
On Consistent Migration of Flows in SDNs
Sebastian Brandt

ETH Zurich, Switzerland
brandts@ethz.ch

Klaus-Tycho Foerster∗
ETH Zurich, Switzerland

foklaus@ethz.ch

Roger Wattenhofer
ETH Zurich, Switzerland

wattenhofer@ethz.ch

Abstract—We study consistent migration of flows, with special
focus on software defined networks. Given a current and a desired
network flow configuration, we give the first polynomial-time
algorithm to decide if a congestion-free migration is possible.
However, if all flows must be integer or are unsplittable, this
is NP-hard to decide. A similar problem is providing increased
bandwidth to an application, while keeping all other flows in
the network, but possibly migrating them consistently to other
paths. We show that the maximum increase can be approximated
arbitrarily well in polynomial time. Current methods as RSVP-
TE consider unsplittable flows and remove flows of lesser im-
portance in order to increase bandwidth for an application: We
prove that deciding what flows need to be removed is an NP-hard
optimization problem with no PTAS possible unless P = NP.

I. INTRODUCTION

In today’s wide area networks, traffic demands change all
the time. To cope with this, the changing data flows get
sent through the network by routing algorithms in a greedy
(shortest path) way that favors distributed fault-tolerance over
efficiency. While this makes sense in a scenario where the
network is controlled by various independent participants (e.g.,
the Internet), the situation changes when the network is con-
trolled by one entity such as Google [1] or Microsoft [2]. With
only one logical central controller, it is possible to actually
reclaim the control over the general behavior of the network
and just leave the menial task of data forwarding localized
in the switches and routers. This is one of the fundamental
ideas that gave rise to Software Defined Networks (SDNs) [3],
[4], [5], a network paradigm separating control and data plane
of a network. Should new data flows appear or old flows
change their traffic demands, one can use the established
toolkit of multi-commodity flow theory to calculate a new
network behavior optimized for efficiency. The new rules can
then be distributed to all nodes in the network [1], [2], [6],
[7], [8], [9]. The advantages of this method become especially
evident when optimizing under-utilized links of high costs,
with cable prizes of up to hundreds of millions of dollars [10].

But, while the new network behavior might be optimal,
what happens during the migration to the new behavior? Clock
synchronization is far from perfect, and even if, some switches
will straggle (taking up to 100× longer than average to update
in practice [11]) or might not be available to the central
controller at all for some time [1]. This inherent asynchrony
will lead to over-utilization of links, inducing congestion and
thus packet loss. One might just ignore these effects, hoping
things will get better after a while, but especially for real-time
applications, delays and loss of data are not desirable. Hence,

∗Supported in part by Microsoft Research.

recent development has considered consistent migration [2],
[9], [11], [12], i.e., congestion-free and without temporary
demand reduction, where the network is migrated according
to a precomputed ordering or dynamic network behavior.

However, all these solutions suffer from one central down-
side: They cannot decide if consistent migration is possible.
Similar to the halting problem, a consistent migration for flows
might be found, if it exists. But if a consistent migration is
not possible, all existing algorithms might be stuck searching
indefinitely. All known approaches will resort to breaking con-
sistency by, e.g., dropping flows even if this is not necessary.

We close this gap by showing how to decide fast if a con-
sistent migration is possible (Section V). We also prove that
splitting flows into non-integer parts is vital: Else, consistent
migration of flows is NP-hard to decide (Section IV).

In a similar line of thought, we investigate the problem of
consistently increasing the flow of traffic between a source and
a terminal node, while keeping all other traffic flows intact.
Current methods such as RSVP-TE consider unsplittable flows
and assign weights according to the importance of the flow.
Then, less important flows are removed until there is enough
capacity, and finally the desired flow is added. We can show
that deciding what flows to remove is an NP-hard optimization
problem with no PTAS possible unless P = NP (Section
VI). If flows are splittable, we show how the maximum traffic
increase can be approximated arbitrarily well: We can calculate
in polynomial time (independent of the chosen approximation
ratio) a viable new flow placement, s.t. i) the demand increase
for the desired commodity is within (1− ε) of the maximum,
ii) the demand of all other commodities is unchanged, and
iii) consistent migration is possible (Section VII).

II. RELATED WORK

Multi-Commodity Flows: While some fundamental results
from single-commodity flows no longer hold [13], deciding if
a feasible multi-commodity flow exists can be computed in
polynomial time as well, e.g., by linear programming. How-
ever, in practice, one might want to resort to approximation
algorithms due to their much better runtime [14]. We refer to
Cormen et al. [15] and Ahuja et al. [16] for a further overview.

Migration of Flows in SDNs: One approach to congestion
during migration is to accept it, but to try to minimize its
impact. The induced inconsistency is then ignored in general,
e.g., data might have to be sent again in case of packet loss.
B4 [1] develops custom hardware and mechanisms to integrate
current protocols into SDNs, with the goal of speeding up the
migration process. Mizrahi et. al [17], [18] aim at minimizing

inconsistency with time-based updates. They also show that
for optimal traffic engineering, flows need to be swapped.

In specialized environments, as (inter-)datacenter traffic, one
can take advantage of a restricted/optimized network topology
or the ability to schedule traffic [12], [19], [20], [21].

The case of just one logical source or destination was
recently covered in [22] via the method of augmenting flows,
allowing to migrate flows in a linear number of updates.

Another way to tackle congestion is via game theory (e.g.,
congestion games [23]) or model checking [24], [25], however
the authors of [24], [25] note that properties concerning
bandwidth are not yet handled by their work.

The work of Reitblatt et al. [26] introduces a different
form of consistency, called per-packet/flow consistency: By
stamping each packet or flow with a version number, denoting
old or new forwarding rules, one can ensure that a packet/flow
is always routed according to just one set of rules. While their
work prevents many effects that induce congestion, it does
not prevent congestion when faced with the task of migrating
multiple flows at once. As shown in Subfigure 1b, congestion
can occur in such a case. If a mixture of old and new rules is
allowed as long as certain policies are respected (e.g., passing
firewalls), then the amount of additional memory needed in
the switches can be greatly reduced in practice, cf. [27].

Dionysus [11] tries to find a consistent migration ordering
by searching through a dependency graph of possible migra-
tion steps. In their model, flows are not allowed to be splitted
and may only migrate as a whole to the desired path, see
the Subfigures 1b,1c. They show the corresponding decision
problem to be NP-hard under switch memory constraints. If no
solution is found, some flows are rate-limited for congestion-
free migration of the remaining flows.

