
Can’t Touch This:
Consistent Network Updates for Multiple Policies

Szymon Dudycz1 Arne Ludwig2 Stefan Schmid2,3
1 University of Wroclaw, Poland 2 Technical University Berlin, Germany 3 Aalborg University, Denmark

Abstract—Computer networks such as the Internet or data-
center networks have become a a crucial infrastructure for many
criticial services. Accordingly, it is important that such networks
preserve correctness criteria, even during transitions from one
correct configuration to a new correct configuration. This paper
initiates the study of how to simultaneously update multiple
routes in a Software-Defined Network (SDN) in a transiently
consistent and efficient manner. In particular, we study the
problem of minimizing the number of switch interactions, in
this paper also called “touches”. Our main result is a negative
one: we rigorously prove that jointly optimizing multiple route
updates in a consistent and efficient manner is NP-hard, already
for two routing policies. However, we also present an efficient,
polynomial-time algorithm that, given correct update schedules
for individual policies, computes an optimal global schedule with
minimal touches.

I. INTRODUCTION

The availability and protection of computer networks such
as the Internet or datacenter (cloud) networks, is becoming
a national and world-wide concern of high priority. Already
today, many individuals and organizations need to place great
reliance on the services of computer networks. At the same
time, the Internet core suffers from ossification, and has hardly
evolved over the last decades. Despite the huge success of the
Internet in the past, the increased dependability requirements
raise concerns whether today’s network protocols will be
sufficient in the future [3].

Software-defined networking is an interesting new
paradigm which promises to overcome the Internet ossifi-
cation. A Software-Defined Network (SDN) outsources and
consolidates the control over multiple data-plane elements
to a centralized software program, enabling fast innovations
while supporting formal verifiability through a simple match-
action paradigm. Especially the traffic engineering flexibilities
introduced by SDN [1], [14] as well as the potentially more
scalable network virtualization [6], [16] have received much
attention over the last years.

However, while a programmatic, logically centralized net-
work control is appealing, exploiting the introduced flexi-
bilities and operating an SDN in a consistent and efficient
manner is non-trivial. In particular, an SDN still needs to be
regarded as a distributed system, posing many challenges [5],
[8], [17], [23], [25], [31], [37], [38]. Several of these challenges
are due to the asynchronous communication channel between
switches and controller, which exhibits non-negligible and
varying delays [37], [43].

A fundamental problem which has recently received much
attention regards the consistent update of network routes [8],
[22], [25], [37], [42]. A particularly interesting approach to

solve the update problem is to proceed in rounds [22], [25]: in
each round, a “safe subset” of switches is updated, such that,
independently of the times and order in which the updates of
this round take effect, the network is always consistent. The
scheme can be implemented as follows: After the switches of
round t have confirmed the successful update (e.g., using ac-
knowledgments [17]), the next subset of switches for round t+1
is scheduled. The appeal of this round-based approach is that it
does not require packet tagging (which comes with overheads
in terms of header space and also introduces challenges in
the presence of middleboxes [44] or multiple controllers [5])
or additional TCAM entries [5], [37] (which is problematic
given the fast table growth both in the Internet as well as in the
highly virtualized datacenter [4]). Moreover, this approach also
allows (parts of the) paths to become available sooner [25].

However, so far research focused on devising network
update schemes for a single policy: for scenarios where a single
route [22], [37], or all (destination-based) routes to a single
destination [25] need to be updated. However, especially in
large and dynamic networks, it is likely that multiple routes
have to be updated simultaneously [35]. For example, consider
a wireless network where users arrive in groups (e.g., at a
train station), or a Content Distribution Network where traffic
is reassigned to servers in batches [10]. It is well-known that
updating a switch and its datastructures comes at a certain
cost [43], [27], and it is useful to batch updates [18].

Our Contributions: This paper initiates the study of how
to jointly optimize the update of multiple routing policies
(i.e., multiple complete source-destination paths) in a tran-
siently consistent (namely loop-free) yet efficient manner.
In particular, we consider a most fundamental consistency
requirement, loop-freedom [22], [25]: loops are known to
harm the dependability of a network, due to packet drops,
TCP packet reorderings, etc. Accordingly, there exist several
RFCs and standards [39] on loop-free layer-2 spanning tree
constructions [36], on avoiding microloops in MPLS [32], on
loop-free IGP migration [7], etc. We in this paper aim to devise
loop-free update algorithms for multiple policies in SDNs,
such that the number of switch interactions, called touches,
is minimized.

We show that the network update problem features inter-
esting connections to Directed Feedback Vertex Set, Short-
est Common Supersequence (SCS), Supersequence Run prob-
lems [28]. Our main result is a negative one: we prove
that the problem is computationally hard, already for two
policies which by themselves can be updated in two rounds,
by a rigorous reduction from Max-2SAT [19]. We complement
this negative result by presenting an optimal polynomial-time
algorithm to combine consistent update schedules computed



for individual policies (e.g., using any existing algorithm,
e.g., [22], [25]), into a global schedule guaranteeing a minimal
number of touches.

Organization: The remainder of this paper is organized as
follows. Section II introduces preliminaries and presents our
formal model. In Section III, we present proofs for the com-
putational hardness. Section IV describes optimal polynomial-
time algorithms under the assumption that only one switch is
updated per round. After reviewing related work in Section V,
we conclude in Section VI.

II. MODEL

We are given a network which is controlled by a (logically)
centralized software (the so-called controller) which communi-
cates forwarding rule updates to the switches (the nodes), over
an asynchronous but reliable channel. Due to this asynchrony,
we require the controller to send out simultaneous updates only
to a “safe” subset of nodes: the correctness of the network
configuration is always preserved independently of the order
in which these updates take effect at the switches. Only after
these updates have been confirmed (acked), the next subset is
updated.

The controller needs to simultaneously update k routing
policies, defined over a set U of n = ∣U ∣ to-be-updated nodes.
Each policy update is a pair (π

(i)
1 , π

(i)
2 ), where π(i)

1 is the old
route and π

(i)
2 is the new route of the i-th policy, i ∈ [1, k].

Both π
(i)
1 and π

(i)
2 are simple directed paths, for any i. In

other words, packets of policy i are initially forwarded, using
the old rules, henceforth also called old edges (often indicated
with solid edges in the figures), along π

(i)
1 , and eventually

they should be forwarded according to the new rules of π(i)
2

(dashed edges). W.l.o.g. [22], we will assume that both the
old as well as the new path of the i-th update have the same
source si and the same destination di.

We will assume that the k routing policies are defined
over independent parts of the header space [33], i.e., packets
of different flows are forwarded according to different (and
non-aggregated) rules. However, multiple routes may include
the same nodes. Accordingly, as we will see, when reasoning
about consistency, we can focus on the correct update of
different policies individually; however, for efficiency, we will
coordinate the updates to shared nodes, to minimize the node
interactions.

