
SHEAR: A Highly Available and Flexible Network Architecture
Marrying Distributed and Logically Centralized Control Planes

Michael Markovitch],∗ Stefan Schmid‡

] Ben Gurion University, Israel ‡ TU Berlin & T-Labs, Germany
∗ Work conducted during research visit at TU Berlin, Germany

Abstract
This paper presents SHEAR, a highly available hybrid
network architecture which marries distributed legacy
protocols with Software-Defined Networking (SDN)
technology. SHEAR is based on a small deployment
of Openflow switches which serve as “observability
points”: SHEAR leverages legacy distributed control
plane protocols to detect and localize failures, but
outsources the actual failover logic to the logically
centralized SHEAR controller, which can make faster
and more informed routing decisions. Moreover, the
Openflow switches are used to logically decompose the
legacy network into loopfree components, enabling a
simple and flexible traffic-engineering.

The deployment problem solved by SHEAR can be
seen as a new variant of a network tomography problem,
and may be of independent interest. Our simulations
show that in enterprise networks, between 2 to 10 %
Openflow switches are sufficient to implement SHEAR.
We also report on our prototype implementation which
detects a failure and reroutes traffic in less than .3 sec-
onds in our testbed—much faster than what is achieved
by the less flexible and distributed legacy protocols.

More generally, SHEAR demonstrates that in con-
trast to common belief, operating a hybrid software-
defined network can be simple, and given its benefits, a
partial Openflow deployment may even be a long-term
solution.

Keywords-Resiliency, Robustness, Software-Defined Net-
working, Network Tomography

I. Introduction

Large Local Area Networks (LANs), such as campus
networks or metropolitan area networks, often consti-
tute a critical infrastructure and have to meet strict
requirements in terms of availability. However, today,
the operation and management of these networks is
often a cumbersome, manual and error-prone task.

Software-Defined Network (SDN) technology intro-
duces new opportunities to innovate networks and ren-
der networks more flexible. In particular, SDN offers
a logically centralized network control, allowing for a
more principled, automated and adaptive network oper-
ation and management—an attractive feature given that
many network tasks are inherently non-local. Moreover,
Openflow, the standard SDN protocol today, introduces
interesting new traffic engineering opportunities, as
routing does not have to be shortest path or destination
based, and as forwarding rules can be defined in terms
of layer-2, layer-3 and even layer-4 header fields.

In this paper, we argue that the availability and
traffic engineering flexibilities of legacy networks can
be improved upon by deploying a small number of
Openflow switches, managed by a logically centralized
software controller. In particular, using a small partial
deployment to decompose the network into a set of
loop-free components, a software controller can observe
data plane events at low overhead and cost, by leverag-
ing legacy protocols, and, when needed, can take over
complete control over the forwarding paths, enabling a
simple yet powerful traffic engineering.

A. Our Contributions
This paper presents and evaluates SHEAR,1 a novel

architecture for more flexible and highly available net-
works. SHEAR is based on a hybrid SDN architecture,
both in terms of data plane and control plane:

1) Hybrid data plane: Motivated by cost constraints,
SHEAR uses only a small partial deployment of
Openflow switches, which co-exist and interact
with existing legacy devices. SHEAR leverages
the Openflow switches to logically decompose the
physical network into loop-free components, en-
abling traffic-engineering flexibilities by increasing
path diversity. Traffic engineering is also sim-
plified, as it is reduced to controlling a small

1SHEAR stands for SDN Hybrid Embedded ARchitecture.

set of node (the Openflow switches). Moreover,
the partially deployed Openflow switches serve
as “observability points”, facilitating the SHEAR
controller to quickly learn about relevant data plane
events.

2) Hybrid control plane: The SHEAR architecture
is based on a hybrid control plane, marrying a
(distributed) legacy control plane and a logically
centralized SDN control plane. SHEAR exploits
the legacy control plane as a notification service,
to quickly observe and learn about topological
changes; however SHEAR outsources the actual
decision on how to react to these data plane
events to the logically centralized SDN controller:
the logically centralized failover is significantly
faster (and more flexible) than reconvergence of
distributed legacy protocols.

While the principles underlying SHEAR are ap-
plicable in multiple contexts and for different legacy
protocols (e.g., based on shortest paths or spanning
trees), as a concrete case study, we in this paper will
focus on Local Area Networks (LANs), and in particular
Ethernet: SHEAR leverages the legacy (rapid) STP pro-
tocol to provide a light-weight and automatic detection
and localization of failures.

Concretely, in our Ethernet case study, we embed
STP spanning trees such that no link failure will go
unnoticed. The Openflow deployment and spanning tree
embedding problem constitutes a new network tomog-
raphy problem variant, which may be of independent
interest. In particular, in contrast to related works, we
find that it is useful to place STP roots at the network
edge, rather than in the core: there the roots serve as
“shortest distance beacons” to the deployed Openflow
switches.

