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Abstract. Distributed cloud applications, including batch processing,
streaming, and scale-out databases, generate a significant amount of net-
work traffic and a considerable fraction of their runtime is due to network
activity. This paper initiates the study of deterministic algorithms for
collocating frequently communicating nodes in a distributed networked
systems in an online fashion. In particular, we introduce the Balanced
RePartitioning (BRP) problem: Given an arbitrary sequence of pairwise
communication requests between n nodes, with patterns that may change
over time, the objective is to dynamically partition the nodes into ` clus-
ters, each of size k, at a minimum cost. Every communication request
needs to be served: if the communicating nodes are located in the same
cluster, the request is served locally, at cost 0; if the nodes are located
in different clusters, the request is served remotely using inter-cluster
communication, at cost 1. The partitioning can be updated dynamically
(i.e., repartitioned), by migrating nodes between clusters at cost α per
node migration. The goal is to devise online algorithms which find a good
trade-off between the communication and the migration cost, i.e., “rent”
or “buy”, while maintaining partitions which minimize the number of
inter-cluster communications. BRP features interesting connections to
other well-known online problems. In particular, we show that scenarios
with ` = 2 generalize online paging, and scenarios with k = 2 consti-
tute a novel online version of maximum matching. We consider settings
both with and without cluster-size augmentation. Somewhat surprisingly
(and unlike online paging), we prove that any deterministic online algo-
rithm has a competitive ratio of at least k, even with augmentation. Our
main technical contribution is an O(k log k)-competitive deterministic al-
gorithm for the setting with (constant) augmentation. This is attractive
as, in contrast to `, k is likely to be small in practice. For the case of
matching (k = 2), we present a constant competitive algorithm that does
not rely on augmentation.
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1 Introduction

Graph partitioning problems, like minimum graph bisection and maximum
matching, are among the most fundamental problems in Theoretical Computer
Science. Due to their numerous practical applications (e. g., communication net-
works, data mining, social networks, etc. [4,15,27]), partitioning problems are
also among the most intensively studied problems. Interestingly however, not
much is known today about how to dynamically partition nodes which interact
or communicate in a time-varying fashion.

This paper initiates the study of a natural model for online graph partition-
ing. We are given a set of n nodes with time-varying pairwise communication
patterns, which we have to partition into ` clusters of equal size k. Intuitively, we
would like to minimize inter-cluster links by mapping frequently communicat-
ing nodes to the same cluster. Since communication patterns change over time,
partitions should be dynamically readjusted, that is, the nodes should be repar-
titioned, in an online manner, by migrating them between clusters. The objective
is to jointly minimize inter-cluster communication and reconfiguration costs, de-
fined respectively as the number of communication requests served remotely and
the number of times nodes are migrated from one cluster to another.

One practical motivation for our problem arises in the context of server vir-
tualization in datacenters. Distributed cloud applications, including batch pro-
cessing applications such as MapReduce, streaming applications such as Apache
Flink or Apache Spark, and scale-out databases and key-value stores such as
Cassandra, generate a significant amount of network traffic and a considerable
fraction of their runtime is due to network activity [25]. For example, traces of
jobs from a Facebook cluster reveal that network transfers on average account
for 33% of the execution time [14]. In such applications, it is desirable that
frequently communicating virtual machines are collocated, i.e., mapped to the
same physical server, since communication across the network (i.e., inter-server
communication) induces network load and latency. However, migrating virtual
machines between servers also comes at a price: the state transfer is bandwidth
intensive, and may even lead to short service interruptions. Therefore the goal is
to design online algorithms which find a good trade-off between the inter-server
communication cost and the migration cost, similar in spirit to classical ski rental
and rent-or-buy problems.

Formally we define the Balanced RePartitioning (BRP) problem as follows.
The inputs to BRP are:

1. A set V of n = |V | nodes (e.g., the virtual machines), initially distributed
arbitrarily across ` clusters C = {C1, . . . , C`} (e.g., the physical servers, in-
terconnected by a top-of-the-rack switch [2]), each of size k (e.g., the number
of cores or slots for virtual machines).

