
Kraken: Online and Elastic Resource Reservations
for Multi-tenant Datacenters

Carlo Fuerst1 Stefan Schmid2 Lalith Suresh1 Paolo Costa3

1 TU Berlin, Germany 2 Aalborg University, Denmark 3 Microsoft Research

Abstract—In multi-tenant cloud environments, the absence of
strict network performance guarantees leads to unpredictable job
execution times. To address this issue, recently there have been
several proposals on how to provide guaranteed network per-
formance. These proposals, however, rely on computing resource
reservation schedules a priori. Unfortunately, this is not practical
in today’s cloud environments, where application demands are
inherently unpredictable, e.g., due to differences in the input
datasets or phenomena such as failures and stragglers.
To overcome these limitations, we designed KRAKEN, a system

that allows tenants to dynamically request and update minimum
guarantees for both network bandwidth and compute resources
at runtime. Unlike previous work, Kraken does not require prior
knowledge about the resource needs of the tenants’ applications
but allows tenants to modify their reservation at runtime. Kraken
achieves this through an online resource reservation scheme which
comes with provable optimality guarantees.
In this paper, we motivate the need for dynamic resource

reservation schemes, present how this is provided by Kraken,
and evaluate Kraken via extensive simulations.

I. INTRODUCTION

Cloud-based applications, including batch processing, stream-
ing, and scale-out databases, generate a significant amount of
network traffic and a considerable fraction of their runtime
is due to network activity. For example, traces of jobs from
a Facebook cluster reveal that network transfers on average
account for 33% of the execution time [15].
Unfortunately, as reported in previous studies [5], in existing

cloud infrastructures the bandwidth available to the tenants
varies significantly over time, i.e., by a factor of five or
more [25], even within the same day. Given the time spent
in network activity by these applications, this variability has a
non-negligible impact on the application performance, which
makes it impossible for tenants to accurately estimate the
execution time in advance [16].
Over the last years, several solutions have been proposed

to improve the sharing of network bandwidth among tenants,
by leveraging admission control and bandwidth reservations,
thus enabling tenants to specify absolute guarantees [5], [7],
[11], [18], [20], [21], [23]. In particular, many of these
proposals offer a virtual cluster abstraction [5], [7], which
provides the tenants with the illusion of having their own
dedicated network. A virtual cluster guarantees a specified
minimal bandwidth between all tenant’s virtual machines,
independently of their locations in the datacenter topology.
However, the vast majority of existing solutions providing

absolute bandwidth guarantees are based on offline and con-
stant reservations schemes [5], [7], [11], [18], [19], [23]: they
require that tenants announce the entire resource reservation

schedule ahead of time, i.e., at job submission time. They
typically assume that the corresponding resource reservations
need to be constant over time, and hence tenants either have
to over-provision during idle times (thus reducing efficiency
and inflating cost) or under-provision during peak times (thus
reducing application performance), or both. Noteable excep-
tions are Cicada [14], which offers predicitive instead of
absolute guarantees, and Proteus [7], which allows tenants to
specify time-varying bandwidth reservations. However, even
with Proteus, the reservations must be made at the startup
time and they cannot be changed afterwards. This inflexibility
is at odds with the cloud computing paradigm, which enables
elasticity by allowing tenants to “scale out” or “scale in” their
applications at runtime. We argue that in most cases it is very
hard to accurately estimate application resource needs ahead of
time, rendering offline reservation schemes inadequate. Several
factors contribute to this unpredictability including unexpected
events such as stragglers and failures [3], [4] as well as spikes
in application demand (flash crowds).
A naive approach to enable runtime reconfiguration would be

to restart the resource allocation from scratch every time an
update request is received from the tenants. This, however,
would introduce an unacceptable overhead as most (if not
all) the compute resources such as VMs need be migrated. At
the other extreme, there are approaches such as Blender [23]
that support a weak form of reconfiguration by allowing
tenants to update rate limiters at runtime. This, however,
prevents users from upgrading both compute and network
resources at the same time. More importantly, as we show in
the evaluation, since no migration is considered, the efficacy
of the solution is very limited. In this paper, we strike a
balance between these two approaches by allowing users to
dynamically reconfigure both compute and network resources
simultaneously while minimizing the number of migrations.
Our Contribution. We make the following contributions.
1) The need for online resource reservation schemes: We

show that offline resource reservation schemes are in-
sufficient: Even for simple Hadoop jobs small internal
changes can lead to significantly different executions.
Therefore, in order to meet application performance
goals, not only strict resource isolation needs to be pro-
vided, but also a possibility to update these reservations
at runtime.

2) The Kraken system: We design Kraken, a system which
supports the online (and joint) update of both bandwidth
as well as the compute resources. Kraken can also per-
form migrations in order to satisfy upgrade requests:

While the migration of entire virtual machines may be
expensive in practice, Kraken only assumes that compute
units, the endpoints of traffic flows, can be migrated.
Kraken comes with provable performance guarantees and
ensures (i) the satisfaction of all upgrade/downgrade
requests for which this is possible, (ii) minimal recon-
figuration and resource costs, (iii) low runtimes.

3) Benefits of online resource reservations: Our simulations
show the benefits of elastic resource reservations.

Kraken can be used for many applications that benefit from
resource elasticity, including batch-processing applications
(e.g., graph processing or distributed databases) or high-
performance computing applications.
Non-Goals. We focus on how to efficiently embed and

reconfigure virtual clusters; a detailed discussion of when to
change a virtual network specification is left for future work.
The time and extent of upgrades and downgrades depend on
the setting, on the type of application, as well as on the tenants’
objectives. In this paper, we advocate for a clean interface
between tenant and provider over which such reconfiguration
requests can be issued based on the tenants’ needs.