The approach of SWAN [2] is twofold: First, if one guaran-
tees that a fraction s of capacity (slack) is free on each link
for the old and new flow, then one can migrate congestion-
free in d1/se− 1 steps. E.g., if each edge never exceeds 95%
capacity in both the current and the desired network state, it
takes 19 steps to migrate at most. Second, they use binary
search over the number of steps to find the optimal solution,
i.e., they check with linear programming if a solution with x
steps exists. However, they note that this is costly in practice
for a long sequence of LPs. This search also works if there
is no slack on some edges, but then the computation is not
guaranteed to halt when no consistent migration exists. We
refer to the Subfigures 1c,1d for examples.

Our methods extend the work of [2], [11], [12] where the
consistent migration of flows in SDNs is implemented and
evaluated with multiple production data center networks across
three continents with tens of thousands of servers.

Lastly, for an overview of further abstractions for SDNs, we
refer to the recent article of Casado, Foster, and Guha [9].

III. MODEL

We start by modeling a network as a directed graph, with
a flow of a commodity respecting flow conservation, demand
satisfaction, and capacity constraints:

(a) When migrating from FA to F ′A, the method of packet-stamping [26]
will migrate the network in this example congestion-free. This also holds
for multiple commodities, as long as only one commodity is considered
for migration.

(b) Example where Dionysus [11] will migrate congestion-free by first
migrating flow FB to F ′B and then FA to F ′A. However, the method
from [26] might not migrate congestion-free, if FA migrates to F ′A before
FB migrates to F ′B due to asynchrony.

(c) Example where SWAN [2] can migrate congestion-free by temporarily
storing a flow on the topmost link. Dionysus [11] will not find a solution
without rate-limiting one flow to zero.

(d) Example where the method from SWAN [2] will keep computing
forever (unless halted somehow manually or by a threshold of steps), since
it is not possible to migrate congestion-free without rate-limiting.

Fig. 1. Example networks where the methods of [2], [11], [26] do not succeed,
due to violating congestion-freedom, rate-limiting flows, or by not halting their
computation. All edges in the four examples have a capacity of one and all
flows have a size of one. Initial flows are drawn solid, the new ones dashed.

Definition 3.1: Let G = (V,E), with |V | = n and |E| = m,
be a simple directed graph. For every node v ∈ V denote the
set of outgoing edges by out(v) and the set of incoming edges
by in(v). A network N is a pair (G, c), where c : E → R+

is a function that assigns a capacity c(e) to each edge e ∈ E.
Also, a commodity K in N consists of a pair (s, t) where
s and t are nodes in G. We call a map F : E → R≥0 a
(single-commodity) flow for K if the following conditions are
satisfied:
• ∀v ∈ V \ {s, t} :

∑
e∈out(v) F (e) =

∑
e∈in(v) F (e),

•
∑

e∈out(s) F (e) = dF =
∑

e∈in(t) F (e),
• ∀e ∈ E : F (e) ≤ c(e),

where dF is called the demand of K (w.r.t. F). We also call
dF the size of F .
Note that this standard formulation allows cycles to exist
where the flow of a commodity is greater than zero on
each edge, which can however be easily removed by flow
decomposition.

Definition 3.2: We call a single-commodity flow F for
commodity K = (s, t) with demand dF cycle-free if there
is no cycle C in G, s.t. ∀e ∈ C : F (e) > 0.

For ease of notation, all flows are considered to be cycle-
free from now on unless noted otherwise. Since we study the
migration of flows between different nodes, we extend the flow
definition to multiple commodities.

Definition 3.3: We call a tuple K := (K1, . . . ,Kk) of
commodities a multi-commodity. Let F1, . . . , Fk be single-
commodity flows for K1, . . . ,Kk, respectively. Then we call
the tuple F := (F1, . . . , Fk) a multi-commodity flow (for K) if
the following condition holds: ∀e ∈ E :

∑k
i=1 Fi (e) ≤ c(e).

In later sections, we will also study flows that cannot be
split up among different paths or are of integer value, i.e.:

Definition 3.4: We call a single-commodity flow F for
commodity K unsplittable if there is a simple path from s to
t such that F assigns a value greater than zero only to edges
along the path. Similarly, we call a multi-commodity flow
unsplittable if all its single-commodity flows are unsplittable.

Definition 3.5: We call a single-commodity flow F for
commodity K integer if F assigns only integer values. Simi-
larly, we call a multi-commodity flow integer if all its single-
commodity flows are integer.

Lastly, we define the term consistent migration formally.
We follow the definition as used in [2], [11], [12]. Due to
asynchrony, when (parts of) multiple flows are being simul-
taneously migrated to other parts of the network, one cannot
control in which order the flows migrate: Even if the flows
in the network before and after the migration are congestion-
free, congestion can occur during migration. Moreover, rate-
limiting/dropping is only allowed if it is required by the flow.
We refer to Figure 2 for further illustration of Definition 3.6:

Definition 3.6: Let N be a network and let Kall = (K1,
. . . ,Kk) be a multi-commodity in N . Let F ,F ′ be multi-
commodity flows for K,K′ ⊆ Kall, respectively. We call the
tuple U = (N,F ,F ′) a consistent migration update if the
following condition holds:

∀e ∈ E :
∑

1≤i≤k
max (Fi (e) , F ′i (e)) ≤ c (e) (1)

where we assume Fi(e) = 0 (respectively, F ′i (e) = 0) if Ki /∈
K (respectively, Ki /∈ K′). We call a sequence ((N,F ,F1),
(N,F1,F2), . . . , (N,Fj ,F ′)) of consistent migration updates
a consistent migration if for each commodity the demand is
monotonically increasing or decreasing over all elements of
the sequence F ,F1,F2, . . . ,Fj ,F ′.

IV. CONSISTENT CONGESTION-FREE MIGRATION FOR
UNSPLITTABLE FLOWS

We begin studying consistent migration of flows by con-
sidering unsplittable flows. How hard is it to decide if it is
possible to migrate consistently at all with unsplittable flows?

Problem 4.1: Let N be a network and let F ,F ′ be
unsplittable multi-commodity flows in N for K,K′ ⊆ Kall.
Is there a consistent migration (N,F ,F1), . . . , (N,Fj ,F ′)
s.t. all flows from F1 to Fj are unsplittable?

Theorem 4.2: Problem 4.1 is NP-hard.
Proof: Our proof works by reduction from 3-SAT [28].

Consider the following setting: Parts of two unsplittable flows
FA, FB need to be swapped, but the only way to do so is

(a) Old/start flow placement (b) New/desired flow placement

(c) When migrating in one step,
the capacity constraints for each
edge might be violated, e.g., for
(V3, V4).