Packets should never be delayed or dropped at a node:
whenever a packet arrives at a node, a matching forwarding
rule should be present. Let, for each node v ∈ V , out(i)1 (v)

(resp. in(i)
1 (v)) denote the outgoing (resp. incoming) edge

according to policy π(i)
1 , and out(i)2 (v) (resp. in(i)

2 (v)) denote
the outgoing (resp. incoming) edge according to policy π

(i)
2 .

Moreover, let us extend these definitions for entire node
sets S, i.e., out(i)j (S) = ⋃v∈S out(i)j (v), for j ∈ {1,2}, and
analogously, for in(i)

j .

Let U (i) be the set of to-be-updated nodes for the i-th pol-
icy. We want to assign each update in U (i) to a round, such that
the resulting schedule fulfills certain consistency properties.
That is, we want to find an update schedule U

(i)
1 , U

(i)
2 , . . .,

Fig. 1: Example with two concurrent policy updates: at the top
update (π

(1)
1 , π

(1)
2 ) in black, at the bottom update (π

(2)
1 , π

(2)
2 )

in orange. The old policies (π(1)
1 and π

(2)
1 ) are drawn using

solid lines, the new policies (π(1)
2 and π(2)

2 ) using dashed lines.
At least one node cannot install both updates simultaneously
without creating a loop, and hence, needs two rounds of
interactions (touches).

i.e., a sequence of subsets U (i)
t ⊆ U (i) where the subsets form

a partition of U (i) (i.e., U (i) = U
(i)
1 ⊍ U

(i)
2 ⊍ . . . ⊍ U

(i)
ri ), with

the property that for any round t, given that the updates U (i)
t′

for t′ < t have been made, all updates U (i)
t can be performed

“asynchronously” that is, in an arbitrary order, without vi-
olating some consistency property: Consistent paths will be
maintained for any subset of updated nodes, independently of
how long individual updates may take. We will refer to ri as
the number of update rounds (of the update schedule of the
specific policy), and consider a most fundamental consistency
property: loop-freedom.

Loop-Freedom: For each policy update (π
(i)
1 , π

(i)
2 ),

let U (i)
<t = ⋃j=1,...,t−1Uj denote the set of nodes affected by

the i-th policy which have already been updated before round t,
and let U (i)

≤t , U (i)
>t etc. be defined analogously. Since updates

during round t occur asynchronously, an arbitrary subset of
nodes X ⊆ U

(i)
t may already have been updated while the

nodes X = U
(i)
t ∖ X still use the old rules, resulting in a

temporary forwarding graph Gt(U
(i),X,Et) over nodes U (i)

for this policy, where Et = out(i)1 (U
(i)
>t ∪X)∪out(i)2 (U

(i)
<t ∪X).

We require that the update schedule U (i)
1 , U

(i)
2 , . . . , U

(i)
ri fulfills

the property that for all t, all policies i and for any X ⊆

U
(i)
t , Gt(U

(i),X,Et) is loop-free. Note that there also exists
an alternative definition of loop-freedom [22], where only the
current path between the source and the destination needs
to remain loop-free. Our results on the NP-hardness and the
algorithm hold for both definitions.

Example: Figure 1 shows an example of a concurrent
policy update of two policies: at the top, update (π

(1)
1 , π

(1)
2 ) is

shown in black, at the bottom, update (π
(2)
1 , π

(2)
2 ) in orange;

the old policies (π(1)
1 and π(2)

1 ) are drawn using solid lines, the
new policies (π(1)

2 and π(2)
2 ) using dashed lines. Let us first just

have a look at the black policy update. The old policy traverses
the nodes from v1 to v4 in numerical order, whereas the new
policy traverses them in the following order: v1, v3, v2, v4.
In order to guarantee a loop-free update, we need to make
sure that the update on v2 is installed before we send out
the update for v3; otherwise we risk a loop between the two
nodes. Let us now focus on the orange policy update, in
which the nodes are traversed in exactly the opposite order (in



the old and the new policy), and thus, for the orange policy
we need to update v3 before we update v2. In a concurrent
update of these two policies, we are forced to choose one
of the nodes (v2 or v3), and to send only one update (for a
single policy) to break the cycle. This means that we need an
extra interaction round (or touch) for this node, to install the
update for the second policy in a later round. This leads to a
possible update schedule of U (1)

1 = {v1, v2}, U
(1)
2 = {v3} for

the black policy and U (2)
1 = {v4}, U

(2)
2 = {v3}, U

(2)
3 = {v2} for

the orange policy. The overall update schedule therefore then
is: U1 = {v1, v2, v4}, U2 = {v3}, U3 = {v2} showing that v2 is
touched twice.

Goal: Minimum Number of Touches: Interactions with a
node come at a certain cost, resource- and time-wise [2],
[18], [43], and should be minimized. Accordingly, we are
interested in schedules which jointly optimize the updates of
multiple (namely k) policies, in such a manner that the number
of interactions with nodes, henceforth also called touches, is
minimized. That is, while when reasoning about consistency,
we focused on individual update schedules, we now want to
jointly optimize the possible individual ri-round policy upate
schedules U (i) = U

(i)
1 ⊍ U

(i)
2 ⊍ . . . ⊍ U

(i)
ri , to form a global

schedule U = U1 ∪U2 ∪ . . .∪UR, where Ui is the set of nodes
which are updated in round i. The Ui sets do not have to be
disjoint: switches may be touched multiple times.

Our objective is to minimize ∑i ∣Ui∣, where Ui denotes
the set of nodes which are updated in round i. Observe
that a solution to our problem always exists: we can simply
concatenate the individual policy schedules. However, the
resulting number of touches is high: each node is touched
k times, once for each policy. It is also easy to see that it
is not always possible to align the k policy updates in such
a manner that each node is only touched once: in order to
preserve consistency for the individual policy updates, in the
global schedule U , nodes may occur repeatedly, in multiple
rounds as seen in Figure 1.

Example: Let us give an example. Figure 2 shows the
construction of a worst case scenario, henceforth called multi-
touch lock, requiring a maximal number of touches. Our
example is for four concurrent policy updates. Each policy
update consists of a source and a destination node on the
outside, as well as the four nodes in the center of the figure.
The order in which the nodes in the center are traversed in
the new policy is exactly the reversed order in which they are
traversed in the old policy. This leads to a chain of backward
edges, e.g., the policy from v1 to v11 traverses the nodes in
the order v4, v5, v9, v8 whereas the nodes in the new policy
are traversed as v8, v9, v5, v4. Hence, the nodes need to be
updated one by one in a given order. Since the other policy
updates have a similar structure, they also require a certain
order of node updates. An update with a minimum number
of touches always needs as many extra touches as there are
different policies: thus, we need to touch four nodes twice.

Edge/Node Classification: We introduce the following use-
ful edge (resp. node) classification. For each edge or equiva-
lently node, and with respect to each policy update (π

(i)
1 , π

(i)
2 ),

we define a direction forward resp. backward with respect to
a policy update (π

(i)
1 , π

(i)
2 ), depending on whether the new

edge (according to π
(i)
2 ) points in the same direction as the

Fig. 2: Construction of a multi-touch lock. Four concurrent
policy updates are shown in different colors, the old policies
are shown using solid lines, and the new policies are shown
using dashed lines of the same color.

old policy (according to π
(i)
1 ), or in the opposite direction.

As we will see, this distinction is useful as it is often safe to
update any number of forward-pointing edges as they cannot
introduce loops, while it can be harmful to update backward
edges.

As we will see, it is useful to classify edges not only for
update schedules from π

(i)
1 to π(i)

2 , but also “looking backward
in time”, from π

(i)
2 to π

(i)
1 . Given this perspective, we can

classify the old (solid) rules as backward or forward relative
to the new ones (dashed): we just need to draw the new
route as a straight path and see, if the old rule points forward
or backward. Accordingly, we propose two-letter codes to
describe the edges resp. nodes with respect to each policy
update (π

(i)
1 , π

(i)
2 )—the first letter will denote, whether the

outgoing dashed edge of π(i)
2 points forward (F) or backward

(B) with respect to π
(i)
1 . Similarly, the second letter will

describe the old edge relative to the new path.

For example, consider the black policy in Figure 1. With
respect to this policy, v1 is an FF node: the dashed edge points
forward w.r.t. the solid policy (F⋅), but also the solid edge
points forward w.r.t. the dashed policy (⋅F). Similarly, v2 is
FB and v3 is BF.

It is easy to see that in the first update round, we can
safely update any subset of rules which are either FF or FB:
a forwarding edge can never introduce a loop. By symmetry,
a similar observation holds for the last round: Consider an
update (π

(i)
1 , π

(i)
2 ). The last round of updating (π

(i)
1 , π

(i)
2 )

can be seen as the first round of an update (π
(i)
2 , π

(i)
1 ).

Accordingly, in the last round, we can safely update any subset
of rules which are either BF or FF, just like in the first round



where we can update any FB or FF.

In summary, for each node resp. each link and each
policy, we define a 2-letter code. As a node can be involved
in multiple policies, we can concatenate the 2-letter codes
of the different policies to fully characterize the node. For
example, in case of two policies, we will have nodes of the
form (F∣B)4= {FFFF,FFFB, . . .}. The first two letters denote
the orientation regarding the first policy and the last two
letters denote the orientation regarding the second policy. For
example, in Figure 1, v2 is FB in the black policy and BF in
the orange policy, so overall it is FBBF.

III. COMPUTATIONAL HARDNESS

In this section we will prove that optimizing the number
of touches, when the number of rounds is constrained, is NP-
hard. We first leverage a connection to Shortest Common
Supersequence (SCS) problems, to show that the problem
is computationally hard already for three policies (k = 3),
which individually (without optimizing the touches) could in
principle be updated in two rounds (ri = 2 ∀i). We then
present our main technical result, a theorem stating that the
problem is even hard for two policies (k = 2) which could be
updated in two rounds each (ri = 2 ∀i), by a reduction from
Max-2SAT [19].

A. Hardness for 3 Policies

Interestingly, the problem of finding an update schedule
which minimizes the node interactions in an n-node network is
already computationally hard for k = 3 policies, which could in
principle be updated consistently in a R = 2-round schedule. In
this section, we first establish a connection to the SCS problem,
limited to instances in which each sequence has length 2 and
each character appears in at most 3 sequences. We will refer
to this problem by SCS(2,3).

Generally, the SCS problem is defined as follows. Given
two sequences X = (x1, . . . , x`1) and Y = (y1, ..., y`2), a
sequence s = (u1, . . . , u`3) is a common supersequence of X
and Y if s is a supersequence of both X and Y : X and Y can
be derived from s by deleting some elements without changing
the order of the remaining elements. A shortest common
supersequence is a common supersequence of minimal length.
For example, for X = abcbdab and Y = bdcaba, s = abdcabdab
is the shortest supersequence. The SCS(2,3) problem variant
where each sequence has length two and each character
appears in at most 3 sequences was proven to be NP-hard
by Timkovskii [40].

In our reduction we want to encode sequences using
only k = 3 policies, so that each policy will consist of sequen-
tially connected graphs, each representing one sequence. As
we want to optimize the number of touches, in the reduction,
we can focus on schedules where in each round only one node
is updated. Under these assumptions updating a schedule is a
sequence of nodes.

As an example, and to show the relationship to super-
sequence problems, let us consider the policy presented on
Figure 3. In this instance, node w must be updated after node v:
otherwise it will violate loop-freedom. Thus, a valid schedule
is a supersequence of the sequence vw.

We will use this graph as a gadget representing sequences
in the reduction, that is for each sequence vw we will create
the graph in Figure 3 to force that v is updated before w. In
the policy we will connect these gadgets sequentially in an
arbitrary order.

Because any node may appear at most once in each policy,
we need to partition sequences into 3 sets, such that no
character appears twice in one set. For some instances such a
partition does not exist, and we will need the following lemma.

Lemma 1. Let S be an instance of SCS(2,3) and let w = ab
be any sequence in S. Then, let x be a new character (i.e., no
sequence contains x) and let S′ = S ∖ {w} ∪ {ax, xb}. Then,
S has a supersequence of length k iff S′ has a supersequence
of length k + 1.

Proof: First, let us assume that s is a supersequence of S
of length k. Then, in s there is some character a, which is
before some character b (there may be many occurrences of a
and b, but there is at least one pair, such that a is before b).
We add x immediately after a, and hence, this new sequence
is a supersequence to all sequences in S and both ax and xb.

Now let us assume that s′ is a supersequence of S′ of
length `. We consider two cases:

● There is exactly one occurrence of x in s′. Then in s′
there is an a before this x and a b after it, so s′ is a
supersequence to w. Therefore, if we remove x from s′

we get a supersequence of S of length ` − 1.

● There are at least two occurrences of x in s′. Then, we
add a at the beginning of s′ and remove all occurences
of x. Such a sequence is a supersequence of ab, and
in consequence of S, and has length at most ` − 1.

We proceed to create the policies as follows. We will
consider sequences in arbitrary order. Let w = ab be any
sequence. Then, if there is a policy without a and b we create
a gadget for this sequence in this policy. Otherwise we create a
new character x and two new sequences ax and xb. According
to Lemma 1, after this change, we will be able to retrieve a
shortest supersequence for the original problem.

In this situation we need to find policies where we can
include the gadgets for ax and xb. We have created at most
two gadgets with letter a, because there are at most three
occurrences of a in total. Therefore there is at least one policy
without a, and we create a gadget for ax in it. Similarly, there
is at least one policy without b, hence, we create a gadget
for xb in it. Since, there was no policy without both a and b
(as otherwise we would have created a gadget for ab in this
policy), there is no policy with two repetitions of x (since we
included the gadgets in two different policies). The length of
the schedule is equal to the number of touches, and hence, this
schedule is also a shortest supersequence.

B. Hardness for 2 Policies

With these intuitions in mind, we now present the main
technical result of this paper: we provide a rigorous proof that
the problem is alreadyNP-hard in n-node networks with k = 2
policies which could be consistently updated in R = 2 rounds.



v w

Fig. 3: Example configuration where node w must be updated
after node v to avoid loops. A valid schedule is a superse-
quence of the sequence vw.

Round
1 2 3

FBFB FBBF BFBF
FBFF BFFB BFFF
FFFB FFBF
FFFF FFFF

TABLE I: Updateable nodes per round for a 3-round sched-
ule. FFFF nodes can be updated either in the first or in
the third round. No BB nodes are possible in policy updates
solvable within 2 rounds, and hence, we do not need to
consider them.

1) Outline of Reduction: We prove the hardness by a
reduction from Max-2SAT [19]. Recall that in Max-2SAT,
the input is a formula in conjunctive normal form with two
literals per clause, and the task is to determine the maximum
number of clauses that can be simultaneously satisfied by
an assignment. Unlike the decision problem 2SAT which is
polynomial-time solvable, Max-2SAT is NP-hard.

Let us first consider the problem of deciding whether the
policies can be updated in 3 rounds using only n touches
(so each node must be updated only once). An FB node
cannot be the last updated node (as it is symmetric to up-
dating a BF node in the first round, which violates loop-
freedom), so nodes FBFB, FBFF and FFFB cannot be
updated in the third round. They can always be updated in
first round and there is no benefit of updating them in the
second round (as they may be updated as first nodes during
the second round); hence, we can assume that they will be
updated in the first round. Similarly, we will assume that
nodes BFBF , BFFF and FFBF are always updated in
the third round. Because FB nodes cannot be updated in the
third round and BF nodes cannot be updated in the first round,
FBBF and BFFB nodes can only be updated in the second
round. Finally, nodes FFFF can be updated in any round,
but because, similarly as before, there is no benefit in updating
them in the second round, we will assume that they are updated
in the first or the third round. Note that we only consider
policies which are solvable within two rounds and hence, we
do not need to classify nodes of type BB. No 2-round solvable
policy update problem can include any BB nodes: such nodes
cannot be updated neither in the first nor in the last (second)
round.

Because we can always update FF and FB nodes in the
first round, and FF and BF nodes in the third round, so to
verify whether the schedule does not violate loop-freedom, it
is enough to check, whether FBBF and BFFB nodes can
be updated in the second round (that is that their update does
not violate loop-freedom). See Table I for an overview.

We will use this classification in our reduction. For each
variable, we will create an FFFF node, and its value in the

Max-2SAT formula will be decided based on whether the node
is updated in the first or the last round. For each clause, we
will create two nodes (one for each literal in the clause) and
each of them will be a BFFB node: they will always be
updated in the second round. In what follows we will use xi
to denote both a variable and node for this variable, and for
a clause Cj = l ∨ k we will use ylj and ykj to denote nodes
created for this variable.

Let us consider the (partial) graphs in Figure 4. Let us
assume that nodes v and w in both graphs are of type FFFF
and that the backward node in each graph is of type BFFB.
Then, in the graph on the top, v must be updated before the
backward edge (in the first round), and in the graph on the
bottom, w must be updated after the backward edge (in the
third round).

v

w

Fig. 4: Examples of FFFF nodes which must be updated in
either first or third round.

We will combine these two graphs to create a gadget
for each variable. Let us consider a variable xi, and two
clauses: Cj , which contains the literal xi, and Ck, which
contains the literal ¬xi. Then, we will create a gadget as shown
in Figure 5. We will make xi an FFFF node, and both yxi

j

and y¬xi

k BFFB nodes. If we update the node for xi in the
first round, then we can update yxi

j , and if we update xi in
the third round, then we can update y¬xi

k .

For each variable, we will create such gadgets in both
policies, and the node corresponding to the variable will be
the same (physical switch) in both policies; therefore, either
it will be updated in the first round in both policies, or in the
third round.

We will use the version of Max-2SAT, in which each
variable occurs in at most three clauses. Therefore, we will
split the clauses, such that in a variable gadget in one policy
there will be two clauses, and in the other policy one clause.
Also, the nodes for each clause must be in different policies
(because of the clause gadget, which we will describe in
Section III-B2). We will describe how to split clause nodes
into policies in Section III-B7.

2) Clause gadget: Since in the Max-2SAT problem it is
enough that one literal in a clause is satisfied, we will need
to be able to update one of the clause nodes independently
of the variable nodes. To achieve this, we will use the gadget
presented in Figure 6, which will be a part of the variable
gadget. We will denote vertices created for clause Ci as d1i
and d2i . We will make them FFFF nodes, and hence, they
can be updated in either the first or the third round. If d1i gets



xi

yxi
j y¬xi

k

Fig. 5: Outline of a gadget for variables.

updated in the first round, then it enables the clause node in
the first policy to be updated, but then, even if d2i is updated, in
the second policy, the clause node has to be updated using the
variable gadget. Similarly if we update d2i in the first round,
and w in the third round, we can then update the clause node
in the second policy in the second round.

Because this gadget shares nodes between policies, clause
nodes must be in different policies.

d2i

d1i

C

d1i

d2i

C

Fig. 6: Gadget for updating clauses in one of the policies.

3) Specifying node type: There are some nodes in the
gadget, which we want to make forward nodes, when looking
from the point of view of the new policy (that is, we want to
guarantee that its second letter in the classification is F ). As
an example, in Figure 7, v is a backward node which we want
to make a BF node. To do this, we will add a new node just
after v, which we will denote as w, and create an edge from
the end of the gadget to w. Then, we will create a new node
after the gadget and create an edge from w to this new node.
The construction is depicted in Figure 7. Node w is visited in
the new policy after the whole gadget has been visited (so also
after v), and therefore edge (v,w) is forward when looking
from the point of view of the new policy. Node w is now
an FB node, so it could possibly allow to update some BFFB
nodes, if updated in the first round, therefore we will make w
a BF node in the other policy to force it being updated in the
second round.

v w

Fig. 7: Construction to make v a BF node.

4) Nodes of required type: For some nodes in one policy
there is a required type in the other policy (e.g. a clause node,
which has to serve as an FB node). To create such nodes
we will use the gadget shown in Figure 8. In this gadget v is
an FF node, w is a FB node and z is a BF node.

v w z

Fig. 8: Gadget for creating nodes of required type.

5) Complete gadget for variable: In Figure 9 we present
the gadget for variable xi, and its two clauses Cj , containing
literal xi, and Ck, containing literal ¬xi. In this gadget we
included gadgets for both clauses. The essential edges of the
gadget (presented in Figure 5) are drawn in loosely dashed
black, edges of clause gadgets are drawn in loosely dashed
grey, edges added to change the node type (described in
Section III-B3) are drawn in densely dashed grey and the other
edges added to connect the graph are drawn in densely dashed
black. We will set the type of all densely dashed black and grey
edges to type BF in the other policy, so, unless 2 touches will
be used for them, they will be updated in the second or third
round, and therefore any update schedule must assume that
they will be updated after clause vertices.

6) Transforming a Max-2SAT formula: In this section we
will show how to transform a Max-2SAT formula, so that each
variable appears in at most three clauses. Let φ be a Max-2SAT
formula with m clauses. Then for each variable x in φ, which
has px positive occurences and nx negative occurences, we
will create variables x1, x2, . . . , xpx , x1, x2, xnx . We will use
those variables to substitute occurences of x in φ (we will
substitute literal ¬x with variable xi, hence, we want xi to
be true iff x is false). For each i ∈ {1, . . . , px} we will create
variables ti1, t

i
2, . . . t

i
nx

. Similarly for each i ∈ {1, . . . , nx} we
will create variables t

i
1, t

i
2, . . . t

i
px

.

Now for each i ∈ {1, . . . , px} we will create clauses xi Ô⇒
ti1 Ô⇒ . . . Ô⇒ tipx

(p Ô⇒ q in 2SAT can be written
as ¬p ∨ q). We also create similar clauses for each xi. Then
for each i ∈ {1, . . . , px} and j ∈ {1, . . . , nx} we create a
clause ¬tij∨¬t

j
i . If all these clauses are satisfied, they guarantee

that for each i ∈ {1, . . . , px} and j ∈ {1, . . . , nx}, xi and xj
cannot be both true. However, note that these clauses do not
guarantee that all variables for x have the same value, that is,
there may be some i, j such that xi is true and xj is false.

For each variable in φ, we create px(2(px − 1) + nx) +
nx(2(nx−1)+px) variables; clearly, this reduction is polyno-
mial. We will denote the resulting formula by φ′ and we will
denote the number of clauses of φ′ by m′. Now to finish the
reduction we will prove the following theorem.

Lemma 2. There is an assignment satisfying m − k clauses
of φ if and only if there is an assignment satisfying m′ − k
clauses of φ′.

Proof: First, let us assume that there is an assignment that
satisfies m − k clauses of φ. Then, we will set xi = x, tij =

x, xi = 1−x and t
i
j = 1−x. Then, all new clauses added to φ′

are satisfied, so exactly k clauses are unsatisfied.

Now let us assume that there is an assignment that sat-
isfies m′ − k clauses of φ′. We will prove that there is an
assignment which satisfies at least m − k clauses of φ. For
each variable x let Px = {i ∈ {1, . . . , px} ∣ ∣xi = 1} and
Nx = {i ∈ {1, . . . , nx} ∣ ∣xi = 1}. Then we set x to be 1,



d2
j d1

j xi

y
xi
j

d2
k

d1
k y

¬xi
k

Fig. 9: Complete gadget for a variable. The essential edges of the gadget (presented in Figure 5) are drawn in loosely dashed
black, edges of clause gadgets are drawn in loosely dashed grey, edges added to change the node type (described in Section III-B3)
are drawn in densely dashed grey and the other edges added to connect the graph are drawn in densely dashed black.

if ∣Px∣ > ∣Nx∣, and to 0 otherwise (thus we choose the value
of x based on the majority voting of variables xi and xi).

Obviously in such an assignment of variables in φ there
may be some clauses which are satisfied in φ′, but not in φ.
Let Sx be Nx, if ∣Px∣ > ∣Nx∣, and Px otherwise (so Sx is the set
of those literals of x, which were true in φ′, but are false in φ)
and let Qx be Px∪Nx∖Sx. Let us assume w.l.o.g. that Qx = Px

and Sx = Nx. Each of the literals in Sx appears in exactly one
clause of φ, so there are at most ∣Sx∣ clauses in φ which were
satisfied by literals in Sx in φ′. But for each xj in Sx and xi
in Qx there is a clause ¬tij ∨ ¬t

j
i . Therefore there are three

possibilities:

1) Some implication in xi Ô⇒ ti1 Ô⇒ . . . Ô⇒ tij is
unsatisfied.

2) Some implication in xj Ô⇒ t
j
1 Ô⇒ . . . Ô⇒ t

j
i is

unsatisfied.
3) Clause ¬tij ∨ ¬t

j
i is unsatisfied.

If for all literals in Qx, Case 1 holds, then there are ∣Qx∣ >

∣Sx∣ unsatisfied clauses. Similarly if Case 2 holds for all literals
in Sx, then there are ∣Sx∣ unsatisfied clauses. Otherwise let l =
max{j ∣ xj ∈ Sx}. Then let xi ∈ Qi be such that xi = til . Let k
be number of literals in S(x) for which Case 2 holds. Then
for other ∣S(x)∣−k literals in S(x) and xi, Case 3 must hold.
Therefore there are at least k + ∣S(x)∣ − k = ∣S(x)∣ unsatisfied
clauses.

None of these clauses is in φ and the sets of these clauses
for different variables are disjoint, and hence, there are at
least ∑x ∣S(x)∣ clauses which are unsatisfied in φ′, but do not
appear in φ. On the other hand by assigning the value of x
based on majority voting we unsatisfy at most S(x) clauses,
so in total there are at most ∑x ∣S(x)∣ clauses which are
unsatisfied in φ, but are satisfied in φ′. Therefore the number
of unsatisfied clauses in φ is at most k.

7) Splitting clauses into policies: Recall that for each
variable in one gadget there may be at most two clause nodes,
one containing the positive literal and one containing the
negative literal. Also nodes for a clause must be in different
policies, so that we are able to construct the clause gadget. In
this section we will show how to split nodes for clauses into
two policies to satisfy those requirements.

We will assume that the Max-2SAT formula was created
using the reduction described in Section III-B6. To split the

clauses we consider the variables of φ in any order. Then,
each variable xi is in two clauses, once as a positive literal in
the clause from φ, which we may be forced to put in one of
the policies, if the other variable from this clause has already
been processed. The other occurence is as a negative literal in
implication x Ô⇒ ti1, which we put in any of the policies.
Then each tij appears in 3 clauses (except for j = px). As a
positive literal it appears only in the implication tij−1 Ô⇒ tij ,
which we assign to the other policy than tij . As a negative
literal, it appears in the clause ¬tij ∨ t

l
k, for some l, k; if tlk has

already been processed, we may be forced to put it in one of
the policies, and then to the other policy to which we assign
clause tij Ô⇒ tij+1: this is always possible, as tij+1 has not
been processed yet.

8) Proof of reduction: We will start by proving that if the
multiple policies instance can be updated using n + k touches
then at least m − k clauses of the Max-2SAT formula can be
satisfied. In what follows variable gadget nodes will be all
nodes in the gadget except for those that are in the clause
gadget (in terms of Figure 9 these are all nodes except those
with an outgoing loosely dashed grey edge). Then let X1 be
the set of those variables, such that all nodes in their variable
gadgets are updated using one touch. Also, let X2 be the set
of those variables for which there is a node in their variable
gadgets which were updated twice. Also let D be the set of
those clauses, such that there is some node in their gadgets,
which used two touches. Because clause gadget nodes and
variable gadget nodes are disjoint, ∣D∣ + ∣X2∣ ≤ k.

Then, we set each variable in X1 to be 1, if its node is
updated in the first round, or to 0, if its node is updated in
the third round. Each variable x in X2 appears in at most 3
clauses, therefore we can choose the assignment which does
not satisfy at most one of these clauses. In such an assignment
a clause C can be unsatisfied if:

1) C ∈D
2) One of the nodes of C was updated using the clause

gadget, and the other using an extra touch in some
variable gadget.

Now suppose that there is an unsatisfied clause C for which
none of those cases hold. Then, both variables of C are in X1.
One of the nodes of C can be updated in the second round
using the clause gadget. Then the other node, as we have seen
in Section III-B2, cannot be updated using the clause gadget.



And because of our case assumption, it can also not be updated
using a variable node. Since all of the other edges are updated
in the same or a later round, such an update schedule would
violate loop-freedom.

Therefore in the Max-2SAT formula, there are at most ∣D∣

clauses for Case 1 and ∣X2∣ clauses for Case 2, so together
there are at most ∣D∣ + ∣X2∣ ≤ k unsatisfied clauses.

Now we will prove that if m − k clauses of the Max-
2SAT formula can be satisfied, then there exists a schedule
that uses n + k touches. For each variable we will update its
node in the first round, if it is set to 1, or in the third round,
if it set to 0. For each clause we will update one of its clause
gadget nodes, which will allow us to update a clause node
corresponding to the false literal (in case of satisfied clauses
there is at most one such node, and in case of unsatisfied
clauses we arbitrarily choose one of two nodes). Then, both
nodes of the satisfied clauses and one node of the unsatisfied
clauses can be updated in the second round. The nodes of
the unsatisfied clauses, which cannot be updated in the second
round, will be updated in the third round; we will need two
touches to achieve this. The remaining nodes will be updated
according to their type, using one touch.

All nodes of type FBBF in the variable gadget can be
updated in the second round, as the packets that traverse them
would be forwarded to the end of the variable gadget, and all
the other nodes can always be updated in the first or third
round respectively; therefore,the schedule is correct. Since we
use extra touches only for unsatisfied clauses (one extra touch
for each clause), we have n + k touches in our schedule.

IV. EFFICIENT SCHEDULE COMPOSITION

We now present an efficient algorithm which allows to
efficiently merge (or compose) correct update schedules of in-
dividual policies, into a global schedule with minimal touches.
Indeed, over the last years, a number of algorithms have been
proposed to update a single policy in a consistent manner [22],
[25], and the algorithm presented in the following, could serve
as a generic post-processor, combining the outputs of these
existing algorithms into an optimal global schedule.

In the following, we first present the algorithm and prove
that it is optimal and runs in polynomial time, for a constant
number of policies. However, we then also show that if the
number of policies can be non-constant, the problem of how
to optimally merge schedules is computationally hard as well.

Let us first assume that we are given the order of to be
updated nodes in their respective policies, and without loss of
generality, we assume that in each policy only one node is
updated per round. Therefore we will assume that in the joint
schedule also only one node is updated in each round. Our
goal is to construct a joint schedule that minimizes the number
of touches without any constraints on number of rounds. For
instance, a simple way to compute these individual correct
update schedules, is to update switches one by one, from the
destination to the source. This creates a total order of the
switches and guarantees loop-freedom.

The problem of how to optimally merge correct schedules
is a special case of shortest common supersequence problem.
Here, each node corresponds to a letter in the alphabet, and

each policy order corresponds to an input sequence. Then
the requirement that in the joint schedule there is an update
of node v before an update of node u, is equivalent to the
requirement that in supersequence w there is an occurence
of character v before some occurence of character u. In
comparison to the general SCS problem, in our problem, in
each policy order, each node appears at most once: in the SCS
input sequences each character is unique.

SCS is known to have a polynomial time algorithm if
the number of input sequences is constant, and to be NP-
hard if the number of input sequences is not constant [26],
[40]. Jiang and Li proved that unless P = NP , SCS cannot
be approximated with a constant factor, and provided an
algorithm that on average returns a common supersequence
of length OPT +O(OPT 0.707) [15]. In the remainder of this
section we will present the polynomial time algorithm for SCS
with a constant number of input sequences and a proof of NP-
hardness of our problem.

The algorithm for solving SCS is dynamic. The idea
of the algorithm is to compute the shortest common su-
persequence for all prefixes of input sequences. Let T be
the m-dimensional matrix, one dimension per policy, and
where each dimension lists different prefix lengths. The
matrix stores the lengths of the shortest common superse-
quences of prefixes, i.e., T [v1, v2, . . . , vm] stores the length
of the shortest common supersequence of v1, v2, . . . , vm,
where each vi is a prefix of wi. For two sets of se-
quences A = {v1, . . . , vm} and B = {u1, . . . , uk}, we will
also use T [A] to denote T [v1, . . . , vm] and T [A,B] to de-
note T [v1, . . . , vm, u1, . . . , uk]. Let Sc(v1, . . . , vm) be a set
of those sequences from v1, . . . , vm that end with character c
and let Qc(v1, . . . , vm) be a set of those sequences that end
with a character other than c. For a sequence v, let v[−1]
denote its last element, let ṽ be v without its last element, and
let S̃ = {ṽ ∣ v ∈ S}.

To compute the shortest common supersequence
of v1, . . . , vm, we have to decide on the last letter in
the supersequence. Possible candidates are the last letters
of any v1, . . . , vm, hence, for each of them we compute
the set of sequences that end with the same letter and
remove it. All the other sequences remain the same.
Therefore the formula to compute the length of the shortest
common supersequence is as follows: T [v1, . . . , vm] =

1+mini∈{1,...,m} T [S̃vi[−1](v1, . . . , vm), Qvi[−1](v1, . . . , vm)]

Each sequence has a length of at most n, so we have
to compute nm values in the array and to compute each of
them, we need O(m) time. Therefore the space complexity
is O(nm) and the time complexity is O(mnm), which, as
long as number of sequences (i.e., policies) is constant, is
polynomial.

To clarify the algorithm, we provide a simple example on
its procedure. Assume v1 = ab, v2 = bc. Obviously the shortest



common supersequence is abc and has length 3.

T [ab, bc] = 1 +min{
T [S̃b,Qb] = T [a, bc]

T [S̃c,Qc] = T [b, ab]
(1)

T [b, ab] = 1 +min{
T [S̃b,Qb] = T [a]

T [S̃b,Qb] = T [a]
(2)

T [a] = 1 (3)

In Eq. (1), we look for the minimum value of remaining
vs after fixing the last character (b and c). We omit the details
for T [a, bc] (fixing b) which has a length of 4, and only show
the path to the minimum solution. In Eq. (2) both sequences
end with b, hence we do only have one character remaining.
This leads to the correct solution of abc with length 3.

In summary, ordered update schedules can be merged
optimally in polynomial time. To achieve a global order (as
an input to our algorithm), we could for example define a
canonic order on the nodes updated in the same round. As a
heuristic, one could also generate a small number of random
(but correct) schedules, and test with our algorithm, which
one provides the overall best performance, before issuing the
update requests to the nodes. Moreover, in order to minimize
the number of rounds, the result of the optimal algorithm can in
turn be post-processed by greedily grouping individual switch
updates into rounds.

While the merging scheme is interesting, we can only
achieve a polynomial runtime for a constant number of nodes:
the computational tractability does not extend to scenarios with
arbitrarily many policies, even in settings where one node is
updated per round. We will adapt the proof by Timkovskii [40]
and present a polynomial-time reduction from the Directed
Feedback Vertex Set Problem (DFVS). The DFVS problem is
defined over a directed graph G = (V,E), and asks for a
minimum size set of vertices whose removal leaves a graph
without cycles: each feedback vertex set contains at least one
vertex of any cycle in the graph. In a nutshell, the idea of the
reduction is the following: Given the input graph G = (V,E)

to DFVS, for each edge (u, v), we create a policy enforcing
an order u ≺ v, i.e., ∣E∣ policies in total. We will show that the
nodes in a feedback set need to be touched twice, to guarantee
that any order of nodes u, v can be updated. Any nodes not
in the feedback set can be ordered, since they will not form
a loop, and thus, updated one by one with a single touch.
Minimizing the cardinality of the feedback set will therefore
minimize the number of touches.

Theorem 1. The problem of finding a consistent update
schedule minimizing the number of touches is NP-hard in
general.

Proof: Given the DFVS graph G = (V,E), we create for
each edge e = (u, v) ∈ E a policy enforcing an order u ≺ v,
and prove the following: There is a directed feedback vertex
set in G of size k, if and only if there is a joint schedule for
a network update instance using ∣V ∣ + k touches: each node
in the feedback set needs to be touched exactly twice, and all
other nodes once.

Firstly let us assume that there is a directed feedback vertex
set S of size k in G. Given the directed and loop-free resulting
graph, the vertices in V ∖S can be ordered topologically. Let

us consider a schedule σ in which we first update nodes in S,
then those in V ∖S in the topological order, and finally those
in S again. Obviously σ has length ∣V ∣ + k.

We claim that σ is a correct solution for the network update
problem. Having created one policy for each edge (u, v), we
need to show that for each edge there is a corresponding
subsequence u ≺ v in the correct schedule. There are 3 sub-
cases:

1) If u, v ∈ S then u is updated the first time when nodes
in S are updated, and v when nodes in S are updated
for the second time. They cannot be updated both in
the first round, since we created a policy which forces
an order u ≺ v.

2) One of u, v is in S, and the other one in V ∖ S.
If u is in S, then it is updated when nodes in S are
updated for the first time, and therefore it is updated
before v. If v is in S, then it is updated when nodes
in S are updated for the second time, and therefore
it is updated after u.

3) If u, v ∈ V ∖ S, then u is updated before v, because
we ordered the vertices of V ∖ S topologically.

This proves that we created a correct joint schedule. Now
let σ be a joint schedule for a network update problem
that uses ∣V ∣ + k touches. Then, let S be the set of those
nodes, which are updated at least twice. As each node has
to be updated at least once, the size of S is at most k. We
claim that S is a directed feedback vertex set of G. For the
sake of contradiction, let us assume that S is not a directed
feedback vertex set of G. Then there is a cycle (v1, v2, . . . , v`)
in G∖S. For each i ∈ {1, . . . , `− 1}, we created a policy with
order vi, vi+1. In σ each of them appears only once (since every
node which is touched more than once, is part of S), therefore,
by transitivity, v1 must be updated before v`. But in G there
is an edge (v`, v1) (since there is a cycle), so in σ, vk must
be updated before v1. Therefore σ is not a correct schedule.

V. RELATED WORK

The problem of updating [5], [20], [23], [25], [37], [43],
synthesizing [12] and checking [34] SDN policies [30] as
well as routes [24] has also been studied intensively. In their
seminal work, Reitblatt et al. [37] initiated the study of network
updates providing strong, per-packet consistency guarantees,
and the authors also presented a 2-phase commit protocol. This
protocol also forms the basis of the distributed control plane
implementation in [5]. Per-packet consistency is a relatively
strong requirement that fulfills many other properties (includ-
ing loop-freedom), but it comes at the cost of requiring a two-
phase update mechanism that incurs substantial delay between
the two phases and doubles flow entries temporarily [42]. Ma-
hajan and Wattenhofer [25] started investigating a hierarchy of
weaker transient consistency properties, in particular also loop-
freedom, for a single policy update. In their paper, Mahajan
and Wattenhofer proposed an algorithm to “greedily” select a
maximum number of edges which can be used early during
the policy installation process. There also exist first results on
consistent update schedules minimizing the number of update
rounds [22]. The measurement studies in [18] and [43] provide



empirical evidence for the non-negligible time and high vari-
ance of node updates, motivating their and our work. Our work
builds upon [25], in the sense that we extend the study of loop-
free network updates to multiple concurrent policy updates.
The goal of minimizing the number of switch interactions
renders the underlying algorithmic problem different in nature.
To the best of our knowledge, we are the first to consider
this extension. More recently, researchers have also started
investigating consistent updates for networks which include
middleboxes and network functions [11]. Ludwig et al. [21]
presented update protocols which maintain security critical
properties such as waypointing, via a firewall, in a transiently
consistent manner. Ghorbani and Godfrey [8] argue that in the
context of network function virtualization, stronger consistency
properties are required, and Zhou et al. [42] presented a general
approach to enforce customizable consistency properties in
SDNs.

Finally, we note that from a technical perspective, our
work is also related to Middendorfs “supersequence runs” [28]:
However, if in each input sequence each letter from the
alphabet appears at most once (and that is the only case we are
interested in in this paper), the minimal run supersesequence
is equivalent to shortest common supersequence, and hence
the model does not provide us with additional insights. Also
the polynomial-time algorithms presented in [28] for scenarios
where the alphabet size is 2, does not have relevant implica-
tions for our work as it would concern networks of size two.

VI. CONCLUSION

Over the last years, even tech-savvy companies such as
GitHub, Amazon, GoDaddy, etc. have reported major issues
with their network, due to misconfigurations and including
loops [9], [13], [29], [41]. Given the increasing importance
computer networks play today, this is worrying.

While software-defined networking promises a formally
verifiable network operation, the paradigm still poses funda-
mental challenges. In particular, as we have argued in this
paper, correctly operating a network from a logically central-
ized perspective is non-trivial, because of the asynchronous and
unreliable communication between switches and controller.
Indeed, today, we do not have a good understanding how to
design dependable software-defined networks. Given that these
networks are currently moving into production (in data centers,
but also in the wide-area Internet), this is problematic.

We understand our paper as a first step toward more
efficient yet consistent multi-policy SDN updates, and believe
that our work opens many interesting questions for future
research. In particular, further work is required to fully chart
the computational complexity landscape of loop-free network
updates. More generally, it will be interesting to extend our
work toward more sophisticated dependability properties, such
as blackhole freedom or waypoint enforcement.

Acknowledgments. We thank Anja Feldmann for useful in-
puts. We also thank the anonymous reviewers for their feed-
back. Our research was supported by the EU project UNIFY
and a German BMBF Software Campus grant (01IS12056).

REFERENCES

[1] A. Gupta et al. Sdx: A software defined internet exchange. In Proc.
ACM SIGCOMM, 2014.

[2] A. R. Curtis et al. Devoflow: Scaling flow management for high-
performance networks. SIGCOMM Comput. Commun. Rev., 41(4):254–
265, 2011.

[3] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner.
Overcoming the internet impasse through virtualization. Computer,
38(4):34–41, April 2005.

[4] Tian Bu, Lixin Gao, and Don Towsley. On characterizing bgp routing
table growth. Comput. Netw., 2004.

[5] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. A
distributed and robust sdn control plane for transactional network
updates. In Proc. INFOCOM, 2015.

[6] Dmitry Drutskoy, Eric Keller, and Jennifer Rexford. Scalable network
virtualization in software-defined networks. Internet Computing, IEEE,
17(2):20–27, 2013.

[7] Pierre Francois and Olivier Bonaventure. Avoiding transient loops
during igp convergence in ip networks. In Proc. IEEE INFOCOM,
2005.

[8] Soudeh Ghorbani and Brighten Godfrey. Towards correct network
virtualization. In Proc. ACM HotSDN, 2014.

[9] GitHub. https://github.com/blog/1346networkproblemslastfriday. In
Website, 2016.

[10] I. Poese et al. Improving content delivery with padis. IEEE Internet
Computing, 2012.

[11] J. Martins et al. Clickos and the art of network function virtualization.
In Proc. USENIX NSDI, pages 459–473, 2014.

[12] J. McClurg et al. Efficient synthesis of network updates. In Proc. ACM
PLDI, 2015.

[13] J. Jackson. Godaddy blames outage on corrupted router tables. In PC
World, 2011.

[14] Jain et al. B4: Experience with a globally-deployed software defined
wan. In Proc. ACM SIGCOMM, pages 3–14, 2013.

[15] Tao Jiang and Ming Li. On the approximation of shortest common
supersequences and longest common subsequences. SIAM Journal on
Computing, 24(5):1122–1139, 1995.

[16] Koponen et al. Network virtualization in multi-tenant datacenters. In
Proc. USENIX NSDI, 2014.

[17] Maciej Kuzniar, Peter Peresı́ni, and Dejan Kostic. Providing reliable
FIB update acknowledgments in SDN. In Proc. 10th ACM CoNEXT,
pages 415–422, 2014.

[18] Maciej Kuzniar, Peter Peresini, and Dejan Kostic. What you need to
know about sdn flow tables. In Proc. PAM, 2015.

[19] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding
techniques for the max 2-sat and max di-cut problems. In Integer
Programming and Combinatorial Optimization, pages 67–82. Springer,
2002.

[20] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger
Wattenhofer, and David A. Maltz. zUpdate: Updating Data Center
Networks with Zero Loss. In ACM SIGCOMM, August 2013.

[21] Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid.
Transiently secure network updates. In Proc. ACM SIGMETRICS, 2016.

[22] Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. Scheduling loop-
free network updates: It’s good to relax! In Proc. ACM PODC, 2015.

[23] Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.
Good network updates for bad packets: Waypoint enforcement beyond
destination-based routing policies. In Proc. ACM HotNets, 2014.

[24] M. Casado et al. Ethane: Taking control of the enterprise. In Proc.
ACM SIGCOMM, 2007.

[25] Ratul Mahajan and Roger Wattenhofer. On Consistent Updates in
Software Defined Networks. In Proc. ACM HotNets, 2013.

[26] David Maier. The complexity of some problems on subsequences and
supersequences. J. ACM, 1978.

[27] Deepankar Medhi and Karthikeyan Ramasamy. Network Routing:
Algorithms, Protocols, and Architectures. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2007.

https://github.com/blog/1346networkproblemslastfriday


[28] Martin Middendorf. Supersequences, runs, and cd grammar systems.
Developments in Theoretical Computer Science, 6:101–114, 1994.

[29] R. Mohan. Storms in the cloud: Lessons from the amazon cloud outage.
In Security Week, 2011.

[30] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford,
and David Walker. Composing Software Defined Networks. In Proc.
NSDI, 2013.

[31] O. Padon et al. Decentralizing sdn policies. In Proc. ACM POPL, 2015.
[32] Yoshihiro Ohba. Issues on loop prevention in mpls networks. Commu-

nications Magazine, IEEE, 37(12):64–68, 1999.
[33] P. Kazemian et al. Header space analysis: Static checking for networks.

In Proc. USENIX NSDI, 2012.
[34] P. Kazemian et al. Real time network policy checking using header

space analysis. In Proc. USENIX NSDI, 2013.
[35] Peter Peresı́ni, Maciej Kuzniar, Marco Canini, and Dejan Kostic.

ESPRES: transparent SDN update scheduling. In Proc. ACM HotSDN,
pages 73–78, 2014.

[36] Radia J Perlman and G Paul Koning. Bridge-like internet protocol
router, May 3 1994. US Patent 5,309,437.

[37] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and
David Walker. Abstractions for network update. In Proc. ACM
SIGCOMM, pages 323–334, 2012.

[38] Stefan Schmid and Jukka Suomela. Exploiting locality in distributed
sdn control. In Proc. ACM HotSDN, 2013.

[39] M. Shand and S. Bryant. Internet engineering task force (ietf). In RFC
5715, 2010.

[40] V.G. Timkovskii. Complexity of common subsequence and superse-
quence problems and related problems. Cybernetics, 25(5):565–580,
1989.

[41] United. http://newsroom.united.com/newsreleases?item=124170. In
Website, 2011.

[42] W. Zhou et al. Enforcing customizable consistency properties in
software-defined networks. In Proc. USENIX NSDI, 2015.

[43] X. Jin et al. Dionysus: Dynamic scheduling of network updates. In
Proc. ACM SIGCOMM, 2014.

[44] Z. Qazi et al. Simple-fying middlebox policy enforcement using sdn.
In Proc. ACM SIGCOMM, 2013.

http://newsroom.united.com/newsreleases? item=124170