2. An arbitrary and possibly infinite sequence σ of |σ| communication re-
quests, σ = {u1, v1}, {u2, v2}, {u3, v3}, . . . , {u|σ|, v|σ|}. For any t, σt =
{ut, vt} denotes a communication request: at time t, nodes ut, vt ∈ V ex-
change (a fixed amount of) data. Intuitively, every request σt can be thought
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of as an edge of the communication graph which appears at time t and then
disappears at t+ 1.

At any time t, each node v ∈ V is assigned to a cluster, which we will refer
to by Ct(v) ∈ C. If the time t is clear from the context or irrelevant, we sim-
ply write C(v). We call two nodes u, v ∈ V collocated if they are in the same
cluster: C(u) = C(v). We consider two settings:

1. Without augmentation: The nodes fit perfectly into the clusters, i.e., n = k·`.
2. With augmentation: The online algorithm has access to additional space

in each cluster. We say that an algorithm is δ-augmented if the size of each
cluster is k′ = δ·k, whereas the total number of nodes remains n = k·` < k′·`.
As usual, in the competitive analysis, the augmented online algorithm is
compared to the optimal offline algorithm without augmentation.

At each time t, the online algorithm needs to serve the communication re-
quest {ut, vt}, but can also repartition the nodes into new clusters before serv-
ing the request. We assume that a communication request between two nodes
located in different clusters costs 1, a communication request between two nodes
collocated in the same cluster costs 0, and migrating a node from one cluster to
another costs α ≥ 1. Note that in a setting without augmentation, due to cluster
size constraints, a node can never be migrated alone, but it must be swapped
with another node at a cost of (at least) 2α.

As it turns out, BRP features some interesting connections to other well-
known graph and online problems: (i) The static version (without migration) is
the minimum balanced graph partitioning problem (where ` is the number of
components). (ii) For ` = 2, BRP can be shown to be a generalization of online
paging, where the first cluster simulates the cache (the small but fast memory)
and the second the slow but large memory. (iii) For k = 2, BRP is a novel online
version of maximum matching. In the static case, maximum matching is a special
case of minimum balanced graph partitioning with n/2 components.

The cost of an algorithm ALG for a given sequence of communication re-
quests σ is

ALG(σ) =

|σ|∑
t=1

mig(σt;ALG) + com(σt;ALG), (1)

where mig(σt;ALG) is the migration cost at time t (α or 0) and com(σt;ALG)
is the communication cost of σt (1 or 0). Let On(σ) and Off(σ) be the cost
induced by σ on an online algorithm On and an optimal offline algorithm Off,
respectively. In contrast to On, which learns the requests one-by-one as it serves
them, Off has a complete knowledge of the entire request sequence σ ahead
of time. We are in the realm of online algorithms and competitive analysis:
We want to design online repartitioning algorithms which provide conservative
(worst-case) guarantees, and minimize the (strict) competitive ratio:

ρ(On) = max
σ

On(σ)

Off(σ)
. (2)



4 Avin, Loukas, Pacut, Schmid

To be competitive, an online repartitioning algorithm has to define a strategy
for each of the following questions:

A) Serve remotely or migrate (“rent or buy”)? If a communication pattern is
short-lived, it may not be worthwhile to collocate the nodes: the migration
cost cannot be amortized.

B) Where to migrate, and what? If nodes should be collocated, the question
becomes where. Should ut be migrated to C(vt), vt to C(ut), or should both
nodes be migrated to a new cluster? Moreover, an algorithm may be required
to pro-actively migrate (resp. swap) additional nodes.

C) Which nodes to evict? There may not exist sufficient space in the desired
destination cluster. In this case, the algorithm needs to decide which nodes
to evict, to free up space.

Our Contributions. This paper introduces the online balanced repartitioning
problem. We consider deterministic algorithms and make the following technical
contributions:

1. Online Rematching: For the special case of online rematching (k = 2, but
arbitrary `), Theorem 1 presents a greedy online algorithm which is almost
optimal: it is 7-competitive and we prove a lower bound of 3.

2. Lower Bounds: While in a setting without augmentation, a k−1 lower bound
for the competitive ratio of any online algorithm follows from a simulation of
online paging, in Theorem 2, we show a lower bound which is strictly larger
than k, for any α > 0. Intriguingly, we show that the online repartitioning
problem remains hard even with augmentation. In particular, in Theorem 3
we prove that no augmented online algorithm can achieve a competitive ratio
below k, as long as it cannot solve the problem trivially by placing all nodes
into a single cluster. In contrast, online paging is known to become constant
competitive with constant augmentation [29].

3. Online Balanced Repartitioning: Our main technical contribution stated in
Theorem 4 is a non-trivial O(k log k)-competitive algorithm for the setting
with 4-augmentation.

Observe that none of our bounds depends on `. This is interesting, as for
example, in our motivating virtual machine collocation problem, k is likely to be
small: a server typically hosts a small number of virtual machines (e.g., related
to the constant number of cores on the server).

Paper Organization. The remainder of this paper is organized as follows. After
reviewing related work in Section 2, we start by discussing the special case of
matchings (k = 2) in Section 3. We consider lower bounds for the general setting
with and without augmentation in Section 4. Section 5 is then devoted to the
presentation and analysis of CREP, an augmented deterministic algorithm. We
conclude in Section 6. Due to space constraints, some technical details and proofs
only appear in our technical report [6].
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2 Related Work

Our work assumes a new perspective on several classic algorithmic problems.
The static version of our problem (without migration) is the minimum balanced
graph partitioning problem (where ` is the number of components). This problem
is known to be NP-complete, and cannot even be approximated within any finite
factor [4]. The static variant where k = 2 corresponds to a maximum matching
problem, which is polynomial-time solvable. The static variant where ` = 2 corre-
sponds to the minimum bisection problem [17] and can be approximated within
a factor of O(log1.5 n) from the minimum cost [20]. The concept of cluster-size
augmentation is inspired by offline bicriteria approximations to graph partition-
ing, in particular the (`, δ)-balanced graph partitioning problem [4], where the
graph has to be partitioned in ` components of size less than δ · n` , as well as by
the concept of c-balanced cuts used by Arora, Rao, and Vazirani [5], where both
partitioned components should be of size at least c · n.

In terms of online algorithms, the subproblem of finding a good trade-off
between serving requests remotely (at a low but repeated communication cost)
or migrating nodes together (entailing a potentially high one-time cost α), is
essentially a ski rental or rent-or-buy problem [21,22]. A similar tradeoff also
arises in the context of online page and server migration problems [9,10], where
requests appear in a metric space [11] or graph [7] over time, and need to be
served by one [10] or multiple [19] servers. However, in BRP, the number of
possible node-cluster configurations is large, rendering it difficult to cast the
problem into an online metrical task system. Moreover, in contrast to most
online migration problems, which typically optimize the placement of a page
or server with respect to the request locations, in our model, both end-points
of a communication request are subject to optimization. A second difference to
the usual models studied in the literature (where requests appear at specific
locations in the metric space) is that in our problem a request only reveals
partial and binary information about the optimal location (resp. configuration)
to serve it: the request can be served at cost zero whenever the communicating
are collocated.

Our model can be seen as a generalization of online paging [18,23,24,30],
sometimes also referred to as online caching, where requests for data items ar-
rive over time and need to be served from a cache of finite capacity, and where the
number of cache misses must be minimized. The online caching and paging prob-
lem was first analyzed in the framework of the competitive analysis by Sleator
and Tarjan [29], who presented a kALG/(kALG−kOPT + 1)-competitive algo-
rithm, where kALG is the cache size of the online and kOPT the cache size of
the offline algorithm. The authors also proved that no deterministic online algo-
rithm can beat this ratio. In the classic caching model and its variants [12,13,24],
items need to be put into the cache upon each request, and the problem usually
boils down to finding a smart eviction strategy, such as Least Recently Used
(LRU) or Flush-When-Full (FWF). In contrast, in our setting, requests can be
served remotely. In this light, our model is reminiscent of caching models with
bypassing [1,16]. In fact, it is easy to see that in a scenario with ` = 2 clusters,
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online paging can be simulated: in this simulation, one cluster can be used as the
cache and the other cluster as the slow memory; by the corresponding problem
reduction we also obtain a k − 1 lower bound for our problem without augmen-
tation. However, in general, in our model, the “cache” is distributed : requests
occur between nodes and not to nodes, and costs can be saved by collocation.

BRP also has connections to online packing problems, where items of dif-
ferent sizes arriving over time need to be packed into a minimal number of
bins [26,28]. In contrast to these problems, however, in our case the objective is
not to minimize the number of bins but rather the number of “links” between
bins, given a fixed number of bins.

Finally, our model also connects to recent work on online clique and corre-
lation clustering [3,8,15,27]. In this prior work, nodes and/or links can appear
over time, but the underlying communication graph remains invariant.

3 Online Rematching

Let us first consider the special case where clusters are of size two (k = 2,
arbitrary `). This is essentially an online maximal (re)matching problem: clusters
of size two host (resp. “match”) exactly one pair of nodes, and maximizing pair-
wise communication within each cluster is equivalent to minimizing inter-cluster
communication. In a k = 2 scenario, the question of which node to evict is
trivial: there is simply no choice. The problem can also be seen from a ski-
rental perspective: one has to identify a good tradeoff between serving requests
remotely (“renting”) and migrating the communicating nodes together (“buy”).

A natural greedy online algorithm Greedy to solve this problem proceeds
as follows: For each cluster Ci, hosting nodes ui, vi, we count the total number
of inter-cluster requests over time for its nodes. After 3α requests occur between
nodes inside any cluster C1 to nodes outside the cluster, we identify the cluster C2

with which C1 communicated most frequently in this time period. We then
collocate u1 with the single node in C2 (v2 or u2) with which it communicated
the most—ties broken arbitrarily and without involving any other clusters in
the repartitioning. Afterwards, we reset all pairwise communication counters
involving nodes from (old) clusters C1 and C2 (i.e., u1, u2, v1, v2).

Theorem 1. Greedy is 7-competitive. No deterministic online algorithm
achieves a competitive ratio below 3 when |σ| → ∞.

4 Lower Bounds for Online Balanced Repartitioning

Our problem is generally hard to approximate online. While it is easy to see
that a lower bound of k− 1 follows by simulating online paging (ufsing only two
servers), in the following we prove a strictly larger lower bound (cf. Theorem 2).
In fact, we observe that, even with augmentation, our problem is hard to approx-
imate online: as long as the augmentation is less than what would be required
to solve the partitioning problem trivially, by putting all nodes into the same
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cluster (i. e., δ < `), no deterministic online algorithm can achieve a competitive
ratio better than k (cf. Theorem 3). This highlights an intriguing difference from
online paging, where the competitive ratio becomes constant under augmenta-
tion [29]. Our lower bounds are independent of the initial configuration: both
Off and On start off having the nodes placed identically in clusters.

Theorem 2. No deterministic online algorithm can achieve a competitive ratio
smaller than k + k−2

2α , independently of `.

Interestingly, an adversary can outwit any online algorithm, even in the set-
ting with augmentation. In the following, we consider online algorithms which,
compared to Off, have δ-times more space in each cluster.

Theorem 3. No δ-augmented deterministic online algorithm can achieve a
competitive ratio smaller than k, as long as δ < ` .

5 CREP Algorithm: An O(k log k) Upper Bound

The main technical contribution of this paper is an online Component-based
REPartitioning algorithm (CREP) which achieves an almost tight upper bound
matching the k lower bound of Theorem 3 with augmentation at least 4. Intu-
itively, it helps to think of a 4-augmented algorithm as one that can use twice
as many clusters, each having twice as much space (though this is a special case
of the definition of augmentation). Formally, we claim:

Theorem 4. With augmentation at least 4, CREP is O(k log k)-competitive.