II. MOTIVATION FOR AN ONLINE APPROACH

Before presenting our solution in detail, we argue that to-
day’s offline reservation schemes are not sufficient to ensure
application performance guarantees in an efficient manner.
We distinguish between two offline reservation schemes:

(1) schemes with constant resource reservations such as the
ones proposed in [5], [11]; and (2) schemes such as Pro-
teus [7] with time-varying resource reservations which need
to be announced ahead of time and, hence, require accurately
predicting a job’s resource-utilization over time, e.g., using
data from previous runs.
Constant reservation schemes are wasteful for any applica-

tion with time-varying resource demands, such as MapRe-
duce applications, which cycle between network-intensive and
compute-intensive phases [7], or an online computer game
whose demand is subject to time-of-day effects [25].
While offline and time-varying reservations may be possible

in idealized conditions, in practice, this is rarely the case.
This is obvious for continuously running applications, such as
a web-service or video-on-demand service, whose popularity
can change significantly and unexpectedly. But, as we show
next, even the resource pattern of very simple MapReduce
applications are hard to predict accurately. It has been reported
that stragglers can be several times slower than the median
task completion time [3], [4], [8], [13], [24]. Stragglers occur
due to a variety of environmental factors such as slow disks
and failures. Cluster frameworks typically use control-loops
based on these factors to (re-)schedule tasks, e.g., Hadoop’s
speculative executor. This makes it hard to predict if there will
be stragglers in the first place and if so, when and where the
cluster framework will re-schedule a slow task.
To highlight this we perform a simple and idealized experi-

ment wherein we run a single Hadoop cluster in an OpenStack-
based testbed. For this we use five physical servers (8 CPU
cores and 64GB of RAM) with one virtual machine each.

0.00

0.25

0.50

0.75

1.00

400 450 500 550
Completion Time (seconds)

E
C

D
F

0.00

0.25

0.50

0.75

1.00

6 8 10
Number of killed tasks

E
C

D
F

Fig. 1: Execution unpredictability—Completion times of jobs
in the presence of speculative execution (left) and the number
of speculated tasks (right).

Each virtual machine is allocated 4 virtual cores with 4 GB
of RAM. Each node is mapped to a virtual machine each (one
master, four slaves). The workload consists of a TeraSort job,
operating on 150 million 100-byte records.
We repeat the experiment five times with speculative exe-

cution enabled. Figure 1 (left) indicates the variance in job
completion times across the runs: a range of 150 seconds.
This observation is also supported by Figure 1 (right) which
indicates the number of straggling tasks that were speculatively
re-executed by the Hadoop cluster.
Note that since TeraSort is IO-bound and all data are ran-

domly generated with a uniform distribution, its behavior is
much more regular than most other jobs used in data analytics,
which can suffer from skewed data distribution, irregular
computation patterns, etc. Therefore, we expect real jobs to
exhibit even higher variance across runs, as it is often reported
in literature [3], [4], [8], [13]. These observations serve to
demonstrate that even with the same workload and a dataset
of the same size being re-executed, it is difficult to predict
how a job progresses over time.
In conclusion, we argue that offline approaches for resource

reservations such as Proteus do not suffice, as cloud environ-
ments such as Amazon EC2 [24] are even more noisy than our
environment studied here. This makes it more difficult to pre-
dict performance of an application a priori, which underlines
the need for dynamic and online reservation schemes.

III. MODEL & EXAMPLE

We start by introducing the settings and the virtual network
abstraction considered in this paper, and subsequently high-
light the algorithmic challenge.

A. Setting

We consider the standard Virtual Cluster abstraction to model
virtual networks with strict performance guarantees [5], [7],
[16]. A virtual cluster offers the tenant the illusion for all
her Compute Units (CUs) to be attached to a single non-
oversubscribed switch with a minimum bandwidth b guar-
anteed. If excess bandwidth is available, it can be used
in addition to the reserved bandwidth, e.g., using recently
proposed extensions to TCP such as Seawall [22].
A virtual cluster VC(n,b) has two parameters: n, the num-

ber of (identical) CUs in the cluster, and b, the bandwidth
reservation from each CU to the virtual switch. Virtual clus-
ters belonging to different tenants need to be embedded on

Core Switch

Server

Aggregation Switch

Rack

Pod

ToR Switch

VC after upgrade

VC Upgrade:

Upgrade

Before Upgrade After Upgrade

2 Units BW on each link

8 Cus

1 Units BW on each link

7 CUs

VC16 empty CU slots

Fig. 2: Upgrade of a virtual cluster VC: Left - the initial
state: VC(7,1) is embedded on the right-most rack of a pod of
the fat-tree. The dashed lines indicate the current bandwidth
reservations. Middle - the upgrade request: VC(7,1) needs to
be upgraded to VC(8,2). Right - after the upgrade: Three CUs
were migrated in order to find a new feasible embedding of
VC which does not violate the capacity on the servers’ uplinks.

a given substrate: a physical network connecting a set of
servers. In this paper, we focus on multi-rooted tree (or
fat-tree) like physical network topologies [1], [10] as they
are the predominant topology in today’s data centers. These
topologies are hierarchical and are recursively made of sub-
trees at each level. A fat-tree consists of a set of pods which
are interconnected by core routers. Pods comprise a set of
racks which are interconnected by the aggregation switch,
and racks comprise multiple servers (or hosts) which are
interconnected by the Top-of-Rack (ToR) switch. Each server
can host a fixed number of CUs. As done in previous work,
e.g., [5], [7], given the amount of multiplexing and assuming
the availability of a multi-path routing protocol such as ECMP,
we can approximate these links as a single aggregate link for
bandwidth reservations.
To save costs, some data center operators introduce some

degree of over-subscription, typically at the higher levels of the
hierarchy. We model these configurations with two parameters
γ1,γ2 ≥ 1 (called the over-subscription factors in [5]): γ1
denotes the factor of reduced capacity on the aggregation
network (between ToR and aggregation switches) and γ2 the
factor of reduced capacity between the aggregation switches
and the core switch.
The embedding of a virtual cluster describes its resource

allocation in the substrate: an embedding maps each CU of
the virtual cluster to a physical server in the substrate network;
multiple CUs may be hosted on the same server. In addition,
the embedding specifies the amount of bandwidth on each link
reserved for the tenant. Intuitively, a “valid” embedding is one
that does not oversubscribe server or network resources. A
“good” embedding additionally chooses servers that are close
in the physical network, thus minimizing unnecessary resource
reservations on the physical links.