(d) However, with this intermediate
placement, one can migrate con-
gestion free in two steps.

(e) If half of FB migrates first
due to asynchrony, then the edge
capacity of 3 of (V3, V4) is not
violated.

(f) The same holds if half of FA

migrates first due to asynchrony,
the edge capacity of 3 is not vi-
olated.

Fig. 2. In this example, we want to migrate consistently from Subfigure 2a
to Subfigure 2b. Each edge has a capacity of 3 and the flows FA, FB have a
size of 2 each. If one migrates in one step, then congestion could occur. E.g.,
as shown in Subfigure 2c, FB might migrate before FA, inducing congestion
on (V3, V4). However, if we add an intermediate step as shown in Subfigure
2d, congestion cannot occur, see Subfigure 2e and 2f.

by temporarily storing one on a helper path P . However, that
helper path P is blocked by other unsplittable flows, which
need to be temporarily stored in other parts of the network as
well. Storing these unsplittable flows however requires solving
the 3-SAT problem, as each of them can be stored in up to three
variable gadgets (one can think of them as clauses). These
variable gagdets can be set to true or false – and if and only if
one finds a variable assignment that satisfies each clause, then
the path P can be freed up temporarily to allow swapping parts
of FA, FB . An illustration with a small unsatisfiable instance
can be found in Figure 3.

We note that the construction only uses capacities and flows
of size one. Thus, we can extend Theorem 4.2 to integer flows:

Problem 4.3: Let N be a network and let F ,F ′ be integer
multi-commodity flows in N . Is there a consistent migration
(N,F ,F1), (N,F1,F2), . . . , (N,Fj ,F ′) s.t. all flows from
F1 to Fj are integer?

Corollary 4.4: Problem 4.3 is NP-hard.

V. CONSISTENT CONGESTION-FREE MIGRATION FOR
SPLITTABLE FLOWS

As we saw in the last section, it is NP-hard to decide if
consistent migration is possible if flows have to be integer
or unsplittable. Thus, we turn our attention to splittable flows
in this section. As we show, this relaxed problem is actually
solvable in polynomial time:

Problem 5.1: Let N be a network and let F ,F ′ be multi-
commodity flows for multi-commodities K,K′ ⊆ Kall. Is there
a consistent migration from F to F ′?

Theorem 5.2: Problem 5.1 is in P.

C1,S C1,T

S T

x1,S x1,T

C2,S C2,T

A

B

C1,P,0 C1,P,1

C1, x1,1C1, x1,0

C2,P,0 C2,P,1

C2, x1,0 C2, x1,1

FC1=F’C1 FC2=F’C2

FA

FB

FX1= F’X1

Variable x1

Clause C1 Clause C2

true

false

SA

SB

TA

TB

F’A

F’B

Fig. 3. An example for (x1)∧ (¬x1). All edges have a capacity of one and
all flows have a size of one. Note that the formula is not satisfiable. For the
green flow FA and the blue flow FB to swap (parts of) their paths, one of
them needs to migrate to the path S,C1,P,0, C1,P,1, C2,P,0, C2,P,1, T above
them. This requires temporary migration of the two red flows FC1

, FC2
along

the variable gadget, since else the path will not be free. However, the violet
flow FX1

will always block one of the temporary migration options of one
of the red clause flows, no matter where the violet flow migrates to. Thus, it
is not possible to swap the green and the blue flow in this instance.

For better readability, we first present some preliminaries
before actually proving Theorem 5.2. First, consider a special
case of the problem where K = K′ and the demand of each
commodity does not differ between F and F ′. We note that
if a commodity only exists in either K or K′ or has a higher
demand in one of the two multi-commodity flows, then one
could drop the corresponding excess before migration or insert
it afterwards without violating monotonicity.

Problem 5.3: Let N be a network and let F ,F ′ be multi-
commodity flows for the same multi-commodity K s.t., for
each K ∈ K, the demand of K is the same w.r.t. F as w.r.t. F ′.
Is there a consistent migration from F to F ′?
We now introduce the concept of slack, i.e., an edge is not
used at full capacity by a (multi-commodity) flow:

Definition 5.4: Let F = (F1, . . . , Fk) be a multi-commo-
dity flow in N . We say that an edge e in N has slack w.r.t. F
if the following condition holds:

∑
1≤i≤k Fi (e) < c (e). If for

a consistent migration update U = (N,F ,F ′) an edge e has
slack w.r.t. F ′, but not w.r.t. F , then U induces slack on e.

Also, note that if every edge is used at full capacity (i.e.,
without slack), then consistent migration is not possible for
the above problem if F 6= F ′, as any consistent migration
update to a multi-commodity flow F∗ 6= F would violate the
capacity constraint of some full edge:

Observation 5.5: Let N be a network and let F 6= F ′ be
multi-commodity flows in N for the same multi-commodity
K s.t. for each commodity K ∈ K the corresponding flows in
F ,F ′ have the same size. If every edge is used at full capacity
in F and F ′, then consistent migration is not possible.
On the other hand, if every edge that needs to change its flows
has slack, then one can migrate consistently, cf. [2]:

Observation 5.6: Let N be a network and let F ,F ′ be
multi-commodity flows for K s.t. for each commodity K ∈ K
the corresponding flows in F ,F ′ have the same size. If every
edge where F and F ′ differ has slack w.r.t. both F and F ′,
then consistent migration is possible.

This gives rise to the following question: What happens when
an edge does not have slack w.r.t. F or F ′, but not all edges
are used at full capacity – is consistent migration possible?

The first step to answering this question is to identify
the edges which will never admit slack (after any consistent
migration) by Algorithm 5.7. Note that edges which never
admit slack do not change their flow assignment in any
consistent migration update, this would violate Condition (1).

Algorithm 5.7:
Input: A network N and a multi-commodity flow F for a
multi-commodity K.
Output: A multi-commodity flow F∗ for K s.t. a) for each
commodity K ∈ K the corresponding flows in F ,F ′ have
the same size and b) only the edges, which never admit slack
(after any consistent migration from F), have slack w.r.t. F∗.

1) Pick an edge (u, v) = e1 ∈ E without slack.
2) Pick a commodity K ∈ K used on edge e1. We denote

the corresponding flow as F . Let s∗ be some positive
real number s.t. 1) for all edges which have slack, s∗ is
smaller than the minimal slack of these edges and 2) for
all edges e with F (e) > 0, s∗ < F (e).