We conduct extensive simulations to study the scal-
ability and deployment cost of SHEAR in synthetic
and real enterprise networks. In particular, we show
that SHEAR only requires a small number of deployed
Openflow switches (in enterprise networks, between 2
to 10 %).

We also report on the performance of SHEAR in a
small Ethernet/Openflow testbed environment, using our
proof-of-concept controller implementation (in RYU).
We show that SHEAR allows us to detect and localize
a link failure and reroute traffic accordingly, in less
than 0.3 sec in our testbed—much faster than STP
reconvergence.

More generally, we believe that SHEAR makes an
interesting case for a hybrid control plane, combining
cheap but fast legacy protocols with logically cen-
tralized, fine-grained routing capabilities. In particular,
while SHEAR’s partial deployment is motivated by the
reduced upgrade costs, given that SHEAR can provide

the full SDN benefits in terms of traffic engineering and
programmability, we understand our hybrid architecture
as a long-term solution. The loop-free decomposition
proposed by SHEAR as well as the clear separation
of responsibilities of the different control planes, also
shows that operating hybrid SDNs is not as difficult as
often believed. [10], [19]

B. Scope

While SHEAR enables a more flexible traffic en-
gineering and fast failover, how to optimally exploit
these flexibilities depends on the context. We in this
paper do not propose new traffic engineering schemes
or controller applications. In this sense, SHEAR nicely
complements parallel work such as Telekinesis [8].

The objectives of SHEAR are also different from
other hybrid SDN architectures like Panopticon [10],
which aims to turn enterprise networks into SDNs
and provides logical SDN abstractions. SHEAR mainly
deploys Openflow switches as observability points and
topological cycle breakers, hence enabling a fast re-
action to failures and path control. For example, un-
like Panopticon [10], SHEAR does not dictate routing
through middleboxes or access control. However, as
we will argue in this paper (and see in simulations),
SHEAR’s deployment strategy can also be used to
improve Panopticon, and by enforcing traffic to pass
through SDN switches, SHEAR can also be used to
implement logical SDN abstractions similar to Panopti-
con: “SDN abstraction as a service”.

C. Organization

Section II provides necessary background on Ethernet
architectures and SDN. The main ideas behind SHEAR
are presented in Section III. We report on simulation
results and the Panopticon case study in Section IV,
and on our testbed experiments in Section V. We
review related work in Section VI, and we conclude
our contribution in Section VII.

II. Preliminaries

SHEAR can be used together with many different
legacy protocols which provide shortest path infor-
mation or spanning trees. The particular case study
presented in this paper, focuses on Ethernet, the most
widely-used Local Area Network (LAN) technology
today. In particular, in the Ethernet case study, SHEAR
exploits the standard layer-2 Spanning Tree Protocol
STP to learn about changes in the underlying physi-
cal network, and react accordingly. For this purpose,
SHEAR embeds Ethernet spanning trees using STP. In
the following, we first provide the necessary background

on Ethernet; subsequently, we discuss the SDN concepts
used by SHEAR.

A. Ethernet and STP

Ethernet connects different network segments using
bridges (or synonymously: switches or simply nodes),
and in order to avoid forwarding loops on layer-2,
bridges participate in the (distributed) Spanning Tree
Protocol (STP). Concretely, STP sets a subset of net-
work links to a “blocking” state (also known as “dis-
carding” in the context of the so-called Rapid-STP
protocols); these links will not be used for forwarding.

The STP protocol uses so-called Bridge Protocol
Data Units (BPDUs) for communication. A BPDU
contains the following information:

• Root ID: The ID of the bridge which is currently
the root of the spanning tree. The root bridge is
chosen as the bridge with the lowest ID, and the
4 most significant bits are used to define priorities
(can be configured).

• Bridge ID: The advertising bridge ID (mainly used
for tie-breaking).

• Cost: The “lowest cost to the root”, where link
weights, by default, are defined in IEEE 802.1W-
2004 as being the inverse of the link bandwidth.

From the BPDUs transmitted by a bridge, a node
can learn about its root bridge and its cost (shortest
distance) to the root. If there is a failure or topolog-
ical change on the path from the root bridge a given
node, STP will compute new spanning trees (a process
known as spanning tree reconvergence), and either the
root ID or the cost to the root will change. As we
will see, SHEAR will listen to STP’s distance vector
messages in order to detect failures, using its deployed
Openflow switches; however, in order to speed up the
actual failover process, SHEAR shortcuts the classic
spanning tree reconvergence mechanism, and outsources
the rerouting scheme to a centralized controller: the
Openflow switches communicate critical events to the
controller which then triggers an informed failover.