B. The Challenge

The goal of this paper is to support virtual clusters whose
guarantees can be adjusted over time, in an online fashion.
Specifically, we want to be able to (1) upgrade a virtual cluster
VC(n,b) consisting of n CUs and with a bandwidth guarantee
b, both in size (i.e., number of CUs) as well as in the minimum

bandwidth, that is, to a virtual cluster with x≥ 0 more nodes
and a factor δ ≥ 1 more bandwidth, i.e., to VC(n+ x,b · δ);
(2) downgrade a virtual cluster in both size and bandwidth;
(3) or a combination of both (e.g., upgrade size and downgrade
bandwidth).
How to support such reconfigurations is also an algorithmic

problem. Ideally, new feasible embeddings should be effi-
ciently computable, i.e., at low runtime; moreover, we would
like to avoid or at least minimize migrations in order to satisfy
a reconfiguration request; finally, the resulting embeddings
should have small network footprints, in the sense that no
unnecessary bandwidth is reserved (on substrate links) to
implement the virtual cluster guarantees.

C. Example

To illustrate both the model and the challenge, let us consider
an example. Figure 2 (left) shows a part of a fat-tree, i.e., a
single pod consisting of three racks with two servers each;
each server has 4 CU slots. We assume that the uplinks of
the servers have a capacity of 4 units and the fat-tree provides
full bisection bandwidth (γ1 = γ2 = 1), resulting in a capacity
of 8 units on the ToR switches’ uplinks and a capacity of 24
units on the links between the aggregation switches and the
core switch. On the right most rack, currently a virtual cluster
VC is embedded; the dashed line indicates the path along with
bandwidth is reserved to connect the CUs. At some point, VC
is upgraded, from VC(7,1) to VC(8,2), see Figure 2 (middle).
How can this request be satisfied? Theoretically, the right

server in the rack still has a free CU slot which could be
used to accommodate the additional CU; however, doubling
the bandwidth reservations for each the CUs will violate the
bandwidth capacities on the uplinks of the servers. Hence it
becomes necessary to distribute the CUs in the substrate, in
order to reduce the bandwidth utilization of the uplinks of
the two servers. Thus, in this scenario, some CUs need to
be migrated to satisfy the request. Figure 2 (right) shows a
solution: the resulting embedding is valid.

IV. THE SYSTEM

In this section, we first formalize the goals of the developed
system, and then introduce the main concepts underlying
Kraken and describe its key components.

A. Objectives

Kraken is designed to accept and implement any embedding
and upgrade request whenever there are sufficient resources
available in the substrate. Downgrade requests, instead, can
always be satisfied.
Besides satisfying upgrade requests whenever this is possible,

Kraken is designed (1) to optimize the embedding cost of
the virtual cluster, i.e., the amount of bandwidth which needs
to be reserved in the physical network to host the virtual
cluster; and (2) to reconfigure existing embeddings locally,
i.e., to minimize the migration cost. To avoid affecting the
performance of other tenants, we do not allow the migration
of CUs belonging to other tenants, although in some cases
this might result in lower embedding costs. The standard

metric to evaluate the embedding cost (see also [5], [7]),
is to measure the embedding footprint F(VC) of a virtual
cluster VC: F(VC) is given by the overall network resources
consumed by the VC, i.e., the sum of bandwidth reservations
over all substrate links. (Note that the number of used CU
slots is independent of the embedding.)
In order to measure the reconfiguration costs, we count the

number of CUs which need to be embedded to a different
location during an upgrade.
Notice that there is a trade-off between the two metrics:

sometimes, at the price of higher reconfiguration costs, smaller
footprints can be realized. In the following, we design our al-
gorithms according to the following priorities (cf Section IV-F
for a discussion of alternative objectives supported by Kraken):
(1) the top priority is to satisfy a reconfiguration request;
(2) the second priority is to minimize reconfiguration costs;
and (3) the third priority, is to minimize the embedding
footprint, i.e., among all solutions of the same reconfiguration
costs, we compute the most resource efficient embedding.
Kraken provides the following worst-case guarantees.
1) Request Satisfiability: As long as a feasible solution exists

all upgrade and downgrade requests are satisfied.
2) Minimal Reconfiguration: The reconfiguration cost is

always minimized. In particular, if a solution without
migrations exists, it is used. CUs of other tenants are
never migrated.

3) Optimal Allocation: Among all possible solutions with
minimal reconfiguration costs, Kraken computes the one
with the minimal embedding footprint.

4) Complexity: The time complexity of re-configuring (or
embedding) a virtual cluster is linear in the substrate size,
in the worst-case.

B. Algorithmic Concepts
At the heart of Kraken lie two main concepts: (1) The center-

of-gravity (or simply: center) of a virtual cluster and (2) the
slotCount values. The center-of-gravity concept (introduced
in [21]) allows us to decouple the embedding of the individual
Compute Units (CUs), in the sense that, given the location
of the center-of-gravity, the CUs can be mapped “greedily”,
one after the other, avoiding the combinatorial complexity
and rendering the problem polynomial time solvable. The
slotCount(v) values provide an aggregate information about
the number of available CU slots in the subtree of the fat-
tree below a given node v; they constitute the main data
structure used by Kraken. While previous virtual cluster em-
bedding algorithms used a similar concept [5], [7], [9], only
the combination with the center-of-gravity concept allows a
modification which enables the low runtime of the dynamic
algorithm (roughly linear in the substrate size).
Center-of-Gravity. The virtual cluster abstraction offers ten-

ants a network where each CU is connected to a virtual switch
at bandwidth b [5]. While this virtual switch is only a logical
concept, its position in the substrate matters, as resources need
to be reserved from it to each CU.1 The center-of-gravity may

1Note that there could be multiple positions with the same embedding cost,
and that in a fat-tree, a distributed switch mapping does not reduce costs.