CREP is summarized in Algorithm 1. The algorithm is non-trivial and relies
on the following basic ideas:

1. Communication components. CREP groups nodes which have recently com-
municated into components. Once the cumulative communication cost of a
group of nodes distributed across two or more components exceeds a cer-
tain threshold, CREP merges them into a single component, by collocat-
ing them in the same cluster. That is, we maintain a logical, time-varying
weighted component graph Gt = (Φt, Et, wt), where Φt is the set of com-
ponents immediately after request t has been issued, the edges Et connect
components which communicated at least once during this epoch, and wt
is the number of communication requests between the corresponding two
nodes in this epoch. In other words, an edge (i, j) ∈ E between two com-
ponents φi, φj ∈ Φt indicates that the two components (resp. the corre-
sponding nodes in φi and those in φj) were involved in wij > 0 requests.
Although the graph Gt changes over time (when components are merged
or split according to CREP), when the time is clear from the context, we
drop the time-index and simply write G = (Φ,E,w). Edges disappear (and
their weights are reset) when the components are merged. For a component
set X = {φi, φj , . . . } ⊆ Φ, let |X| denote the number of components inX. We
call vol(X) =

∑
φ∈X |c| the volume of the set and com(X) =

∑
φi,φj∈X wij

the communication cost among the members of X.
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2. Component epochs. We analyze CREP in terms of component-wise epochs.
A component epoch starts with the first request between two individual
nodes (singleton components), and ends when: (i) the size of the component
(the number of nodes in the component) exceeds k and (ii) the accumulated
communication between the components exceeds a certain threshold. CREP
maintains the invariant that components are never split during an epoch,
that is, once two nodes of the same component epoch are placed together
in a cluster, they will remain in the same cluster in the remainder of the
epoch (but they may possibly be migrated together to a new cluster). As
such, when a component set X is merged into a new component (Line 7),
CREP tries to migrate all the components to the cluster of the largest
component (ties broken arbitrarily). If there is not enough reserved space
in the cluster, then all components are migrated to a new cluster. If on the
other hand vol(X) exceeds k, the component-epoch ends, and all φ ∈ X
are reset to singleton components (Line 19). More specifically, according to
Algorithm 1, two termination criteria have to be fulfilled for a component
set Y to end an epoch: vol(Y ) > k and com(Y ) ≥ vol(Y ) ·α. This non-trivial
criterion is critical, to keep the migration cost competitive. An epoch that
ends as a result of a set Y is referred to as a Y -epoch.

3. Space reservations. In order to keep the number of migrations low, CREP
performs space reservations in clusters. Whenever CREP migrates a com-
ponent φ into a cluster, it reserves additional space reserve(φ) = min{k −
|φ|, |φ|}. As we will prove, these proactive space reservations can ensure
that a component has to be migrated again only after its size doubles. For
a cluster s, let reserved(s), occupied(s) and spare(s) denote the reserved,
occupied and spare (unreserved) space in s, where always reserved(s) +
occupied(s) + spare(s) = 2k. Similarly, for a component φ let reserved(φ)
denote the amount of its reserved space that is still available in its current
cluster.

The remainder of this section is devoted to the proof of Theorem 4. The
proof unfolds in a number of observations and lemmas. We first observe, in
Property 1, that indeed, it is always possible to find a cluster where the to-be-
merged components fit. We then derive an upper bound on CREP’s cost per
component epoch and a lower bound on the optimal offline cost per component
epoch. Finally, we show that the competitive ratio is also bounded with respect
to incomplete epochs.

We start by observing that there always exists a cluster which can host the
entire merged component, including the required reserved space without any
evacuation, i.e., its spare space is at least k.

Property 1. At any point in time, a cluster exists having at least k spare space.

So indeed, CREP can always place a merged component greedily into
clusters—no global component rearrangement is necessary. On the other hand,
augmenting the cluster size allows CREP to reserve additional space for mi-
grated components. As we show in the following, this ensures that each node is
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Algorithm 1 CREP with 4 Augmentation

1: Construct graph G = (Ψ,E,w) with singleton components: one component per
node. Set wij = 0 for all {vi, vj} ∈

(
V
2

)
. For each component φi, reserve

space reserve(φi) = 1.

2: for each new request {ut, vt} do
. Keep track of communication cost.

3: Let φi = Φ(ut) and φj = Φ(vt) be the two components that communicated.
4: if φi 6= φj then
5: wij ← wij + 1
6: end if

. Merge components.
7: Let X be the largest cardinality set with vol(X) ≤ k and com(X) ≥ (|X|−1) ·α

8: if |X| > 1 then
9: Let φ0 =

⋃
φi∈X φi and for all φj ∈ Φ\X set w0j =

∑
φi∈X wij .

10: Let φ ∈ X be the component having the largest reserved space.
11: if reserved(φ) ≥ vol(X)− |φ| then
12: Migrate φ0 to the cluster hosting φ
13: Update reserved(φ0) = reserved(φ)− (vol(X)− |φ|)
14: else
15: Migrate φ0 to a cluster s with spare(s) ≥ min(k, 2|φ0|)
16: Set reserved(φ0) = min(k − |φ0|, |φ0|)
17: end if
18: end if

. End of a Y -epoch.
19: Let Y be the smallest components set with vol(Y ) > k and com(Y ) ≥ vol(Y ) ·α

20: if Y 6= ∅ then
21: Split every φi ∈ Y into φi singleton components and reset the weights of

all edges involving at least one newly created component. Reserve one additional
space for each newly created component. If necessary, migrate at most vol(Y )/2+1
singletons to clusters with spare space.

22: end if
23: end for

migrated at most log k times (rather than k) during the formation of a compo-
nent.

Upper bound on CREP’s costs. The online algorithm’s cost during each
epoch consists of the communication cost, which amounts to the number of
communication requests that were served remotely, and the migration cost, which
is equal to the number of node migrations. The following properties provide
upper bounds for both kinds of costs for a single component:

Property 2. At any point in time, consider a component c induced by the com-
munication pattern in this epoch, then:
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1. The communication cost between nodes in φ is, in this epoch, at most (|φ|−
1) · α.

2. The migration cost of nodes in φ is, in this epoch, at most (|φ| log |φ|) · α.

Proof (Proof of Property 2). The two properties are proved in turn.

Property 2.1. We prove this property by induction on the merging sequence,
i. e., the sequence of merges that includes all the nodes in φ from the time when
they were singletons, ordered by time. To establish the base case, consider the
first merge of nodes in φ, where X was a set of singletons (Line 7) and |X|
singleton components were combined into a new component φ0 = ∪φi∈Xφi. By
CREP’s merging condition, the cost up to this point is equal to (|X| − 1) · α =
(|φ0| − 1) · α. For the inductive step, consider again that X ′ is merged into φ0
and suppose that the communication cost paid for each component φ′ ∈ X ′

is (|φ′| − 1) · α. After the merge, CREP’s total communication cost is equal to

(|X ′| − 1) · α+
∑
φi∈X′(|φi| − 1) · α =

(∑
φi∈X′ |φi|

)
· α− α = (|φ0| − 1) · α and

the induction holds.

Property 2.2. First observe that any node u which belongs to φ is migrated at
most log |φ| times during an epoch. To see this, suppose that u was just migrated
into a cluster and that the size of u’s current component is |φ′|. From Property 1,
we know that u will not be migrated as a consequence of a merge that does not
involve u’s component (i.e., it will never be evicted). Furthermore, due to the
existence of reserved space, u will stay in the same cluster as long as the size of
its current component φ′ remains smaller or equal to 2|φ′|. Since the size of u’s
component between any consecutive migrations doubles, the total migrations
can be at most log |φ|. This implies the total number of migrations pertaining
to all nodes in φ is at most |φ| log |φ|.

Using Property 2, we can bound the migration and communication cost of
a Y -epoch:

Lemma 1. Consider the end of a Y -epoch (Line 19). CREP migrates at
most

∑
φi∈Y |φi| log |φi| ≤ vol(Y ) · log k nodes and serves at most 2 vol(Y ) · α

remote requests during this epoch for nodes in Y .

The proof of Lemma 1 follows directly from Property 2 and is omitted.

Lower bound on Off’s cost. Having derived an upper bound on CREP’s
cost, we next compute a lower bound of Off’s cost.

Lemma 2. By the end of a Y -epoch, Off pays at least vol(Y )/k · α communi-
cation cost (during this epoch) for nodes in Y .

To establish the above lower bound, we will need two useful properties.

Property 3. Consider any component φ in the current epoch and any partition
of φ into two non-empty disjoint sets B and W , with B ∪ W = φ. During
the creation of φ (by merging), there were at least α communication requests
between nodes in B and W .
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Proof (Proof of Property 3). Consider the tree T which describes how compo-
nent φ merged from singletons into φ during the current epoch. The leafs of
the tree are the nodes in φ and each internal node corresponds to a component
set X that was found in Line 7 of the algorithm, and entails a merge to a new
component φ0. Now color the leafs of the tree according to W and B. Since
both sets are non-empty there must exist an internal node τ in T , whose de-
scendant leafs in the subtree are not colored identically. Let B′ = {b1, b2, . . . , bp}
be the child components of τ which are in B, and let W ′ = {w1, w2, . . . , wq}
be the components which are children of τ and which are in W . Let X be the
set corresponding to the descendant leafs of τ and note that X = B′ ∪ W ′
and |X| = p + q. Since neither B′ nor W ′ were merged earlier, the total
communication cost among B′ (resp. W ′) is at most (p − 1)α (resp. (q − 1)α),
which sums up to at most (p + q − 2)α. But since X is witnessing a communi-
cation cost of at least (|X| − 1)α = (p + q − 1)α, there must have occurred at
least (p + q − 1)α − (p + q − 2)α = α communication cost between the nodes
in B and the nodes in W during the current epoch.

Property 4. Consider any two non-empty disjoint subsets of components U, V ⊂
Y s.t. U ∪ V = Y and vol(U) < k (i.e., U ’s components fit in one cluster). The
inter-communication cost between U and V is at least α during the Y -epoch.

Proof (Proof of Property 4). The proof follows from the minimality of Y and be-
cause no merge involving components happened in Y . From the Y -epoch termi-
nation condition, we have com(Y ) = com(U)+com(V )+inter(U, V ) ≥ vol(Y )·α,
where inter(U, V ) is the inter-communication cost between U and V . Assume for
the sake of contradiction that inter(U, V ) < α. Recall that vol(U) ≤ k and, since
the components in U have not been merged yet, com(U) ≤ (|U | − 1) · α ≤
(vol(U)− 1) · α (the equality holds when |U | = 1). We therefore have

com(V ) = com(Y )− com(U)− inter(U, V )

> vol(Y ) · α− (vol(U)− 1) · α− α = vol(V ) · α.

We obtain the desired contradiction by distinguishing between two cases: (i)
If vol(V ) > k, then V ⊂ Y meets both termination conditions of a compo-
nent epoch (Line 19), and thus the minimality of set Y is contradicted. (ii)
Next, consider that vol(V ) ≤ k and notice that it must hold that |V | > 1
(otherwise com(V ) = 0). Since the components in V have not been merged
yet, com(V ) ≤ (|V | − 1) · α ≤ (vol(V ) − 1) · α ≤ vol(V ) · α, which is again a
contradiction.

Proof (Proof of Lemma 2). We now use Properties 3 and 4 to lower bound
Off’s cost. First, it follows from Property 3 that Off cannot gain by splitting
any component φ ∈ Y between different clusters (which would only increase its
cost). The question is then, how much can Off reduce the inter-communication
cost by arranging φ ∈ Y more efficiently? Let Rintra be the number of inter-
communication requests (of CREP) Off did not pay by placing the components
in an optimal way. Furthermore, denote by s the number of clusters Off used
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and by bj ≤ k the number of nodes Off placed in each cluster j = 1, . . . , s.
Consider any cluster j. In the best case for Off, each of the bj nodes in the
cluster is a singleton component which CREP placed in a different cluster. It
follows that Off’s saved cost cannot be greater than (bj−1)α: otherwise CREP
would have merged the bj components into a single component. Observe also
that, although Off aims to put the components in as few possible clusters, by a
simple pigeonhole argument, s must be at least vol(Y )/k. Combining the above,
the number of requests Rinter Off serves remotely (assuming that no node was
migrated during the Y -epoch) is

Rinter = vol(Y ) · α−Rintra ≥ vol(Y ) · α−
s∑
j=1

(bj − 1) · α

=

(
vol(Y )−

s∑
j=1

bj +

s∑
j=1

1

)
· α ≥

vol(Y )/k∑
j=1

1 =
vol(Y )

k
· α,

where the last step follows from the fact that
∑s
j=1 bj = vol(Y ).

It remains to show that Off cannot decrease Rinter any further by swapping
nodes during the Y -epoch. From Property 4, the nodes in each cluster j commu-
nicated at least α times with clusters i 6= j. Since any swap that Off performs
between two clusters costs at least 2α, a swap between the involved clusters
can only be beneficial to On. Considering that there are at least s ≥ vol(Y )/k
clusters, even with migrations, Off’s cost will be at least vol(Y )/k · α.

Incomplete Component Epoch. So far, we have quantified the cost that
CREP and Off pay at the end of each epoch. It remains to account for the
costs that CREP accumulates in incomplete epochs.

First, let us observe that the edge weights w of incomplete epochs in the
component graph are naturally bounded: at some point, the edge will cause a
merge, or end the epoch. By dividing the edges of the component graph G into
light edges and heavy edges, we can claim the following:

Property 5. For every edge (φi, φj) in the component graph, at any given time:

1. If |φi|+ |φj | ≤ k (we call this a light edge), the edge has cost at most α.
2. If |φi|+ |φj | > k (we call this a heavy edge), the edge cost is at most (|φi|+
|φj |)α ≤ (2k)α

The claim is implied by the definition of CREP. In the first case, if
the (φi, φj) edge cost was larger than α, CREP would have merged φi and φj
into a new component. Similarly, in the second case, if the edge (φi, φj) cost was
larger than (|φi|+ |φj |)α, CREP would have ended the epoch.

Let us consider the request sequence σ at some time t. Recall that at the end
of an epoch, we reset all involved edge weights, and charge Off for them. So
at time t, we have not taken into account yet the communication requests that
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were not reset. For any two nodes u and v, we consider all their communication
requests since the last time they belonged to the same Y , at the end of a Y -
epoch. All these requests belong to what we call the last epoch. Note that σ
may not contain any complete epochs at all. But every request {u, v} ∈ σ must
belong to some Y -epoch or to the last epoch. Using Property 5 we obtain:

Lemma 3. The competitive ratio of CREP for communication requests which
belong to the last epoch, is bounded by O(k log k).

The competitive ratio of CREP follows from Lemmas 1, 2, and 3.

6 Conclusion

This paper initiated the study of a natural dynamic partitioning problem which
finds applications, e.g., in the context of virtualized distributed systems sub-
ject to changing communication patterns. We derived different upper and lower
bounds, both for the general case as well as for a special case describing a match-
ing problem. While the derived competitive ratios are sometimes linear or even
super-linear in k, they do not depend on `: We believe that this is attractive in
practice: for example, while the number of servers in a datacenter (i.e., `) can
be large, the number of virtual machines hosted per server (e.g., the number of
cores) is usually small. The main open question raised by our work regards the
optimality of our upper bound: currently, the upper and lower bounds are off
by a logarithmic factor. Moreover, it will be interesting to explore randomized
settings: While we have some early positive results on the potential of randomiza-
tion for special problem instances, the feasibility of o(k)-competitive randomized
algorithms remains an open problem. .
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