3) Outgoing from the endpoint v of e1, perform a BFS,
where a node v′′ is a child-node of a node v′, if a) there
is an edge e = (v′, v′′) with F (e) > 0 or b) there is an
edge (v′′, v′) with slack.

4) If the BFS from step 3 visits the node u, then divide the
set of edges traversed in the corresponding node sequence
(v, . . . , u) into 1) the set EK which contains the edges
selected by condition a) in step 3 and 2) the set Es which
contains the edges selected by condition b) from step
3. For all edges in EK and for e1, reduce the flow of
commodity K by s∗, and for all edges in Es, increase
the flow of commodity K by s∗. Remove any cycling
subflows, should they exist.

5) If the BFS from step 3 does not visit the node u, then
repeat steps 2 to 4 for the remaining commodities used
on the edge e1, until a BFS from step 3 visits node u or
all commodities have been chosen.

6) Repeat steps 1 to 5 for all other edges without slack.
7) Repeat steps 1 to 6 until either all edges have slack or

until steps 1 to 6 were performed without inducing any
new slack on an edge that had no slack before.

Lemma 5.8: Algorithm 5.7 produces a correct output, i.e.,
all edges with potential slack after a consistent migration are
identified. The runtime is in O(|K||E|3), i.e., polynomial.

To prove Lemma 5.8, we need a lemma which establishes a
relation between the existence of a consistent migration update
which induces slack and step 4 of Algorithm 5.7.

Lemma 5.9: Let N be a network and let F be a multi-
commodity flow for K. Let e = (u, v) be an edge without
slack w.r.t. F . Then the following are equivalent:
(i) There exists a consistent migration update (N,F ,F ′),

where F ′ is a multi-commodity flow for the multi-
commodity K s.t. for each commodity K ∈ K the
corresponding flows in F ,F ′ have the same size and e
has slack w.r.t. F ′.

Fig. 4. In this example, all edges have a capacity of one and the solid red
flow of the single commodity has a size of one along each of the two paths.
For an unobstructed view, other commodities are left out. To create slack on
e, parts of the red flow migrate to the edges denoted with e+, as shown in
the dashed red arrows (see (i) of Lemma 5.9 and increasing flow in step 4
of Algorithm 5.7). The dotted blue path from v to u is found via step 3 of
Algorithm 5.7 and corresponds to (ii) of Lemma 5.9. We note that the edges
in e− and e+ do not have to alternate in the path from v to u. E.g., there
could be also multiple e+ or e− edges in a row.

(ii) There is a commodity K ∈ K with a positive flow
of K on e w.r.t. F and a sequence of nodes (v =
v1, v2, . . . , vj = u) s.t. for each 1 ≤ i ≤ j − 1 there is
a) an edge (vi, vi+1) with a positive flow of commodity
K w.r.t. F or b) an edge (vi+1, vi) with slack w.r.t. F .

Before proving Lemma 5.9, we first illustrate it (and the
steps 3 and 4 of Algorithm 5.7) in Figure 4.

Proof: We begin by showing that (i) implies (ii). Let
K ∈ K be a commodity where for the corresponding flows
F ∈ F and F ′ ∈ F ′ holds: F (e) > F ′(e). Such a K = (s, t)
exists as the consistent migration update (N,F ,F ′) induces
slack on e. We denote the set of all edges eK with F (eK) > 0
by EK (with e ∈ EK) and the set of all edges es with slack
w.r.t. F by Es. Furthermore, we denote the set of all edges
e− with F (e−) > F ′(e−) by E− and the set of all edges e+

with F (e+) < F ′(e+) by E+. Note that all edges in E− are
contained in EK and all edges in E+ are contained in Es.

Let V e be the set of all nodes v′ for which there exists a
sequence of nodes (v, . . . , v′) with the properties specified in
(ii). If u ∈ V e, then (ii) follows. Thus, assume u /∈ V e.

Let Ein be the set of all edges (x, y) with x /∈ V e and y ∈
V e. Let Eout be the set of all edges (x′, y′) with x′ ∈ V e and
y′ /∈ V e. For any (x, y) ∈ Ein, it holds that ein /∈ Es, as oth-
erwise x ∈ V e by the definition of V e. This implies (x, y) /∈
E+. Analogously, for all edges (x′, y′) ∈ Eout, it holds
that (x′, y′) /∈ Ek. This implies (x′, y′) /∈ E−. Set ΦF :=∑

ein∈Ein
F (ein) −

∑
eout∈Eout

F (eout). Note that ΦF =∑
ve∈V e

(∑
e′∈in(ve) F (e′)−

∑
e′∈out(ve) F (e′)

)
, which im-

plies the following by the defining conditions of a flow: If
s ∈ V e, t /∈ V e, then ΦF = −dF . If s /∈ V e, t ∈ V e, then
ΦF = dF . Otherwise, ΦF = 0. We have analogous statements
for F ′ and since dF = dF ′ , we obtain ΦF = ΦF ′ . On the
other hand, ΦF ′ − ΦF =

∑
ein∈Ein

(F ′(ein)− F (ein))
+
∑

eout∈Eout
(F (eout)− F ′(eout)). As shown above, all

edges in Ein are not in E+.
Thus, every summand in the first sum is ≤ 0. Analogously,

since all edges in Eout are not in E−, every summand in the
second sum is ≤ 0. Furthermore, since e ∈ Ein and F (e) >
F ′(e), there is a negative summand in the first sum. Hence,

ΦF ′ < ΦF , contradicting ΦF ′ = ΦF . Therefore, u ∈ V e which
shows that (i) implies (ii).

It is left to show that (ii) implies (i). Let s∗ be some positive
real number s.t. 1) for all edges which have slack w.r.t. F , s∗

is smaller than the minimal slack of these edges and 2) for all
edges e′ with F (e′) > 0, s∗ < F (e′). Let E1 be the union of
the set {e} and the set of edges described by a) in (ii) and
E2 the set of edges described by b) in (ii).

Now define F ′ as follows: For all commodities in K except
K, take the corresponding flow from F . For K, set

F ′ (ē) :=

 F (ē)− s∗ if ē ∈ E1,
F (ē) + s∗ if ē ∈ E2,
F (ē) otherwise.