Algorithm 1 Algorithm upgrade(VC,x,δ)
Output: success or failure

1: for all nodes v in the fat-tree: compute slotCount(v) values
2: m∗← ∞; F∗← ∞; cog∗←⊥;
3: for all v in substrate do
4: M← minMig(v)
5: if |M| ≤ m∗ then
6: F ← footprint(v, |M|)
7: if F < ∞∧ (|M|< m∗∨F < F∗) then
8: cog∗← v
9: m∗← |M|

10: F∗← F
11: end if
12: end if
13: end for
14: if m∗ = ∞ then
15: return failure
16: end if
17: µ ← computeEmbedding(VC,cog∗)
18: return success

also be located on a server, not only on a switch (e.g., if many
CUs of the virtual cluster are collocated on the same server).
Given a mapping of the CUs of a given virtual cluster VC, we
will refer to the optimal position of the virtual switch (with
respect to embedding footprint) as the center-of-gravity COG
of VC.
Given any node v in the fat-tree (either a server or a switch),

we can partition the nodes of VC into two sets with respect
to v: the set of CUs at or below the node v in the fat-tree, and
the remaining CUs above (or “outside”) v. Sometimes, we
use the same terminology to refer to the location of substrate
components relative to each other.
When applying the COG concept to the fat-tree topology, we

have two important properties, which Kraken leverages: (1) no
more than half of the nodes, can be above COG and (2) no
more than half of the nodes are below one of the children of
COG. The correctness of this property can be shown easily by
contradiction: If more than half of the CUs are behind one link,
moving the COG in this direction will decrease the bandwdith
costs for more than half of the CUs by 1 and increase the costs
for the other CUs by 1, resulting in a smaller footprint.
Moreover, when computing the embedding footprint of a

virtual cluster VC, it is often helpful to count the number
of CUs which are embedded below COG(VC); we will refer
to this number as β . The remaining CUs of VC which are
embedded above COG(VC), fall into three classes: the α(p)

“far-away” CUs located in a different pod, the α(r) CUs in
the same pod but in a different rack, and the α(s) CUs in
the same rack but on a different server. This classification
results in simple formulas for the embedding footprint of a
virtual cluster. For instance, if COG(VC) is embedded to
a top-of-rack switch, the embedding footprint is given by
F(VC) = β + 3 ·α(r)+ 5 ·α(p) as the distance to servers in
the same rack (β) is 1 and the distance to all servers in the
same pod but in differnt racks (α(r)) is 3 while the distance
to servers in other pods (α(p)) is 5.
slotCount-Values. The second core concept of Kraken is

the slotCount(v)-value: intuitively, the slotCount(v)-value in-

dicates how many additional CUs can be placed below a
certain substrate node v (a server or switch), such that the
currently available server and link resources are all satisfied.
The number of CUs which can be placed below a certain sub-

strate node v depends on two factors: the available bandwidth
and the available CU slots. For Kraken it is sufficient to com-
pute the bandwidth criteria for cases where COG is above v.
This eases the computation of these values significantly, since
the resulting interval of possible amounts of CUs becomes
continuous. In order to keep the runtime of the slotCount com-
putation low, we leverage the optimal sub-problem property in
our dynamic program: We start by computing the slotCount-
values on the host level. For each server s we compute
slotCount(s) = min(spareCUs(s),bspareBW (s) /bc) where
spareCUs(s) denotes the available CU slots of a server s and
spareBW (s) denotes the available bandwidth on the uplink.
The slotCount of a rack r is then defined as: slotCount(r) =
min(∑s∈r slotCount(s),bspareBW (s) /bc). The slotCount(p)-
values for pods can subsequently be computed from the racks’
slotCount-values.
Overview. Based on these concepts, in order to embed or

reconfigure a virtual cluster VC, Kraken simply cycles through
all possible center-of-gravity locations in the substrate network
(servers and switches): for each possible COG location v,
Kraken determines the minimal number of migrations needed,
in order to shift the center to v. This is a fast operation since it
does not scale with the size of the substrate, but with the size
of the VC. If COG can be implemented on v with minimal
migration costs, the slotCount values are used to calculate the
best possible embedding footprint of a mapping with the center
at v. As we will show, this also does not require scanning the
entire substrate, and is fast.

C. Upgrade Algorithm

Algorithm 1 shows the pseudo-code of Kraken’s algorithm
to implement an upgrade operation upgrade, from VC(n,b)
to VC(n+ x,δ ·b) with x≥ 0 more nodes and a factor δ ≥ 1
more bandwidth. We use µ to denote the embeddings.
Kraken first pre-computes the slotCount-values for the entire

substrate network, i.e., for each substrate node v (a server
or switch). Subsequently, Kraken computes the new center-
of-gravity COG for VC which minimizes the reconfiguration
costs in terms of the number of to be released, i.e., migrated
CUs M (function minMigs) and embedding footprint F
(function footprint), by iterating over all nodes in the
substrate. Subsequently, the best found solution is embedded
(function computeEmbedding).
1) Minimal Migrations: To compute the minimal number

of migrations, function minMig proceeds as follows, see
Algorithm 2: For each node v in the substrate (i.e., all servers
and switches), it computes a list of CUs which have to be
“released” (i.e., put in a pool of CUs which will be embedded
somewhere else by the algorithm), to be able to realize the
new center-of-gravity at node v.
ComputeConflictLinks computes the set of links L

whose capacity would be oversubscribed if the center-of-
gravity cog was on v and the bandwidth was increased to

Algorithm 2 minMig(substrate node v)
Output: set of CUs

1: M← /0
2: L← computeConflictLinks(v)
3: sort L with decreasing distance from v
4: for all links ` ∈ L do
5: while ` oversubscribed do
6: let c be an arbitrary CU below `
7: M←M∪{c}
8: end while
9: end for

10: M←M∪extraCUs(v)
11: return M

Algorithm 3 footprint(substrate node v, number of CUs
to migrate m)
Output: cost value

1: done ← 0
2: for all children v′ of v in the fat-tree do
3: done ← done +slotCount(v′)
4: end for
5: return ST(v)+height(v) ·n+costsAbove(v,m−done)

b · δ under the current embedding µ of the existing CUs.
Subsequently, we iteratively release CUs until a critical link
` ∈ L is no longer oversubscribed. This yields the first part
of the set M of CUs which need to be migrated. The conflict
resolution is ordered by distance to the center-of-gravity.
While releasing the CUs so far in M ensures that no link

is oversubscribed, additional CUs may have to be moved to
guarantee that the center-of-gravity is realized at the desired
physical node: thus, extraCUs adds more CUs to the set M,
such that the sum of the CUs which are currently hosted below
v and the cardinality of M reach n/2. To make v the center-
of-gravity of the virtual cluster, it is necessary and sufficient
that at least n/2 CUs are below v.
2) Minimal Footprint: After determining the number of