While SHEAR can be used in any local area network
supporting shortest path and spanning tree informa-
tion, for a fast failure detection, a rapid protocol is
preferable. The two most prominent STP variants are
PVST (Per VLAN Spanning Tree), a proprietary Cisco
protocol, and MSTP (Multiple STP), a standard IEEE
802.1D protocol. Both MSTP and PVST can have
multiple spanning tree instances in a single connected
component. We choose MSTP for SHEAR as it is
more scalable than PVST: multiple VLAN can use a
single spanning tree instance, thus supporting a flexible
mapping of VLANs to spanning trees.

B. SDN and Openflow

SHEAR uses a small partial deployment of Openflow
switches and out-sources the control over the switches
to a logically centralized software controller. Openflow,
the standard SDN protocol today, is based on a match-
action paradigm: the controller can install simple rules
on the Openflow switches.

The SHEAR controller maintains TCP connections
to its controlled Openflow switches. In SHEAR, the
Openflow switches notify the controller under certain
events (e.g., indicating link failures), so that the cen-
tralized controller can reroute traffic according to its
policies, by introducing alternative forwarding rules.

Throughout this paper, we will use the terms SDN
and Openflow interchangeably.

III. The SHEAR System

SHEAR is based on a hybrid data plane consist-
ing of a small set of strategically placed Openflow
switches, which serve as cycle breakers (to improve
routing flexibilities) as well as “shortest path” or BPDU
observability points. Important data plane events are
communicated by the Openflow switches to the Open-
flow software controller, which leverages the logically
centralized network view to quickly react and reroute
traffic.

This section first presents SHEAR’s loop-free
network decomposition. Subsequently, we describe
SHEAR’s failure detection and fast failover mecha-
nism.

A. The Tree Decomposition

SHEAR decomposes the physical network into logi-
cal, loop-free domains: essentially a tree decomposition
of the network. The resulting components (trees or even
linear chains) enable a very simple yet fine-grained
traffic engineering, giving the SHEAR controller full
flexibility on how to stitch together path segments
(“pathlets”), and by allowing the controller to focus only
on a small set of critical junction points.

This is achieved by replacing a small selected set
of legacy switches by Openflow switches. The problem
of deploying a minimal number of switches to break
physical cycles is an algorithmic one. In principle, it is
known that even finding a minimum number of loop-
breaking locations is computationally hard: the so-called
Minimum Feedback Vertex Set Problem [5] is one of
Karp’s original 21 NP-complete problems.

The deployment strategy used by SHEAR is based on
the observation that finding a maximal set of fundamen-
tal cycles—cycles which form a basis out of which all
other cycles can be constructed through combinations—
can be done efficiently: every graph G = (E,V) has

12

34

5

(a)

12

34

5

(b)

Figure 1: Example of two fundamental cycle bases of a
graph: one consisting of “minimal cycles” and one with
overlaps.

Algorithm 1 SHEAR Deployment

1: given network G
2: T ← G
3: S← /0
4: while (T not loop-free) do
5: for all connected component C in T do
6: B ← cycle basis of C
7: while B 6= /0 do
8: select most frequent element v ∈ B
9: S← S∪ v

10: remove v from T
11: remove all cycles containing v from T

12: return S

at least one set of |E| − |V |+ 1 fundamental cycles,
henceforth called cycle basis. Every cycle in G can be
represented as a linear combination of the fundamental
cycles of a cycle basis. Such a set of fundamental cycles
is called a fundamental cycle basis, and a single graph
can have multiple different bases. The concept of a
fundamental cycle basis is demonstrated in Figure 1.

To obtain a cycle basis, SHEAR computes a spanning
tree; each edge not in the spanning tree will define
one fundamental cycle. Given a cycle basis, Openflow
switches are then deployed iteratively and in a greedy
manner, first replacing the node participating in the
maximum number of cycles (ties broken arbitrarily).
The resulting graph is tested for loops, and if the tree
decomposition is not achieved yet, the next cycle basis is
computed iteratively. A listing of the algorithm appears
in Algorithm 1.

An example for tree decomposition is shown in

(a) (b)

Figure 2: Example for tree decomposition. The redun-
dantly connected graph (a), is decomposed into a tree
(b). The red nodes are the deployed Openflow switches.

Figure 2: A well-connected graph is given as an input
to SHEAR, which is then decomposed into a cycle-free
graph by designating 5 nodes (out of 17) as Openflow
nodes. In this example, the decomposition results in a
single legacy Ethernet connected component: a tree.

B. Hybrid Data Plane

The tree decomposition results in a set of loop-free
fragments: one or more “legacy” Ethernet connected
components, and a set of nodes designated as Openflow
switches (which may not be directly connected).

These fragments are the building blocks for SHEAR:
in order to compute end-to-end paths, SHEAR stitches
the fragments together to form paths. For scalability
concerns, SHEAR also allows to further subdivide frag-
ments into smaller broadcast domains, using VLANs
(“Panopticon as a service” over SHEAR). Concretely,
as we will see, SHEAR uses VLANs for two pur-
poses. First, in order to improve scalability and preserve
Ethernet semantics. And second, in order to connect
Openflow switches to each other, and to define and
multiplex resp. demultiplex so-called pathlets: path seg-
ments (broadcast domains) in a given loop-free frag-
ment. We require that every access node participates
in at least one VLAN, and Openflow switches support
all incident VLANs. Pathlets are stitched together at
Openflow switches, using VLAN re-tagging.

In the following, we will describe the three different
steps in more detail: (i) extracting path diversity, (ii)
stitching together pathlets, and (iii) providing network
services with Ethernet semantics.

Extracting path diversity. The tree decomposition
results in loop-free components, and no path selection
flexibility is left: essentially, the path diversity has been
extracted from the legacy network and assigned to the
Openflow nodes. We define two Openflow nodes as
neighbors if they are connected to the same legacy
connected component. In order to be able to exploit
the path diversity, we define edge-disjoint pathlets be-
tween neighboring Openflow nodes; we want to create

a maximal number of pathlets between every pair of
neighbors. Since the data plane is hybrid, the pathlet is
identified by a source-port, VLAN tag pair: as there is
only one path in a given connected component between
two ports of neighboring nodes, the source port defines
the path and the VLAN tag defines the destination (the
intended Openflow switch). An interesting side-effect
of our cycle-breaking approach, is that VLANs can be
reused by different pathlets even in the same connected
component (as long as the pathlets do not traverse a
common legacy switch). Consequently, the full path
diversity of the original network is maintained by the
pathlets, and there are no forwarding loops.

Stitching pathlets. If two Openflow nodes are not
neighbors, paths between them can be created by stitch-
ing pathlets (VLAN and source port pairs) together, i.e.,
by concatenating pathlets between successive pairs of
neighbors. It is possible to stitch pathlets into edge-
disjoint paths between any pair of Openflow nodes (and
one of the paths must be the shortest path between the
nodes). While local to a connected component, pathlets
can be used to create network-wide edge-disjoint paths:
pathlet stitching enables us to extract the path diversity
globally.

Network service with Ethernet semantics. Ethernet
networks depend on VLANs to segment the network
into broadcast domains. When two hosts in different
VLANs need to communicate, traffic must be forwarded
between VLANs. While this is not possible with pure
Ethernet switches because VLANs have a global mean-
ing, for SHEAR, VLAN tags have a meaning local
only to a connected component: swapping VLAN tags
is not only technically possible, it is required (when
describing pathlet stitching, VLAN tag swapping was
used). If source and destination hosts are in the same
VLAN and in the same connected component, traffic
will always be forwarded directly: both communication
partners are in the same broadcast domain. Therefore,
SHEAR only kicks in if either the hosts are in different
VLANs, or in different connected components. While
this may at first glance seem as an impediment for the
implementation of SHEAR, it is common practice to
segregate hosts in different VLANs in current LANs and
enterprise networks. In order for a host to be serviced
by SHEAR, every Openflow node in the connected
component must have at least one port connected to
the host’s VLAN (all nodes in order to enable SHEAR
access to all possible edge-disjoint paths).

C. Hybrid Control Plane

In order to ensure a high availability, SHEAR must:
(a) monitor the availability of all the pathlets between
neighboring Openflow nodes, (b) monitor all the paths
between access nodes (where hosts are connected) to

the Openflow nodes in the same connected component,
and (c) in case of traffic affecting failure, re-route the
traffic in a timely manner. As we will see, (a) and (b)
can be achieved automatically and in a reactive manner,
instrumenting the Spanning Tree Protocol (STP) (or any
legacy shortest path protocol).

Generally, since pathlets can traverse multiple hops
in a legacy connected component, SHEAR must have
some visibility into the state of the legacy connected
components. In addition, users will most probably
be connected through a legacy access node, therefore
monitoring of the paths between access switches to
Openflow nodes is also necessary. SHEAR leverages
the distributed control plane protocol used by Ethernet
networks, namely MSTP.

Leveraging MSTP in SHEAR. Every legacy node
in a connected component sends MSTP messages (BP-
DUs) through all interfaces not configured as interfaces
connected to hosts. Every BPDU carries the following
information, for each spanning tree instance: the ID
(MAC address) of the spanning tree root, and the cost
of the path to root. In general, since STP is a variant
of a distance vector protocol, the cost of the path to
the root converges to the cost of the shortest path. As
in SHEAR legacy connected components do not have
cycles, every BPDU carries with it information on the
availability of the path to the root: if there is a failure
on the path between a spanning tree root and a port
of an Openflow node, the value of the root ID in the
BPDUs will change. