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ABSTRACT

The Minimum Dominating Set (MDS) problem is not only
one of the most fundamental problems in distributed com-
puting, it is also one of the most challenging ones. While
it is well-known that minimum dominating sets cannot be
approximated locally on general graphs, over the last years,
several breakthroughs have been made on computing local
approximations on sparse graphs.

This paper presents a deterministic and local constant fac-
tor approximation for minimum dominating sets on bounded
genus graphs, a large family of sparse graphs. Our main
technical contribution is a new analysis of a slightly modified
variant of an existing algorithm by Lenzen et al. Interest-
ingly, unlike existing proofs for planar graphs, our analysis
does not rely on direct topological arguments. We believe
that our techniques can be useful for the study of local prob-
lems on sparse graphs beyond the scope of this paper.
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1. INTRODUCTION

This paper attends to the Minimum Dominating Set (MDS)
problem, arguably one of the most intensively studied graph
theoretic problems in computer science in general, as well as
in distributed computing.
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A dominating set D in a graph G is a set of vertices such
that every vertex of G either lies in D or is adjacent to a
vertex in D. Finding a minimum dominating set is NP-
complete, even on planar graphs, however, the problem can
be approximated well on planar graphs [1].

In this paper, we study the distributed time complex-
ity of finding small dominating sets, in the classic LOCAL
model of distributed computing [4, 11, 13, 14]. It is known
that finding small dominating sets locally is hard: Kuhn et
al. [7] show that in r rounds the MDS problem on an n-
vertex graphs of maximum degree A can only be approxi-

mated within factor Q(nC/TQ) and Q(Ac//r), where ¢ and ¢’
are constants. This implies that, in general, to achieve a
constant approximation ratio, every distributed algorithm
requires at least Q(v/logn) and Q(log A) communication
rounds. The currently best results for general graphs are
by Kuhn et al. [7] who present a (1 + €) In A-approximation
in O(log(n)/€) rounds for any € > 0, and by Barenboim
et al. [2] who present a deterministic O((logn)*~!)-time al-
gorithm that provides an O(nl/ k)—approximation, for any
integer parameter k > 2.

For sparse graphs, the situation is more promising. For
graphs of arboricity a, Lenzen and Wattenhofer [10] present
a forest decomposition algorithm achieving a factor O(a?)
approximation in randomized time O(logn), and a de-
terministic O(alogA) approximation algorithm requiring
time O(log A) rounds. Graphs of bounded arboricity in-
clude all graphs which exclude a fixed graph as a (topo-
logical) minor and in particular, all planar graphs and any
class of bounded genus. Czygrinow et al. [3] show that given
any 6 > 0, (1 4+ d)-approximations of a maximum indepen-
dent set, a maximum matching, and a minimum dominating
set, can be computed in O(log* n) rounds in planar graphs,
which is asymptotically optimal [9]. Lenzen et al. [8] pro-
posed a constant factor approximation on planar graphs that
can be computed locally in a constant number of communi-
cation rounds. A finer analysis of Wawrzyniak [16] showed
that the algorithm of Lenzen et al. in fact computes a 52-
approximation of a minimum dominating set with small mes-
sage size. Wawrzyniak [15] also showed that message sizes
of O(logn) suffice to give a (slightly worse) constant factor
approximation on planar graphs. In terms of lower bounds,
Hilke et al. [6] show that there is no deterministic local al-
gorithm (constant-time distributed graph algorithm) that
finds a (7 — €)-approximation of a minimum dominating set
on planar graphs, for any positive constant e.



1.1 Our Contributions

The main contribution of this paper is a deterministic and
local constant factor approximation for MDS on graphs that
we call locally embeddable graphs. A locally embeddable
graph G excludes the complete bipartite graph Ks; (¢t > 3)
as a depth-1 minor, that is, as a minor obtained by star con-
tractions, and furthermore satisfies that all depth-1 minors
of G have constant edge density. The most prominent
locally embeddable graph classes are classes of bounded
genus. Concretely, our result implies that MDS can be O(g)-
approximated locally and deterministically on graphs of
(both orientable or non-orientable) genus g. This result gen-
eralizes existing constant factor approximation results for
planar graphs to a significantly larger graph family. Prior
works by Lenzen et al. [8] and Wawrzyniak [16] heavily de-
pend on topological properties of planar graphs: For exam-
ple, their analyses exploit the fact that each cycle in a planar
graph defines an “inside” and an “outside” region, without
any edges connecting the two; this facilitates a simplified
accounting and comparison to the optimal solution. In the
case of locally embeddable graphs, such global, topological
properties do not exist. In contrast, in this paper we lever-
age the inherent local properties of our low-density graphs,
which opens a new door to approach the problem.

Our main technical contribution is a new analysis of a
sligthly modified variant of the elegant algorithm by Lenzen
et al. [8] for planar graphs. As we will show, with a slight
modification, the algorithm also works for locally embed-
dable graphs.

A second interesting technique developed in this paper is
based on preprocessing: we show that the constants involved
in the approximation can be further improved by a local
preprocessing step.

We believe that our new analysis and techniques can be
useful also for the study of other local problems and on more
general sparse graphs, beyond the scope of this paper.

An interesting side contribution of our modified algorithm
is that it is first-order definable. In particular, the algorithm
can again be modified such that it does not rely on any maz-
imum operations, such as finding the neighbor of maximal
degree. The advent of sub-microprocessor devices, such as
biological cellular networks or networks of nano-devices, has
recently motivated the design of very simple, “stone-age” dis-
tributed algorithms [5], and we believe that our work nicely
complements the finite-state machine model assumed in re-
lated work, and opens an interesting field for future research.

1.2 Organization

The remainder of this paper is organized as follows. We
introduce some preliminaries in Section 2. Our basic local
approximation result is presented in Section 3, and the im-
proved approximation, using preprocessing, is presented in
Section 4. After discussing a logic perspective on our work
in Section 5, we conclude in Section 6.

2. PRELIMINARIES

Graphs. We consider finite, undirected, simple graphs.
Given a graph G, we write V(G) for its vertices and E(G)
for its edges. Two vertices u,v € V(G) are adjacent or
neighbors in G if {u,v} € E(G). The degree dg(v) of
a vertex v € V(@) is its number of neighbors in G. We
write N(v) for the set of neighbors and Nv] for the closed
neighborhood N(v) U {v} of v. We let N'[v] := N[v] and

N [y] ;= N[Ni[v]] for i > 1. If B’ C E, we write N/ (v)
for the set {u € V(G) : {u,v} € E'}. For A C V(QG),
we write N[A] for (J,., N[v]. The edge density of G
is ¢(G) = |E(G)|/|V(G)]. For A C V(G), the graph G[A]
induced by A is the graph with vertex set A and edge set
{{u,v} € E(G) : u,v € A}. For B C V(@) we write G — B
for the graph G[V(G) \ B]. A graph H is a subgraph of a
graph G if V(H) C V(G) and E(H) C E(G).

Depth-1 minors and local embeddable graphs. A
graph H is a minor of a graph G, written H < G, if
there is a set {G, : v € V(H)} of pairwise disjoint con-
nected subgraphs G, C G such that if {u,v} € E(H),
then there is an edge between a vertex of G, and a ver-
tex of G,,. We say that G, is contracted to the vertex v and
we call GT[UUeV(H) V(G+)] a minor model of H in G.

A star is a connected graph G such that at most one vertex
of G, called the center of the star, has degree greater than
one. H is a depth-1 minor of G if H is obtained from a
subgraph of G by star contractions, that is, if there is a
set {Gy, : v € V(H)} of pairwise disjoint stars G, C G such
that if {u,v} € E(H), then there is an edge between a vertex
of G, and a vertex of G,.

We write K 3 for the complete bipartite graph with par-
titions of size t and 3, respectively. A graph G is a locally
embeddable graph if it excludes K3 as a depth-1 minor for
some t > 3 and if €(H) < ¢ for some constant ¢ and all
depth-1 minors H of G.

Dominating set. Let G be a graph. A set M C V(G)
dominates G if all vertices of G lie either in M or are adja-
cent to a vertex of D, that is, if N[M] = V(G). A minimum
dominating set M is a dominating set of minimum cardi-
nality (among all dominating sets). The size of a minimum
dominating set of G is denoted v(G).

f-Approximation. Let f : N — RT. Given an n-
vertex graph G and a set D of GG, we say that D is an f-
approximation for the dominating set problem if D is a dom-
inating set of G and |D| < f(n) - v(G). An algorithm com-
putes an f-approximation for the dominating set problem on
a class C of graphs if for all G € C it computes a set D which
is an f-approximation for the dominating set problem.

Bounded genus graphs. The (orientable, resp. non-
orientable) genus of a graph is the minimal number ¢ such
that the graph can be embedded on an (orientable, resp.
non-orientable) surface of genus £. We write g(G) for the
orientable genus of G and §(G) for the non-orientable genus
of G. Every connected planar graph has orientable genus 0
and non-orientable genus 1. In general, for connected G,
we have §(G) < 2g(G) + 1. On the other hand, there is no
bound for g(G) in terms of §(G). As all our results apply
to both variants, for ease of presentation, and as usual in
the literature, we will not mention them explicitly in the
following. We do not make explicit use of any topological
arguments and hence refer to [12] for more background on
graphs on surfaces. We will use the following facts about
bounded genus graphs.

Graphs of genus g are closed under taking subgraphs and
edge contraction.

LEMMA 1. If H < G, then g(H) < g(G) and g(H) <
9(G).

One of the arguments we will use is based on the fact
that bounded genus graphs exclude large bipartite graphs as
minors (and in particular as depth-1 minors). The lemma



follows immediately from Lemma 1 and from the fact that

9(Kmn) = [W] and §(Km.n) = [W] (see

e.g. Theorem 4.4.7 in [12]).

LEMMA 2. If g(G) = g, then G excludes Kig13,3 as a
minor and if g(G) = g, then G excludes Kog4+3,3 as a minor.

Graphs of bounded genus do not contain many disjoint
copies of minor models of K3 3: this is a simple consequence
of the fact that the orientable genus of a connected graph is
equal to the sum of the genera of its blocks (maximal con-
nected subgraphs without a cut-vertex) and a similar state-
ment holds for the non-orientable genus, see Theorem 4.4.2
and Theorem 4.4.3 in [12].

LEMMA 3. G contains at most max{g(G),2g(G)} disjoint
copies of minor models of K3 3.

Finally, note that graphs of bounded genus have small
edge density.

LEMMA 4. We have |E(G)| < 3 |V(G)| + 69(G) — 6
and |[E(G)| < 3-|V(GQ)| +33(G) — 3

Distributed complexity. We consider the standard LO-
CAL model of distributed computing [11, 13], see also [14]
for a recent survey. A distributed system is modeled as a
graph G. At each vertex v € V(G) there is an indepen-
dent agent/host/processor with a unique identifier id(v).
Initially, each agent has no knowledge about the network,
but only knows its own identifier. Information about
other agents can be obtained through message passing,
i.e., through repeated interactions with neighboring vertices,
which happens in synchronous communication rounds. In
each round the following operations are performed: (1) Each
vertex performs a local computation (based on information
obtained in previous rounds). (2) Each vertex v sends one
message to each of its neighbors. (3) Each vertex v receives
one message from each of its neighbors. The distributed com-
plexity of the algorithm is defined as the number of com-
munication rounds until all agents terminate. We call a
distributed algorithm r-local, if its output depends only on
the r-neighborhoods NT[v] of its vertices.

3. THE LOCAL MDS APPROXIMATION

Let us start by revisiting the MDS approximation algorithm
for planar graphs by Lenzen et al. [8], see Algorithm 1. The
algorithm works in two phases. In the first phase, it adds all
vertices whose (open) neighborhood cannot be dominated
by a small number of vertices to a set D. It has been shown
in [8] that the set D is small in planar graphs. In the sec-
ond phase, it defines a dominator function dom which maps
every vertex v that is not dominated yet by D to its domina-
tor. The dominator dom(v) of v is chosen arbitrary among
those vertices of N[v] which dominate the maximal number
of vertices not dominated yet.

We now propose the following small change to the algo-
rithm. As additional input, we require an integer ¢ which
bounds the edge density of depth-1 minors of G from below
and we replace the condition |A| < 6 in Line 5 by the con-
dition |A| < 2¢. In the rest of this section, we show that the
modified algorithm computes a constant factor approxima-
tion on any locally embeddable class of graphs. Note that

Algorithm 1 Dominating Set Approximation Algorithm for
Planar Graphs

1: Input: Planar graph G

2: (* Phase 1 %)

33 D+ 0

4: for v € V (in parallel) do

5: if there does not exist a set A C V(G) \ {v}
such that N(v) C N[A] and |A| < 6 then

6: D+ DuU{v}

7: end if

8: end for

9: (* Phase 2 %)

10: D'« 0

11: for v € V (in parallel) do

12: de—p(v) + |N[v]\ N[D]|

13: if v € V\ N[D] then

14: Ag-p(v) + maxyen(y) do—Dp(w)

15: choose any dom(v) from N[v] with
da—p(dom(v)) = Ag—p(v)

16: D' + D'"u{dom(v)}

17: end if

18: end if

19: end for

20: return DU D’

the algorithm does not have to compute the edge density
of G, which is not possible in a local manner. Rather, we
leverage Lemma 4 which upper bounds ¢(G) for any fixed
class of bounded genus graphs: this upper bound can be
used as an input to the local algorithm.

We first show that the set D computed in Phase 1 of
the algorithm is small. The following lemma is a straight-
forward generalization of Lemma 6.3 of [8], which in fact
uses no topological arguments at all.

LEMMA 5. Let G be a graph and let M be a minimum
dominating set of G. Assume that for some constant c¢ all
depth-1 minors H of G satisfy e(H) < c. Let

D :={v € V(Q) : there is no set A CV(G) \ {v}
such that N(v) C N[A] and |A] < 2¢}.

Then |D| < (c+1) - |M]|.

PROOF. Let H be the graph with V(H) = M U N[D \
M] and where FE(H) is a minimal subset of E(G[V (H)])
such that all edges with at least one endpoint in D \ M
are contained in E(H) and such that M is a dominating
set in H. By this minimality condition, every vertex v €
V(H) \ (DU M) has exactly one neighbor m € M, no two
vertices of V(H)\ (M UD) are adjacent, and no two vertices
of M are adjacent. ~

We construct a depth-1 minor H of H by contracting the
star subgraphs Gy, induced by Ng[m]\ D for m € M \ D
to a single vertex wvm,. Let w € D\ M. As Ng(w) cannot
be covered by less than (2¢ + 1) elements from V(G) \ {w}
(by definition of D), w also has at least (2c + 1) neighbors
in H. On the other hand, H has at most ¢ - [V (H)| edges,
and also the subgraph H[D \ M] has at most ¢ - |D\ M|
edges (by assumption on e(H)).



Hence
(2¢+1) - [D\M[—c-|D\ M|
< Y dpw) - |E(HD\ M)

weD\M
< |B(H))|
<c-|V(H)
=c-(ID\ M|+ [M]),
and hence |D \ M| < ¢- |M]|, which implies the claim. [

ASSUMPTION 6. For the rest of this section, we assume
that G satisfies that for all depth-1 minors H of G, e(H) < ¢
for some constant ¢, and we fir M and D as in Lemma 5.
We furthermore assume that for somet > 3, G excludes Ky,3
as depth-1 minor.

Let us write R for the set V(G) \ N[D] of vertices which
are not dominated by D. The algorithm defines a domina-
tor function dom : R — N[R] C V(G) \ D. The set D’
computed by the algorithm is the image dom(R), which is a
dominating set of vertices in R. As R contains the vertices
which are not dominated by D, D’ U D is a dominating set
of G. This simple observation proves that the algorithm cor-
rectly computes a dominating set of G. Our aim is to find
a bound on |dom(R)|.

We fix an ordering of M as mai,...,ma such that the
vertices of M N D are first in the ordering and inductively
define a minimal set E' C F(G) such that M is a dominating
set with respect to E’. For this, we add all edges {m1,v} €
E(G) with v € N(m1) \ M to E’. We then continue in-
ductively by adding for ¢ > 1 all edges {m;,v} € E(G)
with v € N(mz) \ (M U NE/(ml, e ,mi_1)).

For m € M, let Gy, be the star subgraph of G with cen-
ter m and all vertices v with {m,v} € E’. Let H be the
depth-1 minor of G which is obtained by contracting all
stars G., for m € M. This construction is visualized in
Figure 1. In the figure, solid lines represent edges from E’,
lines from E(G) \ E’ are dashed. We want to count the
endpoints of directed edges, which represent the dominator
function dom.

mi m2 m| |

Figure 1: The graphs G,,. Solid lines represent
edges from FE’, directed edges represent the domi-
nator function dom.

In the following, we call a directed edge which represents
the function dom a dom-edge. We did not draw dom-edges
that either start or end in M. When counting |dom(R)|,
we may simply add a term 2|M| to estimate the number of
endpoints of those edges. We also did not draw a dom-edge
starting in G, . In the figure, we assume that the vertex m,
belongs to M N D. Hence every vertex v from N[m1] is
dominated by a vertex from D and the function is thus not
defined on v.

H has | M| vertices and by our assumption on the density
of depth-1 minors of G, it has at most c|M| edges.

Our analysis proceeds as follows. We distinguish between
two types of dom-edges, namely those which go from one star
to another star and those which start and end in the same
star. By the star contraction, all edges which go from one
star to another star are represented by a single edge in H.
We show in Lemma 7 that each edge in H does not represent
many such dom-edges with distinct endpoints. As H has at
most c|M| edges, we will end up with a number of such
edges that is linear in |[M|. On the other hand, all edges
which start and end in the same star completely disappear
in H. In Lemma 11 we show that these star contractions
“absorb” only few such edges with distinct endpoints.

We first show that an edge in H represents only few dom-
edges with distinct endpoints. For each m € M \ D, we
fix a set Cpn € V(G) \ {m} of size at most 2¢ which dom-
inates Ng/(m), note that existence of Cy, follows from the
definition of the set D. Recall that we assume that G ex-
cludes K 3 as depth-1 minor.

LEMMA 7. Let 1 < i < j < |M|. Let N; := Ng/(m;)
and Nj = NE/(mj).

1. If m; & D, then
[{u € N; : there is v € N; with {u,v} € E(G)}| < 2ct.

2. If m; € D (and hence m; ¢ D), then
[{u € N; : there is v € N; with {u,v} € E(G)}| < 4ct.

PRrROOF. By definition of E’, it holds that m; & Cm;.
Let ¢ € Cm]. be arbitrary. Then there are at most ¢ — 1
distinct vertices u1,...,ut—1 € (IN; N N(c)) such that there
are vi,...,v—1 € N; (possibly not distinct) with {ug,vr} €
E(G) for all k, 1 < k <t — 1. Otherwise, we can contract
the star with center m; and branch vertices N(m;)\ {c} and
thereby find K3 as depth-1 minor, a contradiction. See
Figure 2 for an illustration in the case of an excluded K3 3.
Possibly, ¢ € N; and it is connected to a vertex of IV;, hence
we have at most ¢ vertices in N; N N{c] with a connection to
N;. As \C’mj\ < 2¢, we conclude the first item.

Regarding the second item, let ¢ € C,,; be arbitrary.
If ¢ # mj, we conclude just as above, that there are at
most ¢ — 1 distinct vertices u1,...,us—1 € (N; N N(c)) such
that there are vi,...,v,—1 € N; (possibly not distinct) with
{ur,vx} € E(G) for all k, 1 < k < ¢t — 1 and hence at
most ¢ vertices in IV; N Nc] with a connection to N;. Now
assume ¢ = m;. Let = C’mj. There are at most ¢t — 1 dis-
tinct vertices w1, ...,u—1 € (N; N Ng(m;)) such that there
are vertices vy, ...,vi—1 € N;j N N(c) (possibly not distinct)
with {ug,vr} € E(G) for all k, 1 <k <t¢—1. Again, con-
sidering the possibility that ¢’ € N;, there are at most ¢
vertices in N; N Ng(m;) with a connection to N; N N(c).
As |C;| < 2¢, we conclude that in total there are at
most 2ct vertices in N; N Ng(m;) with a connection to Nj.
In total, there are hence at most (2¢—1)t+2ct < 4ct vertices
of the described form. [

We write Y for the set of all vertices {u € Ng/(m;) :
m; € D and thereisv € Ng/(m;), j #iand {u,v} € E(G)}.

COROLLARY 8. |Y| < 6c%t|M|.

PrROOF. Each of the c¢|M| many edges in H represents
edges between N; and N;, where N; and N; are defined as
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Figure 2: Visualisation of the proof of Lemma 7 in
the case of excluded K333

above. By the previous lemma, if i < j, there are at most 2ct
vertices in N; NY and at most 4ct vertices in N; NY, hence
in total, each edge accounts for at most 6¢t verticesin Y. [

We continue to count the edges which are inside the stars.
First, we show that every vertex has small degree inside its
own star.

LEMMA 9. Let m € M\ D and let v € Ng/(m) \ Cp,.
Then

{u € Ng/(m) : {u,v} € E(G)}| < 2¢(t — 1).

Proor. Let ¢ € (). By the same argument as
in Lemma 7, there are at most ¢ — 1 distinct ver-
tices u1,...,ut—1 € (Ng/(m) N N(c)) such that {ur,v} €
EG)forallk,1<k<t—-1. O

Let C := Ume M\D C'n. There are only few vertices which

are highly connected to MUC. Let Z := {u € Ng/(M\D) :
IN(u) N (M UC)| > 4c}.

LEMmMA 10.

1Z] < |[MuC].

PROOF. Assume that |Z] > |M U C|. Then the sub-
graph induced by Z U M U C has more than }4c|Z| edges
and |Z U M U C| vertices. Hence its edge density is larger
than 2¢|Z|/(|ZU M UC|) > 2¢|Z|/(2]Z]) = ¢, contradicting
our assumption on the edge density of depth-1 minors of G
(which includes its subgraphs). [J

Finally, we consider the image of the dom-function inside
the stars.

LEMmMA 11.

U {ueNg(m):dom(u) € (Ne/(m)\ (Y U Z))}

meM\D

< (2(t — 1) + 4)c| M|

PROOF. Fix some m € M \ D and some u € Ng/(m)
with dom(u) € Ng/(m) \ (Y U Z). Because dom(u) ¢
Y, dom(u) is not connected to a vertex of a different star,
except possibly for vertices from M. Because dom(u) € Z,
it is however connected to at most 4c vertices from M U C.
Hence it is connected to at most 4c vertices from different

stars. By Lemma 9, dom(u) is connected to at most 2¢(t—1)
vertices from the same star. Hence the degree of dom(u) is at
most 4c+2¢(t —1). Because u preferred to choose dom(u) €
Ng/(m) over m as its dominator, we conclude that m has at
most 4c + 2¢(t — 1) E’-neighbors. Hence, in total there can
be at most (2(t — 1) 4+ 4)c|M| such vertices. [

We are now ready to put together the numbers.

LEMMA 12. If all depth-1 minors H of G have edge den-
sity at most ¢ and G excludes K3 as depth-1 minor, then
the modified algorithm computes a 6¢*t 4 (2t + 5)c + 4 ap-
prozimation for the minimum dominating set problem on G.

PROOF. The set D has size at most (¢ + 1)|M| accord-
ing to Lemma 5. Since M is a dominating set also with
respect to the edges E’, it suffices to determine |[{dom(u) :
u € (Ng/[M \ D]\ N[D])}|. According to Corollary 8, the
set Y = {u € Ng/(m;) : there is v € Ng/(m; ), i # j
and {u,v} € E(G)} has size at most 6¢*t|M|. In partic-
ular, there are at most so many vertices dom(u) € Ngs(m;)
with w € Ngs(m;) for ¢ # j. Clearly, |dom(R) N M| < |M|
and |dom(M)| < |M]|. Together, this bounds the number
of endpoints of dom-edges that go from one star to an-
other star. According to Lemma 10, there are only few
vertices which are highly connected to M U C, that is, the
set Z ={u € Ng/(M\ D) : |[IN(u) N (M UC)| > 4c} sat-
isfies |Z| < |[M U C|. We have |C| < 2¢|M]|, as each Cp,
has size at most 2c¢. It remains to count the image of dom
inside the stars which do not point to Y or Z. According to
Lemma 11, this image has size at most (2(t — 1) + 4)c|M]|.
In total, we hence find a set of size

(c+ 1)|M| + 6c°t| M| + 2| M| + (2¢ + 1)| M|+
(2(t — 1) + 4)c|M| < (6¢%t + (2t + 5)c + 4)|M]|.
O

Our theorem for bounded genus graphs is now a corollary
of Lemma 2 and 12.

THEOREM 13. Let C be a class of graphs of orientable
genus at most g (non-orientable genus at most g resp.). The
modified algorithm computes an O(g)-approzimation (O(g)-
approzimation resp.) for the dominating set in O(g) (O(g)
resp.) communication rounds.

For the special case of planar graphs, our analysis shows
that the algorithm computes a 199-approximation. This is
not much worse than Lenzen et al.’s original analysis (130),
however, off by a factor of almost 4 from Wawrzyniak’s [16]
improved analysis (52).

4. IMPROVING THE APPROXIMATION
FACTOR WITH PREPROCESSING

We now show that the constant approximation factors re-
lated to the genus g, derived in the previous section, can be
improved, using a local preprocessing step.

Given a graph G and a vertex v € V(G). Let K =
{Ki,...,K;} denote the set of minimal subgraphs of G such
that for all 1 < ¢ < j, K33 is a depth-1 minor of K;. Let
K}, € K be the one with lexicographically smallest identi-
fiers in K, we say K} is the v-canonical subgraph of G and
we denote it by K,. If K = () we set K, := (.



Algorithm 2 Dominating Set Approximation Algorithm for
Graphs of Genus < g

1: Input: Graph G of genus at most g

2: Run Phase 1 of Algorithm 1

3: (x Preprocessing Phase )

4: for v € V — D (in parallel) do

5 compute K, in G — D (see Lemma 14)
6: for i =1..g do

7: for v € V — D (in parallel) do

8 if K, # 0 then

9
0
1

: chosen : = true
10: for all u € N'?(v)
11: if K,NK, # 0 and u < v then chosen :=
false
12: if (chosen = true) then D := DUV(K,)

13: Run Phase 2 of Algorithm 1

LEMMA 14. Given a graph G and a vertezrv € V(G). The
v-canonical subgraph of G (K,) can be computed locally in
at most 6 communication rounds. Furthermore, K, has at
most 24 vertices.

ProOOF. The proof is constructive. As K33 has diame-
ter 2, every minimal subgraph of G containing K33 as a
depth-1 minor has diameter at most 6 (every edge may have
to be replaced by a path of length 3). Therefore, it suf-
fices to consider the subgraph H = G[N®(v)] and find the
lexicographically minimal subgraph which contains K3 3 as
depth-1 minor in H which includes v as a vertex. If this
is the case, we output it as K,; otherwise we output the
empty set. Furthermore, K3 3 has 9 edges and hence a mini-
mal subgraph containing it as depth-1 minor has at most 24
vertices (again, every edge is subdivided at most twice and
2:946=24). O

To improve the approximation factor, we propose the fol-
lowing modified algorithm, see Algorithm 2.

THEOREM 15. Algorithm 2 provides a 24g + O(1) MDS
approximation for graphs of genus at most g, and re-
quires 12g + O(1) communication rounds.

PrROOF. The resulting vertex set is clearly a legal domi-
nating set. Moreover, as Phase 1 is unchanged, we do not
have to recalculate D.

In the preprocessing phase, if for two vertices u # v we
choose both K,, K,, then they must be disjoint. Since the
diameter of any depth-1 minor of K33 is at most 6, if two
such canonical subgraphs intersect, the distance between w, v
can be at most 12. On the other hand, by Lemma 3, there
are at most g disjoint such models. So in the preprocessing
phase, we can remove at most g disjoint subgraphs K, (and
add their vertices to the dominating set) and thereby select
at most 24g extra vertices for the dominating set. Once
the preprocessing phase is finished, the remaining graph is
locally embeddable.

In order to compute the size of the set in the third phase,
we can use the analysis of Lemma 12 for ¢ = 3, which to-
gether with the first phase and preprocessing phase, results
in a 24¢g + O(1)-approximation guarantee.

To count the number of communication rounds, note that
the only change happens in the second phase. In that phase,
in each iteration, we need 12 communication rounds to com-

pute the 12-neighbourhood. Therefore, the number of com-
munication rounds is 12¢g + O(1). O

This significantly improves the approximation upper
bound of Theorem 13: namely from 4(6¢* + 2¢)g + O(1),
which, since ¢ < 3.01 can be as high as 241g + O(1) in suffi-
ciently large graphs, to 24g+ O(1), at the price of 12g extra
communication rounds.

S. A LOGICAL PERSPECTIVE

Interestingly, as we will elaborate in the following, a small
modification of Algorithm 1 can be interpreted both from
a distributed computing perspective, namely as a local al-
gorithm of constant distributed time complexity, as well as
from a logical perspective.

First order logic has atomic formulas of the form z =
y,z < y and E(z,y), where x and y are first-order vari-
ables. The set of first order formulas is closed under Boolean
combinations and existential and universal quantification
over the vertices of a graph. To define the semantics, we
inductively define a satisfaction relation |=, where for a

graph G, a formula ¢(z1,...,zs) and vertices vi,..., v €
V(G), G | ¢(vi1,...,vr) means that G satisfies ¢ if the
free variables x1, . . .,z are interpreted as vi, . .., Uk, respec-

tively. The free variables of a formula are those not in the
scope of a quantifier, and we write ¢(z, ..., zx) to indicate
that the free variables of the formula ¢ are among z1, ..., xk.
For ¢(z1,x2) = 21 < z2, we have G | ¢(v1,v2) if v1 < v2
with respect to the ordering < of V(G) and for ¢(z1,z2) =
E(z1,22) we have G |= ¢(v1,v2) if {v1,v2} € E(G). The
meaning of the equality symbol, the Boolean connectives,
and the quantifiers is as expected.

A first-order formula ¢(x) with one free variable natu-
rally defines the set ¢(G) = {v € V(G) : G E ¢(v)}.
We say that a formula ¢ defines an f-approximation to the
dominating set problem on a class C of graphs, if ¢(G) is
an f-approximation of a minimum dominating set for every
graph G € C.

Observe that first-order logic is not able to count, in par-
ticular, no fixed formula can determine a neighbor of maxi-
mum degree in Line 14 of the algorithm. Observe however,
that the only place in our analysis that refers to the dom-
inator function d explicitly is Lemma 11. The proof of the
lemma in fact shows that we do not have to choose a vertex
of maximal residual degree, but that it suffices to choose a
vertex of degree greater than 4c + 2¢(t — 1) if such a ver-
tex exists, or any vertex, otherwise. For every fixed class
of bounded genus, this number is a constant, however, we
have to address how logic should choose a vertex among the
candidate vertices. For this, we assume that the graph is
equipped with an order relation such that the formula can
simply choose the smallest candidate with respect to the or-
der. It is now easy to see that the solution computed by the
algorithm is first-order definable.

6. CONCLUSION

This paper presented the first constant round, constant fac-
tor local MDS approximation algorithm for locally embed-
dable graphs, a class of graphs which is much more gen-
eral than planar graphs. Our proofs are purely combinato-
rial and avoid any topological arguments. For the family of
bounded genus graphs, topological arguments helped to im-
prove the obtained approximation ratio in a preprocessing



step. We believe that this result constitutes a major step for-
ward in the quest for understanding for which graph families
such local approximations exist. Besides the result itself, we
believe that our analysis introduces several new techniques
which may be useful also for the design and analysis of lo-
cal algorithms for more general graphs, and also problems
beyond MDS.

Moreover, this paper established an interesting connection
between distributed computing and logic, by presenting a
local approximation algorithm which is first-order logic de-
finable. This also provides an interesting new perspective
on the recently introduced notion of stone-age distributed
computing [5]: distributed algorithms making minimal as-
sumptions on the power of a node.

It remains open whether the local constant approximation
result can be generalized to sparse graphs beyond bounded
genus graphs. Also, it will be interesting to extend our study
of first-order definable approximations.
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