a yellow circle. Since the movement
of the thrash bin is going left of the picture, we con-
sider this object as harmless. The general direction
of the fritz-kola case is towards the user and there-
fore a warning is thrown.

the objects as the average movement speed within the last
four frames. We assume that an obstacle collides with the
user if it crosses the x-axis in the image. From the direction
of the movement, we can first derive if the obstacle will hit
the user by maintaining its direction. Next, from the speed,
we can derive how quickly the user will hit the obstacle.
An obstacle is considered dangerous and a warning is given
if the obstacle is calculated to collide within the next two
seconds.

When a need for a warning is detected, the application
plays a loud siren sound and vibrates. This makes our ap-
plication suitable for both visually impaired and hearing im-
paired users.

5. EVALUATION
We performed an evaluation of SpareEye to show how

well it can detect real-life obstacles in an everyday setting.
We chose a university cafeteria, where the ground was flat,
various tables and chairs, large plants, trashcans, and pillars
were present as obstacles, requiring multiple turns to reach
the destination (cf. Figure 4). The participants (18 male, 3
female, mean age of 29.4 years) all started the walk on the
same spot and had to walk to a defined endpoint about 25
meters away. No other people were present while testing.

Due to the nature of a testing setup, the participants knew
that obstacles would be present in their path. Since we
wanted the participants to walk without checking for obsta-
cles in their peripheral vision/looking up from the screen,
we blindfolded them. As such they could not avoid crashes
by paying more attention to their surroundings, which they
would not do in a everyday situation [6].

When SpareEye warned them, they were allowed to lift the
blindfold, assess the situation, and continue walking blind-
folded. The participants were instructed to hold the phone
roughly in an angle of 45 degrees, as described in Figure 1,
and not to put their finger over the lens of the camera.

5.1 Results
We begin listing our results by emphasizing that due to

the nature of our application, our main goal was to minimize
the number of false negatives, i.e., that the user bumped into
an object without getting a warning. The high sensitivity
of the app yielded a rather high count of false positives,
i.e., that the user was warned without actual danger being
present. On average, the app threw a false warning every
1.3 minutes. However, this is a relatively long time taking
into account that the effort needed from the user is only to
check what is right in front of her.

In total, SpareEye warned 103 times in 21 experiments,
with 87 true positives (avg = 4.1, sd = 1.8, med = 4) and
16 false positives (avg = 0.8, sd = 0.8, med = 1). In 6 cases
(avg = 0.3, sd = 0.5, med = 0), SpareEye failed to warn
from an obstacle, meaning the participants bumped into
something. The main cause for false positives were changing
light patterns on the floor, where SpareEye recognized these
large spots as dangerous objects. The false negatives were
induced by the application classifying objects as part of the
ground, and therefore being not dangerous. This happened
when the participants were walking towards an object at a
very narrow angle, i.e., the object was almost parallel to the
user.

Each walk lasted between 26 and 97 seconds (avg = 62.2s,
sd = 21.9s, med = 58s). Most participants chose to walk
along roughly the same route, which can be seen in Figure
4. All participants also seemed to trust the app: None of
them stopped or tried to lift the blindfold without receiving
a warning first or walking into an obstacle. Furthermore,
they did not seem to walk in a cautious manner or tried
to detect obstacles with their feet or hands, despite being
blindfolded.

All participants were asked after the walk if they text
while walking (12 yes, 9 no), and if yes, approximately how
often they take their focus off the screen usually (avg = 1.8s,
sd = 1.4s, med = 1s). We also asked these participants on
a 5-point scale from one (never) to five (always/definitely)
if they would use the system (avg = 3.4, sd = 1.1, med = 4)
and recommend it to others (avg = 3.8, sd = 0.6, med = 4).
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Figure 4: Most participants chose to walk roughly
along the route labeled as main route, a few went
along the dashed lines.

A few participants noted that they would like the app to be
100% reliable before using it.

6. CONCLUSION
In this paper we presented SpareEye, a smartphone app

that can warn users about upcoming obstacles. We perform
this task without any additional hardware, i.e., using only
the video stream of the smartphone. Our main contribution
is a proof of concept that one can use the video stream of
a smartphone to estimate the change in the distances of
obstacles in the field of view without certainty of the real
distances to those obstacles.

Our experiments show that we can reliably detect dan-
gerous obstacles in a real world scenario. The experiments
were conducted in a university cafeteria, where the setting
was designed s.t. the users would walk into obstacles by
simply walking along a straight line. Our method was able
to detect obstacles with a small false negative rate, i.e., the
app only rarely left an obstacle unnoticed.

Our results combined with the observations from [5] in-
dicate that modern smartphones could provide visual feed-
back about dangerous situations to users that are focusing
on the device and not paying attention to the surroundings.
By running the warning application in the background, the
users could feel safer while using their phones without a neg-
ative effect on their user experience.
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