(2)

By the definition of s∗, no capacity constraints will be
violated by F ′. For all nodes which are not in the sequence
given in (ii), the flow conservation condition holds w.r.t. F ′,
as no ingoing or outgoing flows have been changed. For each
node which is in the sequence given in (ii), the (two) incident
edges with changed flow F ′ (compared to F) cancel each
other out regarding flow conservation. If the nodes s and t
are not in the sequence given in (ii), then dF ′ = dF holds.
W.l.o.g., let s be in the sequence given in (ii): Then there
could be a cycle of commodity K but increasing the outgoing
flow of commodity K for s. In that case, we transform F into
a cycle-free flow by subtracting the cycling “subflows” from
the affected edges. This does not violate flow conservation or
capacity constraints and ensures dF ′ = dF .

Since we only change the flow of one commodity from F
to F ′, Condition 1 is satisfied because no capacity constraints
are violated by F ′ as shown before. Thus, (N,F ,F ′) is a
consistent migration update. As e ∈ E1, (N,F ,F ′) induces
slack on e, which shows that (ii) implies (i).

Now we are able to prove Lemma 5.8.
Proof: We begin with the observation that once we have

slack on an edge, we never need to remove the slack on
this edge completely in order to induce slack on other edges.
Assume that there is a consistent migration update that induces
slack on edge e1 and removes slack on edge e2. If we change
the migration update to just migrate half the size of the
migrated flows, we will still have slack on both edge e1 and
edge e2. This is essential to the proof, as it cannot be done
with unsplittable or integer flows. Furthermore, it shows that
the size of the slack is not relevant for any further steps of an
(appropriately designed) algorithm that tries to induce slack on
as many edges as possible. As we consider splittable flows, for
any consistent migration update, one can just reduce the size
of the moved flow s.t. it still leaves slack on the newly used
edges, but still induces slack on the previously more heavily
used edges. Thus, we only need to differentiate for each edge
whether i) it has slack, or ii) it has no slack.

Recall from Definition 3.6 that a consistent migration update
is only possible if there is some slack on the edges where the
flow is being moved to. Else Condition (1) will be violated.
Consider any step 4 of Algorithm 5.7, where the BFS from step
3 visits the node u. The flow transformations being performed

subsequently correspond to the construction of F ′ in the proof
of Lemma 5.9 (given by (2)). Thus, by Lemma 5.9, all flow
transformations performed by Algorithm 5.7 are consistent
migration updates.

What is left to show (apart from the polynomial runtime) is
that Algorithm 5.7 induces slack on each edge on which slack
can be induced by any consistent migration. Thus, assume, for
the sake of contradiction, that there is a consistent migration
M after which there is slack on some edge ex which had no
slack initially, but Algorithm 5.7 does not induce slack on ex.

Let Ei be the set of all edges which had no slack initially, on
which M induces slack in update i. Let j be the smallest index
s.t. Ej contains an edge ej on which Algorithm 5.7 does not
induce slack. Then, Algorithm 5.7 induces slack on all edges
from E1 ∪ E2 ∪ · · · ∪ Ej−1. Let K ∈ K be a commodity for
which the corresponding flow size on edge ej gets reduced in
the j-th update of M .

Let F be the initially given flow and F ′ the flow after the
j-th update of M . Let F∗ be the flow obtained by running
Algorithm 5.7 on F . Let F ∈ F , F ′ ∈ F ′ and F ∗ ∈ F∗ be
the flows corresponding to commodity K = (s, t). Let E−

denote the set of edges e with F ′(e) < F (e) and E+ the
set of edges e′ with F ′(e′) > F (e′). Every edge e ∈ E+

must have had slack at some point before the j-th update of
M as some flow for commodity K has been added during
the migration from F to F ′. By the definition of j, this
implies that e has slack also w.r.t. F∗. Furthermore, for each
edge e′ ∈ E−, we have F (e′) > 0, and since the design
of Algorithm 5.7 ensures that any edge containing some flow
for some commodity always keeps some positive flow for this
commodity, we obtain F ∗(e′) > 0.

Now define a flow F for K by setting

F (e) :=

 F ∗(e)− r(F (e)− F ′(e)) if e ∈ E−,
F ∗(e) + r(F ′(e)− F (e)) if e ∈ E+,
F ∗(e) otherwise,

for the flow F for commodity K and taking the flows from
F∗ for all other commodities in K. The parameter r ∈ R+ in
the definition of F will be determined in the following. Note
that the first two terms in the above definition are equal.

We have to show that F is indeed a flow (and F indeed
a multi-commodity flow). As F is a linear combination of
the flows F ∗, F (e) and F ′(e) (which all satisfy the flow
conservation condition on the nodes different from s and t),
it also satisfies the flow conversation condition. Furthermore,
as F and F ′ cancel each other out regarding the flow (size)
outgoing from s and incoming in t, F satisfies also the second
flow condition and the demand of K w.r.t. F is also the same
as w.r.t. F ∗, F and F ′. By choosing r small enough, we can
also ensure that the third flow condition is satisfied (in the
general form required for multi-commodity flows, also given
in the model section), i.e., that F does not violate the capacity
constraints. (This last claim follows from the fact that the only
edges e with F (e) > F ∗(e) are those in E+ and we already
showed that all of these edges have slack w.r.t. F ∗.)

In order to avoid having “negative” flows on some edges,
we must take care that for the edges in E− (for which

F ′(e) < F (e) holds), F ∗(e) − r(F (e) − F ′(e)) is positive.
As we showed above, we have F ∗(e) > 0 for all edges
e ∈ E−. Thus, we can ensure the required positivity by
again choosing r small enough. Now fix r s.t. it is small
enough for the arguments in the above discussion. Then F
is a flow for commodity K and F is a multi-commodity flow
for K. Furthermore, for all commodities in K different from
K, the corresponding flows are identical in F and F∗. Thus,
(N,F∗,F) is a consistent migration update as Condition
1 must be satisfied (since both F and F∗ do not violate
the capacity constraints of the edges). Moreover, for each
commodity in K, the corresponding flows in F and F∗ have
the same size.

Consider the edge ej . By its definition, we have F ′(ej) <
F (ej) which implies ej ∈ E−. Thus, F (ej) < F ∗(ej) and
ej has slack w.r.t. F . So we have shown that (N,F∗,F) is
a consistent migration update as described in statement (i) of
Lemma 5.9 whereas ej is an edge without slack w.r.t. F∗. By
applying Lemma 5.9, we obtain the corresponding statement
(ii) from Lemma 5.9 (where “e” = ej and “F” = F∗). It
follows that after reaching flow F∗, Algorithm 5.7 will pick
the edge ej in some step 1 and the commodity K in step
2. In the subsequent step 4, Algorithm 5.7 will find a node
sequence which ends in the starting node of ej (the existence
of such a sequence is ensured by the above statement (ii) from
Lemma 5.9). Thus, Algorithm 5.7 will perform a consistent
migration update which induces slack on the edge ej . This is
a contradiction to the assumption and Algorithm 5.7 produces
a correct output.

