
Study the past if you would define the future:

Implementing Secure Multi-Party SDN Updates

Liron Schiff1 Stefan Schmid2,3

1 Tel Aviv University, Israel 2 Aalborg University, Denmark 3 TU Berlin, Germany

schiffli@post.tau.ac.il schmiste@cs.aau.dk

Abstract—A highly available and robust control plane is a
critical prerequisite for any Software-Defined Network (SDN) pro-
viding dependability guarantees. While there is a wide consensus
that the logically centralized SDN controller should be physically
distributed, today, we do not have a good understanding of
how to design such a distributed and robust control plane. This
is problematic, given the potentially large influence an SDN
controller has on the network state compared to the distributed
legacy protocols: the control plane can be an attractive target
for a malicious attack.

This paper initiates the study of distributed SDN control
planes which are resilient to malicious controllers, for example
controllers which have been compromised by a cyber attack. We
introduce an adversarial control plane model and observe that
approaches based on redundancy or threshold cryptography are
insufficient, as incomplete or out-dated information about the
network state introduces vulnerabilities. The approach presented
in this paper is based on the insight that a control plane resilient
to malicious behavior requires a basic notion of memory, and
must be history-aware. In particular, we propose an inband
approach, implemented on the SDN switch, to efficiently coor-
dinate the different controller actions, and guarantee correct
network updates even in the presence of malicious behavior. In
our approach, the switch maintains a digest of the controller state
and history, and only implements the update after verifying that
a majority of controllers agree to the change. Our solution is not
only robust but also, compared to existing consensus protocols
such as Paxos, light-weight.

I. INTRODUCTION

Study the past if you would define the future.

—- Confucius

Computer networks and networked systems more generally

have become a critical infrastructure. For example, many

companies today heavily rely on cloud services running

in shared datacenters, and the availability and security of

the datacenter network is business critical. Similarly, many

enterprises today operate large networks to interconnect their

IT infrastructure internally, as well as with the Internet, and

preserving basic security policies, which, e.g., prevent the

exfiltration of confidential information, is crucial. Even higher

security requirements are imposed by governmental networks.

Given the increasing importance of computer networks, it

can be surprising how vulnerable many of these networks

are today, even to simple attacks. For example, while it

may not surprise that a malicious administrator may inflict

significant harm, today, already relatively simple and possibly

unintentional misconfigurations can lead to major outages and

vulnerabilities. Indeed, over the last years, even tech-savvy

companies have reported major issues with their network, due

to misconfigurations [7], [11], [19], [29].

The current trend to outsource and consolidate the control

over network devices to a centralized software controller,

may widen the vulnerability spectrum further. Compared to

classic distributed control planes, the controller has a significant

influence on the network configuration and behavior, and if

compromised, may cause significant harm.

This paper is motivated by the question whether it is possible

to operate a critical network infrastructure in a more secure

and robust manner. In particular, we are interested in a very

general threat model where an insider, for example a malicious

administrator or a compromised centralized orchestration or

controller software, aims to change the network configuration,

either temporarily or permanently. For instance, a network

configuration could be changed to a state where essential

security checks are disabled or bypassed, allowing an attacker

to exfiltrate confidential information.

A. Case Study: Software-Defined Networks

As a case study, we in this paper focus on Software-Defined

Networks (SDNs). In a nutshell, an SDN outsources and consol-

idates the control over the network devices (switches/routers)

located in the so-called data plane to a logically centralized

software controller (the control plane). The decoupling of the

control plane from the data plane allows to evolve and innovate

the control plane independently from the constraints of the

data plane.

OpenFlow is the de facto standard SDN protocol today, and

follows a match-action paradigm: Via the OpenFlow API, the

controller reads, installs, removes, and updates (flow) rules on

the OpenFlow switches, using messages such as read-config,

flow-mod, etc. Each rule consists of a match and an action

part: Packets whose Layer-2 to Layer-4 header fields match

the pattern defined by a given flow rule, are subject to the

corresponding action, for example forward, drop or modify

packet (e.g., add a tag in the header). A read and modify

operation can in principle be performed atomically [25]. By

default, packets that do not match any rule are sent to the

controller, using a so-called packet-in: the controller can then

decide how to handle the packet and install a flow rule for

similar subsequent packets. The match-action paradigm is

attractive as it simplifies formal reasoning and enables policy

verification [12].





Controller 
Network

Element

Events

Commands
User

Fig. 2. Our model consists of two types of entities: an (active) controller and
a (simple) network element, which can communicate in a connection-oriented
manner. Network elements communicate events (e.g., link failures) to the
controller. A controller reacts to those events as well as to user policy updates,
by sending commands to the network element accordingly.

We assume for now that network elements offer a simple and

generic interface to the controllers, allowing them to arbitrarily

update configurations. The network elements and the controllers

can communicate via an authenticated channel (e.g., SSL/TLS

in case of OpenFlow). For example, the controllers and network

elements are associated via (private,public)-key pairs. However,

this channel may not always be available.

We attend to a threat model where a minority of controllers

may not behave according to the network policy, but can

be Byzantine, i.e., act arbitrarily, be it because of greed,

malice, or just misconguration. Moreover, we assume that an

attacker cannot only propose incorrect updates to the network

configuration, but even prevent other controllers from receiving

important notifications regarding data plane events (e.g., about

a link failure). Our focus on such a strong adversarial model

is motivated by the wide range of attacks it can cover.

Generally, our goal is to design a system which ensures

that only “valid updates” are implemented on the network

elements: intuitively speaking, a valid update is an update

to which benign controllers having a perfect snapshot of the

network state, would agree.

We argue that our assumption that only a subset of controllers

is Byzantine, but not the remaining ones, is practically relevant.

While this is obvious in the context of human administrators

who may pursue different goals, it can also make sense in

the context of software controllers. For example, imagine a

controller which happens to be collocated with a malicious

virtual machine in the cloud, or imagine an adversary which is

able to launch a cyber attack and hack (e.g., from remotely) into

a subset of controllers running on a certain kind of hardware or

relying on a specific operating system version, or which have

been compromised due to human error (e.g., the download of

a trojan).

Besides the possibility that controllers may have an incorrect

view of the network (e.g., due to delays in the asynchronous

channel between switches and controllers or because of an

attack), in our model, we want to support the natural join

and leave of controllers: also benign controllers may be added

and removed at runtime. In particular, we want our system

to support controller bootstrap: a benign controller should be

able to learn, in a reliable way, about the current network

configuration.

III. SECURE MULTI-PARTY SDN UPDATES

In order to motivate the problem and highlight the challenges,

this section presents our approach in multiple stages. In particu-

lar, we first discuss canonical approaches to implement a robust

control plane, and then identify vulnerabilities. Subsequently,

we present our history-based approach for consistent network

updates.

A. Stage 1: Introducing Redundancy

A natural approach to design a resilient SDN control plane

is to introduce redundancy: a control plane consists of multiple

controllers and each relevant network element event (e.g.,

a packet-in or port-down event at the OpenFlow switch)

is communicated to all controllers. Based on these events,

controllers can then send their updates to the network element

which may filter out duplicates.

In a setting where transmissions are instantaneous and

controllers fail according to a crash model, this solution is

sufficient: as long as a single controller is left, correct updates

will be sent to the network element. However, in practice

the solution comes with several drawbacks. First and most

importantly, the scheme is not robust to malicious controllers

not acting according to the rules and which, e.g., send incorrect

network updates. Second, the protocol does not specify what

happens if events can be delayed: what happens if a controller

receives an event only later? Late commands may not be filtered

out correctly by the network element, and may introduce wrong

updates. Finally, the protocol is also inefficient: especially

in scenarios where controllers can be removed, e.g., in the

cloud, multicasting all events to all controllers can constitute

an undesirable overhead.

B. Stage 2: Signatures

Cryptographic signatures can introduce robustness against

some malicious attacks, and potentially also reduce communi-

cation overhead. Basically, the idea is to have controllers sign

their update commands: whenever a controller wants to update

the network element, it needs to present evidence (namely in

the form of signed commands) that the other controllers agree

to this update. The network element in this solution simply

needs to be able to verify these signatures.

This scheme solves a number of issues. In particular, due

to our assumption that network elements can verify the

authenticity of the configuration change requests, it is difficult

for a malicious controller to change the configuration to a

certain incorrect state: without being able to provide evidence

that a majority of controllers agrees to the change, the device

will not accept it. It is impossible for a malicious controller

to successfully issue a completely new configuration request.

Note that this is true independently of how the scheme is

implemented: it is not necessary for each controller to interact

with the network element directly, but the communication

could also be conducted via a (flexibly definable) master

controller. Indeed, the master approach may be interesting from

a performance perspective, in scenarios where communication

to the controller is costly.





new events and also allow any controller to request the current

state hash.

A benign controller which is not up-to-date proceeds as

follows. (The controller may not know that it is not up-to-date,

but notices that its update requests fail.)

• Delayed: If a controller is delayed, it will eventually learn

about the remaining events from network elements, or it

can request other controllers to send to it the current state.

• Gapped: Similarly, in the presence of gaps, a controller

can request the current history and state, however it can

also request just the last few events that it is missing and

update its state without receiving the entire new state.

In any case, the received state or history events can be

verified with the network element.

• Joined: A fresh new controller that joins can request other

controllers to send to it the current history and state.

Finally, we note that in case of very frequent events, it can

make sense that the network element also remembers (and

accepts) recent history hashes.

IV. RELATED WORK

Correctness and consistency challenges introduced by a more

adaptive operation of computer networks, including possibly

virtualized networks and networks including many additional

devices, have recently received much attention. In particular, it

has been observed that providing even basic invariants and even

from a logically centralized and programmatic perspective, is

non-trivial [6], [15], [22]. However, this line of works usually

focus on non-adversarial environments only.

The design of distributed control planes has been studied

intensively in SDNs [1], [4], [13]. Onix [13] is one of the

earliest proposals, and introduced the the notion of Network

Information Base (NIB). Also spatially distributed control

planes to improve scalability and latency have been studied

intensively in the literature [8], [9], [26]. The focus of these

works is mainly on availability and performance, and robustness

aspects have received less attention so far, with some exceptions

concerning (non-malicious) fault-tolerance [2].

The proposal closest to ours is Fleet, which introduces

the Malicious Administrator Problem [18] and goes beyond

basic fault-tolerance as well. Fleet assumes that a network

is redundantly managed by multiple administrators or SDN

controllers, some of which may be malicious, and the goal is to

ensure a secure operation. While [18] constitutes an interesting

first step, it comes with limitations and overheads: The solution

requires a good and relatively synchronous communication

channel between administrator and switches, and cannot deal

with incomplete and delayed information. Changes in the set of

administators are not supported resp. require the recomputation

of the cryptographic thresholds. The latter also renders the

implementation of the corresponding crypto objects difficult,

especially if it needs to be done on the switch.

Stepping back a little bit, one may wonder what renders

our problem novel compared to the large body of literature on

consensus protocols. Consensus protocols are widely used in

the context of replicated state machines [27], machines which

run on a collection of servers computing identical copies of

the same state and which continue operating even if some of

the servers are down. It seems that if consensus protocols are

available (e.g., Paxos [14] or Raft [20]), and controller agree

on updates (and say histories), the problem is solved. However,

protocols such as Paxos and Raft per se cannot deal with

Byzantine behaviors as considered in this paper, and even so-

called “Byzantine Paxos” [16] protocols are limited to attacks

on the order of log events, and cannot cope with scenarios

where players may have invalid (or expired) values. At the same

time, in fact, our SDN setting is also much simpler than models

used in Paxos: instead of running complex distributed consensus

protocols in our inband approach, (trusted) network elements,

the switches, which we assume cannot fail (otherwise the

update problem is solved trivially), can be exploited to enable

very efficient and light-weight solutions based on centralized

verification. This radically simplifies the protocol used between

controllers.

Finally, our work complements a range of recent works in

inband mechanisms. Indeed, there is an active discussion in

the SDN community of which functionality can and should

be implemented inband [3], [23], [24]. For instance, there is a

wide agreement that latency critical functions for example for

fast failover should be implemented inband, and we currently

witness a trend toward supporting more state in the data plane

in the context of “OpenFlow 2.0”/P4. Recently, we have also

shown that basic synchronization primitives (such as atomic

read-modify-write) can readily be implemented in today’s

OpenFlow protocol [25]. In contrast, the solution described

in this paper requires (moderate) extensions to the OpenFlow

protocol standard.

V. CONCLUSION

This paper presented a first approach to render distributed

SDN control planes more resilient to malicious attacks. In

particular, we have shown that today’s distributed control plane

architectures are insufficient: they are vulnerable to attacks

on the information available to controllers and do not support

essential functionality such as controller joins and leaves. For

similar reasons, also classic Paxos protocols are not directly

applicable. Accordingly, we believe that our model introduces

an interesting and novel problem space.

We in this paper have promoted an inband approach to design

more robust control planes, where critical state is shared among

the controllers and the switch. Our solution is attractive for

its low overhead as well as the minimal requirements on the

additional functionality needed at the switches.

We regard our work as a first step, and believe that it opens

a wide range of interesting opportunities for future research.

In particular, we have so far focused on the update of a single

network element (resp. OpenFlow switch) and the study of a

more general setting is an important research avenue. Moreover,

while we in this paper have focused on SDN networks, we

believe that some of our conceptual contributions are of interest

more generally. Indeed, the outsourcing trend is not limited

to switches and routers: today’s networks include a large



number of middleboxes and other network functions, which

are also increasingly becoming virtualized and programmable

(“orchestrated centrally”) [5], [17], [28]. In fact, it has recently

been reported that in enterprise networks, the number of

middleboxes is in the same order of magnitude as the number

of routers [21]. These additional and often complex devices,

increase the configuration space of network systems further, as

well as the need for robust and secure management solutions,

even in the presence of malicious behaviors and insiders.

ACKNOWLEDGMENTS

We thank Yehuda Afek and Srivatsan Ravi, as well as the

anonymous reviewers, for useful feedback on our work. Re-

search supported by the German Federal Office for Information

Security (BSI) as well as by the German-Israeli Foundation

for Scientific Research and Development project GIF I-1245-

407.6/2014. In particular, the authors would like to thank Jens

Sieberg.

REFERENCES

[1] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar. ONOS:
Towards an Open, Distributed SDN OS. In Proc. ACM HotSDN, pages
1–6, 2014.

[2] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. Software transactional
networking: Concurrent and consistent policy composition. In Proc. ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking

(HotSDN), August 2013.
[3] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee. Devoflow: Scaling flow management for high-performance
networks. In Proc. SIGCOMM, pages 254–265, 2011.

[4] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella. Towards
an Elastic Distributed SDN Controller. In HotSDN, 2013.

[5] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. Opennf: Enabling innovation in network function
control. In Proc. ACM SIGCOMM, pages 163–174, 2014.

[6] S. Ghorbani and B. Godfrey. Towards Correct Network Virtualization.
In HotSDN, 2014.

[7] GitHub Website. Network problems last friday. https://github.com/blog/

1346-network-problems-last-friday, 2012.
[8] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A Framework for Efficient

and Scalable Offloading of Control Applications. In HotSDN, 2012.
[9] B. Heller, R. Sherwood, and N. McKeown. The Controller Placement

Problem. In HotSDN, 2012.
[10] J. Hizver. Taxonomic modeling of security threats in software defined

networking. In BlackHat Conference, 2015.
[11] J. Jackson. Godaddy blames outage on corrupted router tables. PC

World, 2011.
[12] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:

Static checking for networks. In Proc. 9th USENIX NSDI, 2012.
[13] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,

R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A
Distributed Control Platform for Large-scale Production Networks. In
OSDI, 2010.

[14] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7), July 1978.

[15] R. Mahajan and R. Wattenhofer. On Consistent Updates in Software
Defined Networks. In HotNets, 2013.

[16] J.-P. Martin and L. Alvisi. Fast byzantine consensus. IEEE Trans.

Dependable Secur. Comput., 2006.
[17] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,

and F. Huici. Clickos and the art of network function virtualization. In
Proc. USENIX NSDI, pages 459–473, 2014.

[18] S. Matsumoto, S. Hitz, and A. Perrig. Fleet: Defending sdns from
malicious administrators. In Proc. ACM HotSDN, pages 103–108. ACM,
2014.

[19] R. Mohan. Storms in the cloud: Lessons from the amazon cloud outage.
Security Week, 2011.

[20] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In Proc. USENIX Conference on USENIX Annual Technical

Conference (ATC), pages 305–320, 2014.
[21] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. Simple-

fying middlebox policy enforcement using sdn. In Proc. SIGCOMM,
pages 27–38, 2013.

[22] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for Network Update. In SIGCOMM, 2012.

[23] L. Schiff, M. Borokhovich, and S. Schmid. Reclaiming the brain: Useful
openflow functions in the data plane. In Proc. ACM HotNets, 2014.

[24] L. Schiff, M. Borokhovich, and S. Schmid. Reclaiming the brain: Useful
openflow functions in the data plane. In Proc. ACM Workshop on Hot

Topics in Networks (HotNets), 2014.
[25] L. Schiff, P. Kuznetsov, and j. . A. y. . . Stefan Schmid, title = In-Band

Synchronization for Distributed SDN Control Planes.
[26] S. Schmid and J. Suomela. Exploiting Locality in Distributed SDN

Control. In HotSDN, 2013.
[27] F. B. Schneider. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Computing Surveys, 22(4):299–319,
Dec. 1990.

[28] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi. The middlebox
manifesto: Enabling innovation in middlebox deployment. In Proc.

HotNets X, 2011.
[29] United Airlines Website. United airlines restoring normal flight

operations following friday computer outage. http://newsroom.united.

com/news-releases?item=124170, 2011.