CUs that have to be migrated, we compute the embedding
footprint. Interestingly, Kraken can compute the embedding
cost of a desired center-of-gravity without determining an
explicit embedding of the new virtual cluster, by utilizing the
slotCount-values.
The function footprint is described in Algorithm 3. It

takes a desired center-of-gravity v and a target number m
of CUs which are to be migrated. Let us first observe that
the footprint of a virtual cluster can be computed via the
following case distinction: (1) If v is a core switch, all CUs
are located below v, and hence the distance between v and
the CUs is three. Thus, F(VC) = 3 · β , where β counts
the number of CUs which are embedded below COG(VC).
(2) If v is an aggregation switch of a pod, the CUs of VC
are either located on servers in the same pod, or on servers
in different pods. Clearly, all servers in the same pod are
at distance two from v, and the servers in other pods are
at distance four from v. We have F(VC) = 2 · β + 4 ·α(p),
where α(p) is the number of CUs of VC which are embedded
above COG(VC), in a different pod. (3) In case v is embed-
ded to a ToR switch, the embedding footprint is given by

Algorithm 4 costsAbove(substrate node v, number of
flexible CUs x)
Output: cost value

1: if z = 0 then
2: return 0
3: end if
4: if (v is a core switch or the uplink from v does not have z ·δ ·b

spare bandwidth) then
5: return ∞

6: end if
7: done← 0
8: for all for all siblings v′′ of v′ do
9: done← done+ slotCount(v′′) +Dv′′

10: end for
11: return 2 · z+costsAbove(v′,z−done)

F(VC) = β + 3 ·α(r) + 5 ·α(p), where α(r) is the number
of CUs of VC which are embedded above COG(VC), in a
different rack. (4) The embedding footprint for a v on servers is
given by F(VC) = 2 ·α(s)+4 ·α(r)+6 ·α(p), where α(s) is the
number of CUs of VC which are embedded above COG(VC),
on a different server. In this case, CUs which are embedded
below the COG are omitted, as they have no bandwidth costs.
The function footprint first computes the number of CUs

which can be placed on each of the sub-trees represented
by the direct children of v. Since the center-of-gravity v
is above its children by definition, the slotCount(v)-values
of the children are accurate. Then, the embedding cost is
computed recursively by the formula ST(v) +height(v) ·n+
costsAbove(v,z−done). The first cost term ST(v) accounts
for the static costs, i.e., the costs from CUs which are not
scheduled for migration according to the minimal migrations.
The second cost term height(v) · n depends on the depth of
the center-of-gravity in the tree. The third term computes the
additional costs from the CUs above v, if any, see the function
costsAbove (Algorithm 4): we leverage the fact that the
costs for placing CUs further away from a candidate center v
increases by two for every layer in the fat-tree, regardless of
the layer where v is located. Accordingly, given z flexible CUs,
we add 2z to the costs and execute the function again with the
parent node of v as the new v and z−∑v′∈V ′ slotCount(v′) as
the new z, where V ′ is the set of siblings of v (i.e., children of
the parent node of v excluding v). If v is the core switch, or the
spare capacity on the uplink of v is less then z ·δ ·b, v cannot
be the center-of-gravity, and the upgrade request fails for this
specific location of the COG. If this is the case for all nodes
v in the substrate, the upgrade request has to be rejected.

D. Downgrade Algorithm

Downgrade operations in Kraken never require any mi-
grations. However, the center-of-gravity may change. Thus,
the downgrade algorithm of Kraken proceeds similar to the
upgrade algorithm, but without functions minMig and with-
out the need to compute the slotCount(v) values. The main
difference regards how the values are actually used to compute
the costs. While the original algorithm depends on slotCount-
values and the current distribution, we set the current distri-

bution to 0 and all slotCount-values to the distribution prior
to the upgrade.

E. Formal Guarantees

Since the calculated cost and slotCount values are exact, we
have derived the following result.

Theorem IV.1. Kraken guarantees:
1) Request Satisfiability: As long as a feasible solution exists

all upgrade and downgrade requests are satisfied.
2) Minimal Reconfiguration: The reconfiguration costs is

always minimized. In particular, if a solution without
migrations exists, it is used.

3) Optimal Allocation: Among all possible solutions with
minimal reconfiguration costs, Kraken computes the one
with the minimal embedding footprint.

4) Complexity: The time complexity of re-configuring (or
embedding) a virtual cluster is bounded by O(N · n ·∆)
in the worst-case, where N is the size of the substrate
(number of servers), n is the virtual cluster size, and ∆ =
S+R+P is the number of servers in a single rack S (i.e.,
the degree of a ToR switch), plus the number of racks in
a single pod R (i.e., the degree of an access switch), plus
the number of pods P (i.e., the degree of a core switch).

Note that Kraken can also be used to embed virtual clusters
from scratch, and ensuring a minimal footprint. Thus, together
with property 4), Kraken also outperforms state-of-the-art
virtual cluster embedding algorithms which do not support
any reconfigurations, e.g., [9], [21].

F. Alternative Migration Cost Models

For ease of exposition, we presented Kraken for a sim-
ple model where the objective of minimizing the number
of migrations is prioritized over optimizing the embedding
footprint. However, our algorithms can be extended to other
migration cost models and trade-offs between migration and
footprint costs, without sacrificing optimality. For instance,
intra-pod migration costs could be modeled to be cheaper
than inter-pod migrations, and migration costs could also
depend on the available bandwidth along the migration path.
Further, our algorithms support objectives describing arbitrary
(weighted) linear combinations between the migration and
footprint costs: e.g., if smaller resource footprints can be
achieved with more migrations, they can also be computed.

V. EVALUATION

We conduct extensive simulations to study the feasibility of
online reservation upgrades at runtime. By default, we will
assume the same settings and parameters as used in previous
work [5]. However, given our more dynamic environment, we
also introduce a model for elastic reconfiguration requests,
and conduct a sensitivity analysis, studying the impact of
different factors (such as magnitude of reconfiguration and
system load) by using parameter sweeps.

A. Metrics

We consider the following two metrics:
Acceptance Ratio. Ideally, a system such as Kraken should

be able to accept and satisfy as many requests as possible.
For each request (either arrival of a new virtual cluster or
a reconfiguration request), we distinguish whether or not the
request was satisfied and, if satisfied, whether it was satisfied
(1) with or (2) without migrations. Note that Kraken does not
use “strategic access control” (e.g., to favor “small” requests
to improve that acceptance ratio); in fact, Kraken never rejects
a request if it can be satisfied.
Reconfiguration Costs. While our simulation does not cap-

ture many parameters that determine the actual cost of a
migration we count the number of migrations; this is a natural
metric given the uniform size of CUs of the virtual cluster.
In particular, we will report on the fraction of migrated CUs
relative to the virtual cluster size, which provides more insights
than an absolute number.

B. Methodology & Runtime

Substrate. We model the datacenter as a three-level fat-
tree. Overall, we have 16,000 servers distributed over P = 10
pods of R = 40 racks each; a rack contains S = 40 servers.
By varying the connectivity and the bandwidth of the links
between the switches, we change the over-subscription of the
physical network. By default, we will assume that the access
network is oversubscribed by a factor γ1 = 4, while the core is
not oversubscribed (γ2 = 1). The available bandwidth is B= 10
Gbps.
Demand. New virtual cluster requests arrive according to a

Poisson process with λ = 0.36. The lifetime of each virtual
cluster is chosen according to an exponential distribution with
average 3,600 s (one hour). By default, the size of a virtual
cluster and the bandwidth are chosen from an exponential
distribution with mean 49 and 2.5 Gbps respectively. The
parameters are normalized to induce a system load of 0.75
on average. The size of the virtual cluster in numbers of CUs
is chosen randomly from an exponential distribution, with an
average of 49 CUs per cluster.
Elastic Model. To add dynamicity to the virtual cluster

demands, we use six additional Poisson processes which
continuously pick virtual clusters for upgrading and/or down-
grading in a multiplicative manner. More precisely, the em-
bedded clusters are continuously reconfigured by these six
independent processes which randomly choose one of the ex-
isting clusters and perform a multiplicative update, i.e., either
(1)+(2) upgrade or downgrade the bandwidth by a factor fb (fb
corresponds to δ in our formal sections), (3)+(4) increase or
decrease the cluster size by a factor fn (fn is the multiplicative
version of the additive x in our formal sections), (5)+(6) jointly
upgrade or downgrade the bandwidth and the cluster size by a
factor f . By default, we assume that f = fb = fn = 1.5. With
regards to reporting the results, we focus on the upgrades as
these are the ones which trigger migrations.
To ensure the statistical significance, we run our simulations

for 80k rounds which is roughly eighty times the duration (i.e.,

Migration cost

E
C

D
F

 [R
eq

ue
st

s]

0 0.5 1

0
0.

5
1

Kraken
KrakenNM
Oktopus

Migration cost

E
C

D
F

 [R
eq

ue
st

s]

0 0.5 1

0
0.

5
1

Migration cost

E
C

D
F

 [R
eq

ue
st

s]

0 0.5 1

0
0.

5
1

Fig. 3: Reconfiguration costs: KrakenNP vs. Kraken vs. Base-
line (augmented Oktopus)—(left:) cluster size upgrade, (mid-
dle:) bandwidth upgrade, (right:) joint upgrade. The legend on
the left is valid for all three plots.

lifetime) of a virtual cluster. To avoid artifacts related to the
initial empty substrate, we omit the first 10k requests.
Runtime. In this scenario, Kraken requires 86 ms on average

to satisfy any given request (the 99th percentile is 344 ms),
when run on an Intel i3-2310M CPU @ 2.10GHz.

C. Baseline Comparison

Kraken features two main mechanisms for the efficient up-
grade of a virtual cluster: (1) Kraken allows to upgrade an
existing embedding by increasing the bandwidth between CUs
at their current locations, as well as by the extending the
cluster by the local addition of new CUs; (2) if a local
extension is not sufficient to satisfy a request, Kraken also
supports the re-embedding, i.e., migration of existing CUs.
In order to understand the contribution of each of these two

features, we break down the analysis of Kraken into two
steps: We first study a variant of Kraken, called KrakenNP,
which does not perform fine-grained migrations. (NM stands
No (local) Migrations.) That is, KrakenNP is equivalent to
Kraken, but if a request cannot be satisfied with the given CU
embedding, it resorts to embedding the virtual cluster with the
new specification from scratch. Subsequently, we study the
full-fledged Kraken system which can migrate CUs arbitrarily
in order to satisfy requests (subject to the usual constraint
that the number of migrations should be kept minimal).
For a simple baseline comparison, we also re-implemented
Oktopus [5]; we extended Oktopus so that requests can be
satisfied by re-embedding.
To give a basic understanding of the number of migrations

required to support elastic virtual clusters, Figure 3 plots
the empirical cumulative distribution function (ECDF) of the
migration cost for the three algorithms KrakenNP, Kraken
and Oktopus, and the three operations: add CUs, upgrade
bandwidth, and joint upgrade of CUs and bandwidth. Note
that when a new embedding is performed to satisfy an upgrade
request, the mechanism will guide the embedding process to a
similar configuration. This means that when possible, the CUs
will be assigned to the same old location, which, hence, will
not be counted toward the migration cost. This explains why
in some cases the migration cost of Oktopus and KrakenNP
can also have values different from zero (no migrations) and
one (all CUs are migrated).
We first discuss a scenario where only the bandwidth is

upgraded. In Figure 3 (middle), we can observe that already
KrakenNP is far superior to Oktopus as it can satisfy 45% of

Up−/Downgrade Factor

A
cc

ep
ta

nc
e

ra
tio

0.0

0.2

0.4

0.6

0.8

1.0

1.1 1.5 2.0
Up−/Downgrade Factor

A
cc

ep
ta

nc
e

ra
tio

0.0

0.2

0.4

0.6

0.8

1.0

1.1 1.5 2.0
Up−/Downgrade Factor

A
cc

ep
ta

nc
e

ra
tio

0.0

0.2

0.4

0.6

0.8

1.0

1.1 1.5 2.0

Fig. 4: Kraken acceptance ratios: without migration (dark
gray), with migration (light gray)—(left:) cluster size upgrade,
(middle:) bandwidth upgrade, (right:) joint upgrade.

the upgrade requests without migrations at all, while Oktopus
has to migrate all CUs of a VC for 80% of the upgrade
requests. In general, we find that Oktopus will likely find
similar embeddings (with few migrations) if the upgrade
request happens temporally close to the embedding time.
However, later it becomes likely that virtual clusters will be
embedded on a different sub-tree (or pod), resulting in many
migrations. The performance of Kraken is very similar to the
one of KrakenNP. However, the missing support of partial and
coordinated migrations leads to ≈ 50% cases where KrakenNP
has to migrate all CUs, while Kraken can avoid migrating more
then 50% of the CUs for nearly 80% of the requests.
The corresponding results for cluster size upgrades are shown

in Figure 3 (left). While Oktopus can only embed about 10%
of the upgrade requests without migrating any CUs, Kraken
can upgrade 70% of the requests without migration. KrakenNP
achieves a similar performance, and only for 10% of the
requests, we can observe an improvement ≥ 5% with Kraken
in terms of reconfiguration costs.
Figure 3 (right) studies joint upgrades (bandwidth and cluster

size). Here, the overall performance of Oktopus remains the
same, and the performance of Kraken and KrakenNP becomes
a mixture of the previous cases. While both variants of Kraken
need no migrations for 35% of the requests, KrakenNP has to
migrate all CUs for 40% of the requests, while Kraken can
satisfy about 70% of all requests without migrating all CUs.

D. Sensitivity Study

Next, we conducted a sensitivity study of Kraken, in which
we performed parameter sweeps for the up- and downgrade
ratios fb and fn, the mean number of CUs per request, the
bandwidth requirements per CU, the substrate load, and the
access network over-subscription ratio. We will first study the
effect of the upgrade ratios fb = fn in greater detail, and
subsequently, we report on our general observations for the
other parameters.
Figure 4 shows the acceptance ratio for virtual cluster

upgrades as bar plots. The dark gray area corresponds to
upgrade requests that do not require migration. The light
gray component of the bar corresponds to those requests that
can be satisfied by Kraken but require migration. We again
have three subplots corresponding to the three operations:
adding CUs, upgrading bandwidth, and joint upgrades of
CUs and bandwidth. The impact of the upgrade factor f is
significant, opening a spectrum from “accepting almost all
requests without migrations” (for factors close to one) to “no

●
●

●

●
●

●

●

●

●

●

●●●●●●
●

●

●
●
●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●
●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●
●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●●●

●

●●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

Up−/Downgrade Factor

R
ec

on
fig

ur
at

io
n

co
st

s

1.1 1.5 2.0

●

●●

●

●

●
●●

●●
●
●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●
●
●

●

●●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●
●
●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●●●●
●●

●●

●
●●

●●●●

●

●
●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●
●
●●
●●
●●

●

●

●●

●

●●

●

●

●
●

●●●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●●
●

●

●

●●

●

●

●

●●
●
●

●

●●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●
●
●●●●●●●●●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●●●●●●●●
●●
●●

●

●●●●●●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●●
●
●●●

●●

●

●

●●●●●

●
●
●

●●●

●

●●●
●●
●●

●

●

●

●●●
●
●

●

●●

●
●
●

●●●●●●●●●●●
●●●●●●●
●
●

●

●

●

●●

●

●●

●

●
●

●●●

●

●●●●

●

●●
●
●●●●
●
●●●

●

●●

●●
●●

●

●
●●●●

●

●●

●

●●●●●●

●

●●●●●●
●●●●●●●

●

●●●

●

●●●●

●

●●
●
●●●●
●
●●

●

●●
●
●

●
●

●
●
●

●

●
●
●●

●

●●●

●●

●

●

●●

●

●●●●
●●
●
●

●

●●

●

●●
●
●●●

●

●●●●●
●
●●

●

●

●●

●
●

●●
●
●

●

●●

●
●

●

●●
●
●●

●●
●

●

●●●●●●●●●

●●

●●●

●

●

●

●●●●
●
●●●●●

●

●●●

●

●●
●●
●

●

●

●●

●

●●●●●●●

●

●●
●
●●●●●●●●

●

●●●●

●

●●

●

●●

●

●●

●●
●●●●

●

●
●

●

●●

●

●●

●

●

●

●●
●
●●

●
●

●●●●●

●

●●●●●

●

●●●●●●●●

●

0.0

0.2

0.4

0.6

0.8

1.0

Up−/Downgrade Factor

R
ec

on
fig

ur
at

io
n

co
st

s

1.1 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Up−/Downgrade Factor

R
ec

on
fig

ur
at

io
n

co
st

s

1.1 1.5 2.0

Fig. 5: Kraken reconfiguration costs for upgrades with
migrations—(left:) cluster size upgrade, (middle:) bandwidth
upgrade, (right:) joint upgrade.

migration for only 50% of the cluster size upgrade requests”.
The impact of f on the bandwidth upgrades is even more
articulated. As expected in the joint upgrade scenario, the two
factors are amplified. Indeed, the problem is unfeasible for
more than 40% of the requests if the upgrade factor is 2.
To better understand the difference between adding CUs

and upgrading the bandwidth, Figure 5 zooms into the light-
gray area and plots the distribution of the relative number
of migrations, given that the upgrade required at least one
migration. While in most cases it is sufficient to migrate
less than half of the CUs for bandwidth upgrades, it is
necessary to migrate more than 90% of the CUs, if any
reconfigurations are necessary during a size upgrade. This can
be explained by the different triggers of migrations for the two
operations: In many situations, the CUs of a VC are collocated
with each other. Adding CUs in this cases does not require
reconfigurations, as long as there is sufficient spare bandwidth
on the subtree, which currently hosts the VC. Contrary, even a
small bandwidth upgrade can change the maximum number of
CUs which can be collocated (e.g., a bandwidth upgrade from
2.4 Gbps to 2.6 Gbps changes maximum number of collocated
CUs from 4 to 3), which will require a share of the CUs (in this
case 25%) to be migrated. The only case in which adding CUs
will actually trigger migrations, occurs when the subtree which
currently hosts the VC is already highly filled, and the center
has to be moved in order to meet the bandwidth guarantees.
This can also happen during a bandwidth upgrade, but the first
case occurs more often, and hence has a strong impact on the
outcome shown in Figure 5. The joint upgrade case, shows
the combined effects of the other two described upgrades.
We will now report on our observations for the other pa-

rameters: Varying any of the above parameters by 50% never
caused the acceptance ratio to drop below 80%. Moreover, the
acceptance ratio for CU as well as bandwidth upgrades are
comparable to those of Figure 4. Joint upgrades are slightly
more complex but the acceptance ratio is still above 80%. The
largest difference we observed in the worst case acceptance
ratio was 6%.
With regards to the reconfiguration costs we find that cluster

size upgrades are typically more expensive. This is fully
consistent with the observations above. It also points out that
even local greedy search strategies for re-embedding CU size
upgrades can be fairly successful.
In general, we see that most parameters only have a very

small effect on the reconfiguration costs of bandwidth up-
grades, and a small effect on the joint upgrade. On average

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Available Bandwidth [Gb/s]

C
D

F
[R

eq
ue

st
s]

CUs
Joint
Bandwidth

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Available Bandwidth [Gb/s]

C
D

F
[R

eq
ue

st
s]

CUs
Joint
Bandwidth

Fig. 6: CDF of the available bandwidth to migrate a compute
unit for upgrades which require migrations. Left: avg. band-
width; Right: min. bandwidth.

across all evaluated parameters, bandwidth upgrades need
approximately one third reconfigurations per CU, while joint
upgrades typically require two third reconfigurations per CU.
This indicates that these operations benefit from the rigorous
optimizations of Kraken.

E. Bandwidth for Migrations
While compute units can be small and light-weight, it may

sometimes be desirable to migrate more state or entire VMs.
Therefore, we investigate the bandwidth available during CU
migrations. Figure 6 shows that for bandwidth upgrades, on
average, approximately 3 Gbps can be guaranteed along the
migration path of each CU on average; the minimum is around
2 Gbps. For joint upgrades, the values are 2 Gbps on average
and 1 Gbps for the CU with the lowest available bandwidth.
These values are encouraging, indicating that even large mi-
grations are feasible in reasonable time. However, we also
see that on the occasion where cluster size upgrades trigger
migrations, the bandwidth can become critical: only 10% of
the requests can guarantee more then 1Gbps of bandwidth for
the migrations. In such settings, one may have to resort to a
separate management network for migration.

VI. DISCUSSION

This paper presented the Kraken system which allows to
dynamically scale up and down the bandwidth and compute
resources allocated to a cloud application at runtime. Thus,
Kraken overcomes the weaknesses of existing solutions, in
which resource reservations either cannot be changed [5],
[11], [20], in which the entire resource schedule has to be
computed at job submission time [7], or in which either only
the bandwidth or the compute resources can be adapted, but
not both [7], [17], [23].
We described algorithms to find a configurable and optimal

tradeoff between embedding and reconfiguration costs, and
complemented the formal guarantees by simulation.
While we have motivated our approach (and are currently

implementing a prototype) for batch-processing applications
such as MapReduce, we believe that our solution is of more
general interest. It also complements nicely the recent work
on time malleable systems like Amoeba [2] and Natjam [6] or
scheduling frameworks such as Jokey [8]. Kraken can also
be applied to systems such as Bazaar [12] that provide a
job-centric interface and allow the provider to select the best

combination of CUs and network resources. The ability of
reallocating CUs and network resources at runtime can expand
the range of scheduling opportunities.
Acknowledgments. Research supported by the German
BMBF Software Campus grant 01IS12056, by the German-
Israeli Foundation for Scientific Research and Development
(GIF No I-1245-407.6/2014), and by the German Ministry for
Education and Research (Berlin Big Data Center, BBDC).

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In ACM SIGCOMM, 2008.

[2] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and
I. Stoica. True elasticity in multi-tenant data-intensive compute clusters.
In ACM SOCC, 2012.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective
straggler mitigation: Attack of the clones. In USENIX NSDI, 2013.

[4] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris. Reining in the outliers in map-reduce clusters
using mantri. In USENIX OSDI, 2010.

[5] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
predictable datacenter networks. In ACM SIGCOMM, 2011.

[6] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and
P. Lin. Natjam: Design and evaluation of eviction policies for supporting
priorities and deadlines in mapreduce clusters. In ACM SOCC, 2013.

[7] D. Xie et al. The only constant is change: incorporating time-varying
network reservations in data centers. In ACM SIGCOMM, 2012.

[8] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: guaranteed job latency in data parallel clusters. In 7th ACM
EuroSys, 2012.

[9] C. Fuerst, M. Pacut, P. Costa, and S. Schmid. How hard can it be? un-
derstanding the complexity of replica aware virtual cluster embeddings.
In Proc. 23rd IEEE International Conference on Network Protocols
(ICNP), 2015.

[10] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible
data center network. In ACM SIGCOMM, 2009.

[11] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang. SecondNet: A data center network virtualization architecture
with bandwidth guarantees. In ACM CoNEXT, 2010.

[12] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Bridging the tenant-provider gap in cloud services. In SOCC, 2012.

[13] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune in action:
Mitigating skew in mapreduce applications. VLDB Endow., 5(12), 2012.

[14] L. Popa et al. FairCloud: Sharing the Network in Cloud Computing. In
SIGCOMM, 2012.

[15] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner. Cicada:
Introducing predictive guarantees for cloud networks. In 6th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 14), Philadel-
phia, PA, June 2014. USENIX Association.

[16] M. Chowdhury et al. Managing Data Transfers in Computer Clusters
with Orchestra. In ACM SIGCOMM, 2011.

[17] J. C. Mogul and L. Popa. What we talk about when we talk about cloud
network performance. SIGCOMM CCR, 42(5):44–48, 2012.

[18] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: managing
performance interference effects for qos-aware clouds. In EuroSys, 2010.

[19] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos. Elasticswitch: Practical work-conserving bandwidth guarantees
for cloud computing. In ACM SIGCOMM, pages 351–362, 2013.

[20] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes. Gate-
keeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks. In 3rd Conference on I/O Virtualization (WIOV), 2011.

[21] M. Rost, C. Fuerst, and S. Schmid. Beyond the stars: Revisiting virtual
cluster embeddings. In ACM SIGCOMM CCR, 2015.

[22] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall: Performance
isolation for cloud datacenter networks. In USENIX HotCloud, 2010.

[23] K. C. Webb, A. Roy, K. Yocum, and A. C. Snoeren. Blender: Upgrading
Tenant-based Data Center Networking. In ANCS, 2014.

[24] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving mapreduce performance in heterogeneous environments. In
USENIX OSDI, 2008.

[25] Measuring EC2 system performance. http://goo.gl/V5zhEd.