It is left to show that Algorithm 5.7 runs in polynomial time:
For the analysis, we first ignore the runtime contributed by step
4. Steps 1 to 5, excluding 4, can be performed in O(|K||E|)
time – with step 6 iterating this process O(|E|) times. Step
7 will repeat steps 1 to 6, excluding 4, again O(|E|) times,
resulting in a total runtime of O(|K||E|3). Observe that step 4
will be executed at most O(|E|) times, as it is only run when
slack is generated for the first time on an edge. Increasing and
decreasing the flows in step 4 can be performed in O(|E|)
time, leaving the cycle removal: By selecting an edge e with
smallest flow size FK(e) of commodity K, we can determine
if there is a cycle for the commodity K containing e, and if
this is the case, remove such a cycle, setting FK(e) = 0 in the
process. Such a cycle removal with a runtime of O(|E|) needs
to be performed at most |E| times, yielding a total runtime of
O(|E|3) for all executions of step 4. Hence, the total runtime
of Algorithm 5.7 is O(|K||E|3).

Furthermore, Problem 5.1 can be reduced to Problem 5.3 by
essentially i) first dropping (parts of) commodities that do not
need to migrate, and ii) adding new (parts of) commodities
at the end. Then, Algorithm 5.7 can be applied to both F
and F ′. Should there be edges in N , on which i) no slack
can be induced starting from F or F ′ by means of consistent
migration, and that ii) differ in their flow assignment in F
and F ′, then consistent migration is not possible. Else, one
can use the approach of a) applying Algorithm 5.7 to the old
and new placement to ensure slack s on each edge and then

migrate in at most d1/se − 1 consistent migration updates, or
b) use the method of binary search via LPs from [2] to find
a consistent migration. The formal proof of Theorem 5.2 is
given in the following.

Proof of Theorem 5.2: We start to address this problem
by first recalling Observation 5.5: I.e., if all edges are at full
capacity, the commodities and demands stay the same, and
some flows have to change their placement in the network, any
consistent migration step would violate the capacity constraint
of some edge. Furthermore, assume that a commodity only
exists in the initial starting state, i.e., in K, but not in K′.
Then, one can just remove the corresponding flow/commodity
and consider this reduced problem. The same holds if the
commodity just exists in the desired state, i.e., in K′, but not
in K. One can ignore this commodity when migrating – and
just add its flow at the end, as there will be enough space
on all of its used edges. Similarly, if there is some slack on
each edge for both F and F ′, then it is possible to migrate
consistently, see Observation 5.6.

Thus, we want to identify the edges whose usage by
flows cannot be changed by consistent migration. We refer
to Subfigure 1d for an example: As all of the edges are used
to full capacity in both the old starting state with F and the
new desired state with F ′, the flow assignment of any edge
cannot be changed, unless one violates congestion-freedom or
rate-limits some flow. Note that a necessary requirement for
such an edge is that it is used at full capacity in both the old
starting state F and the new desired state F ′.

Hence, when a commodity with the same source and sink
has different demands dFold

, dFnew
in the old and new state

with flows Fold, Fnew, we only need to look at the minimum of
dFold

, dFnew : Assume dFold
< dFnew with dFold

= y ∗ dFnew ,
y > 1. Then, we can reduce the flow of Fnew by a factor of
y on all of its used edges, and after a consistent migration,
add the missing demand over all edges. The same holds if
dFold

> dFnew
with y ∗ dFold

= dFnew
, y > 1: We reduce

the flow of Fold by a factor of y on all of its used edges,
and then consider consistent migration. In both cases, we will
only lower the used capacity of edges by consistent migration
steps. Therefore, we can simplify our original problem to one
where the demands and commodities are equal for F and F ′,
i.e., K = K′ = Kall. Note that the problem is symmetric in
the sense that consistent migration from F to F ′ is possible
if and only if consistent migration from F ′ to F is possible.

This means that if there is an edge whose usage by flow F or
F ′ cannot be changed by any sequence of consistent migration
steps, and it is not used in the same fashion by F and F ′, then
consistent migration from F to F ′ is not possible! Conversely,
if no such edge exists, we can migrate consistently: If each
edge that needs to be changed in its usage of flows has some
slack, we can migrate consistently by always changing a small
part of the network in accordance with the slack. I.e., if the
minimum slack is 10%, we can migrate in 9 steps.

Therefore, we consider all edges that are i) at full capacity
without slack for F or F ′, and ii) not used the same by F
or F ′, and try to figure out if we can find some sequence of

consistent migration steps that induces slack on them. Thus,
we only need to look at an even more restricted problem:

Let N be a network and F∗ be a flow in N with commodi-
ties K∗. On what edges can we induce slack by a sequence of
consistent migration steps?

However, this is exactly the problem solved by Algorithm
5.7 in polynomial time. As all steps mentioned before can be
performed in polynomial time as well, Problem 5.1 is in the
complexity class P.

VI. INSERTION OF UNSPLITTABLE FLOWS

A natural method to insert/increase a flow in a network is to
check first if there is enough space. In that case, the solution is
straightforward – one just increases/adds the flow in question.
However, things get more difficult if there is currently not
enough capacity. Is it necessary to remove some flows, or is
it enough to consistently migrate the existing flows?

A common method (cf. RSVP-TE [29]) is to assign levels of
importance to all flows in the network, and then remove those
of lesser importance if they block the new flow. We show that
from a theoretical standpoint, this approach is problematic for
unsplittable flows, as we prove the following corresponding
decision problem to be NP-hard:

Problem 6.1: Let N be a network and let F be an un-
splittable multi-commodity flow in N for a multi-commodity
K. Let Knew be a commodity not contained in K and let M
be a map of each commodity in K to a level of importance,
i.e., M : K → N. Let r be some integer. Is there a set
Kr ⊆ K of commodities with summed up importance at
most r, an unsplittable multi-commodity flow F ′ in N for the
multi-commodity {K \ Kr}∪Knew, and a consistent migration
(N,F ,F1), (N,F1,F2), . . . , (N,Fj ,F ′) s.t. all flows Fi are
unsplittable?

Theorem 6.2: Problem 6.1 is NP-hard.
Proof: The proof follows directly from the proof of

Theorem 4.2 if one considers the following case: Importance
r = 0, F and K as given in the proof of Theorem 4.2, and
Knew with source S and sink T , cf. Figure 3.
This implies that the corresponding optimization version of
Problem 6.1 can also not be approximated well: Any (constant)
approximation ratio for r would mean that one could decide
if the problem is satisfiable or not.

Corollary 6.3: The optimization version of Problem 6.1,
i.e, minimizing r, does not admit a PTAS unless P = NP.
We can take this problem even one step further and ask about
the hardness of approximation regarding the additive error.
Maybe one could always migrate in the construction from
our proof if one just removes just a constant amount of the
flows of the lowest importance? If we assign the clause flows
the importance 1 and the remaining flows the importance #
of clauses, then this problem reduces to finding a variable
assignment that satisfies as many clauses as possible – i.e.,
solving MAX 3-SAT. However, as shown by Håstad [30], this
is NP-hard to approximate better than 7/8 + ε.

Maximize
∑

i:ei∈out(s1) xi1

subject to
1) ∀1 ≤ j ≤ k∀v ∈ V \ {sj , tj} :∑

i:ei∈out(v) xij =
∑

i:ei∈in(v) xij ,
2) ∀2 ≤ j ≤ k :

∑
i:ei∈out(sj) xij = dj =

∑
i:ei∈in(tj) xij ,

3) ∀1 ≤ j ≤ k :
∑k

i=1 xij ≤ c(ej),
4) ∀1 ≤ i ≤ m s.t. ei ∈ Efix∀1 ≤ j ≤ k : xij = Fj(ei),
5)

∑
i:ei∈in(s1) xi1 = 0.

Fig. 5. The LP doesn’t alter the flow on the edges from Efix due to 4).

VII. INCREASING SPLITTABLE FLOWS

As shown in Section VI, the consistent increase/insertion
of flows is an NP-hard problem if flows are unsplittable.
This leads to the natural question of how much the demand
of a commodity can be increased under the condition of
consistency and splittable flows. Then, one can make an
informed decision if it is worth it to violate consistency or
not: Maybe the new demand is for a critical application that
absolutely needs the bandwidth – or maybe it is just some
background data that is not time critical.

In Section V we showed that it is decidable in polynomial
time if consistent migration is possible. However, this does
not answer the question of to what unknown new desired flow
placement one should migrate. One could just solve an LP
maximizing the demand of one commodity while keeping the
demand of the other commodities fixed (cf. the LP in Figure
5 without restriction 4)). But it can be the case that consistent
migration is not possible for the resulting multi-commodity
flow of the LP. We thus formulate the following problem:

Problem 7.1: Let N be a network and let F be a multi-
commodity flow in N for the multi-commodity K. Let K ∈ K.
Find a multi-commodity flow F ′ for the multi-commodity K
that i) maximizes the demand of commodity K, ii) leaves the
demand of all other commodities unchanged, and iii) can be
migrated to consistently from F .
For ease of notation, we assume that if one wants to maximize
a new commodity, it is denoted as K ∈ K with a current de-
mand of 0. As it turns out, we can approximate the maximum
consistent increase of the demand of commodity K in Problem
7.1 arbitrarily well:

Theorem 7.2: Let ε > 0. Finding a multi-commodity
flow for Problem 7.1 that satisfies the conditions ii) and iii)
and approximates the maximum demand of commodity K in
condition i) with an approximation ratio of (1 − ε) can be
done in polynomial time (independent of the chosen ε).

Proof: Let F = (F1, ..., Fk) be the given (initial) multi-
commodity flow for the multi-commodity (K1, ...,Kk) where
commodity Kj = (sj , tj) with demand dj w.r.t. F . Let
K = K1. Using Algorithm 5.7, we can determine all the
edges which do not admit slack after any consistent migration
starting from F . Let Efix denote the set of these edges. Due
to Condition (1), consistent migration updates cannot change
the flow assignments on Efix, so we would like to fix them
for the (approximate) maximum flow we are looking for.

By solving the LP given in Figure 5, we can find a multi-
commodity flow F∗ that maximizes the demand of commodity

Fig. 6. In this network, all edges have a capacity of two – except for the ones
denoted with a capacity of 1. The commodities K2 and K3 have a demand
of one. In the initial flow F , consisting of F2 and F3, one can achieve slack
on all edges by rerouting some parts of F2 and F3 along alternate paths.
In the optimal solution F∗ = (F ∗1 , F

∗
2 , F

∗
3) of the LP from Figure 5 that

maximizes the demand for K1 (which is then two), the flows F2 and F3

of size one have to be rerouted along the paths denoted by F ∗2 and F ∗3 .
However, by means of consistent migration it is not possible to induce slack
on the 1-edges starting from (F ∗2 , F

∗
3), even if F ∗1 is not inserted yet: F ∗2

would need to use at least one of the 1-edges fully occupied by F ∗3 and vice
versa. Thus, it is not possible to consistently migrate between F∗ and F .

K. Any found optimal solution of the LP represents a multi-
commodity flow F∗ with the above-mentioned properties by
setting Fj(ei) := xij , 1 ≤ i ≤ m, 1 ≤ j ≤ k. The first
three constraints represent the usual flow prerequisites. The
fourth constraint guarantees that nothing changes (from F
to F∗) on the edges in Efix. As the LP does not check if
the solution(s) represent cycle-free flows, we need the last
constraint: It ensures that no part of the flow leaving sj returns
to sj (such a part would not contribute to the flow Fj from sj
to tj , but to the sum we are trying to maximize). If we obtain
a solution to the LP with a cycle, then we can transform it into
a cycle-free flow by subtracting the cycling “subflows” from
the affected edges. Thus, we may still assume cycle-freedom.

While it is not ensured that it is possible to migrate
consistently from F to F∗, the obtained maximized demand
d′ :=

∑
i:ei∈out(s1) xi1 gives us an upper bound for the de-

mand of commodity K w.r.t. flow F∗, subject to the condition
that all other demands remain as they are. If we demand
consistent migration, then the demand d′ cannot necessarily
be achieved, but we come arbitrarily close. We refer to Figure
6 for an example where d′ cannot be achieved.

However, the initial flow F and an arbitrary optimal solution
F∗ of the LP can be combined to a multi-commodity flow F ′
which can be migrated to consistently from F . The combi-
nation is parametrized by some 0 < r < 1 which determines
the demand of the commodity whose demand we are trying to
maximize, and thus also determines the approximation ratio.
We define F ′ by F ′j(e) := rF ∗j (e) + (1 − r)Fj(e) for all
1 ≤ j ≤ k and e ∈ E. It follows directly from the definition
that F ′ is a multi-commodity flow for which the demands
K2, ...,Kk did not change from F . What is left to show is
that we can migrate consistently from F to F ′. Recall that
starting from F , slack can be achieved on exactly the edges
which are not in Efix. We show that the same is true for F ′:

We can “divide” the given network N into two networks N1

and N2 which have the same underlying graph as N but have
less capacity – for N1 each edge capacity in N is multiplied
by r, for N2 by (1 − r). We can imagine the flow rF∗ as

living only on the N1 part of N and (1− r)F as living only
on the N2 part. Now any consistent migration of F in N
represents a consistent migration of (1−r)F in N2 and thus a
consistent migration of F ′ in N . It follows that slack (starting
from F ′) can be achieved on all edges except possibly on those
in Efix. We will show now that slack cannot be induced on
any e ∈ Efix starting from F ′. By the above discussion, there
is a consistent migration from F ′ to a flow F (for the same
multi-commodity) for which exactly the edges not in Efix

have slack (just apply only updates which do not affect N1).
As discussed in the proof of Lemma 5.8, the result of

Algorithm 5.7 in terms of which edges have slack, does not
depend on any slack size, but just on whether an edge has
slack or not. The set of edges which have slack is the same
w.r.t. F as w.r.t. the flow Algorithm 5.7 returns after running
on F (namely, E\Efix). Thus, running Algorithm 5.7 (again)
for those two flows will yield the same set of edges with slack.
As the latter has already achieved slack on all edges where
this is possible, slack cannot be induced on any e ∈ Efix,
starting from F . Thus, the same is true for F ′.

So slack can be achieved on the edges not in Efix, both
starting from F and F ′. Furthermore, as F∗ is a solution to
the above LP, we have F ∗j (e) = Fj(e) for all 1 ≤ j ≤ k,
e ∈ Efix. Thus, the flow assignment on the edges in Efix is
the same for F and F ′. Ignoring these edges (whose flow
assignments do not need to be changed), we can use the
technique provided by [2] to obtain a consistent migration
between F and F ′ as all edges that need to change their flow
assignments have slack w.r.t both F and F ′ (after applying
Algorithm 5.7). Hence, we obtain that there is a consistent
migration between the multi-commodity flows F and F ′.

It is left to show that the runtime is polynomial (independent
of the chosen ε): Solving a linear program as the LP in Figure
5 can be done in polynomial runtime (e.g., with the interior
point method). Furthermore, Algorithm 5.7 has a polynomial
runtime as well, see Lemma 5.8. ε comes only into play when
“dividing” the network into two networks – but there it is only
used for multiplication to achieve the desired approximation
ratio for the demand of commodity K = K1.

VIII. CONCLUSION

We studied the problem of migrating flows consistently,
i.e., without congestion or rate-limiting, with special focus on
software defined networks. We were able to show that for
splittable flows, it is possible to decide in polynomial time if
consistent migration is possible. All previous approaches could
not decide if consistent migration is possible or applied only
to specific subsets of the consistent migration problem. We
proved that splittable flows are essential for this result, as the
decision problem is NP-hard for unsplittable or integer flows.

Furthermore, we also studied the problem of consistently
increasing or inserting new flows into the network. A current
practice is to drop obstructing flows: We showed that optimiz-
ing this technique is NP-hard to as well. However, we proved
that one can approximate the maximal consistent increase for
the size of a (new) flow arbitrarily well in polynomial time.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hoelzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined WAN,” in SIGCOMM, 2013.

[2] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in SIGCOMM, 2013.

[3] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and K. van der
Merwe, “The Case for Separating Routing from Routers,” in FDNA,
2004.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Mckeown, and
S. Shenker, “ETHANE: taking control of the enterprise,” in SIGCOMM,
2007.

[5] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach
to network control and management,” in SIGCOMM CCR, 2005.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks,” in NSDI,
2010.

[7] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in CoNEXT, 2011.

[8] M. Borokhovich and S. Schmid, “How (Not) to Shoot in Your Foot with
SDN Local Fast Failover,” in OPODIS, 2013.

[9] M. Casado, N. Foster, and A. Guha, “Abstractions for software-defined
networks,” Commun. ACM, vol. 57, no. 10, pp. 86–95, 2014.

[10] B. Gardiner, “Google’s Submarine Cable Plans Get Official. February
2008.” http://www.wired.com/2008/02/googles-submari.

[11] X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan, J. Rexford,
R. Wattenhofer, and M. Zhang, “Dionysus: Dynamic Scheduling of
Network Updates,” in SIGCOMM, 2014.

[12] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz,
“zUpdate: updating data center networks with zero loss,” in SIGCOMM,
2013.

[13] F. T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms,” J. ACM, vol. 46,
no. 6, pp. 787–832, 1999.

[14] A. V. Goldberg, J. D. Oldham, S. A. Plotkin, and C. Stein, “An imple-
mentation of a combinatorial approximation algorithm for minimum-cost
multicommodity flow,” in IPCO, 1998.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms (3. ed.). MIT Press, 2009.

[16] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows - theory,
algorithms and applications. Prentice Hall, 1993.

[17] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,”
in SOSR, 2015.

[18] T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Scheduling
network updates with timestamp-based TCAM ranges,” in INFOCOM,
2015.

[19] S. Ghorbani and M. Caesar, “Walk the line: Consistent network updates
with bandwidth guarantees,” in HotSDN, 2012.

[20] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring
for wide area networks,” in SIGCOMM, 2014.

[21] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass,” in SIGCOMM, 2014.

[22] S. Brandt, K.-T. Foerster, and R. Wattenhofer, “Augmenting Anycast
Flows,” in ICDCN, 2016.

[23] M. Hoefer, V. S. Mirrokni, H. Röglin, and S. Teng, “Competitive routing
over time,” Theor. Comput. Sci., vol. 412, no. 39, pp. 5420–5432, 2011.

[24] A. Noyes, T. Warszawski, P. Cerný, and N. Foster, “Toward synthesis
of network updates,” in SYNT, 2013.

[25] J. McClurg, H. Hojjat, P. Cerný, and N. Foster, “Efficient Synthesis of
Network Updates,” in PLDI, 2015.

[26] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM, 2012.

[27] S. Vissicchio and L. Cittadini, “FLIP the (Flow) Table: Fast LIghtweight
Policy-preserving SDN Updates,” in INFOCOM, 2016.

[28] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[29] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RFC 3209, RSVP-TE: Extensions to RSVP for LSP Tunnels,” 2001.

[30] J. Håstad, “Some optimal inapproximability results,” J. ACM, vol. 48,
no. 4, pp. 798–859, 2001.

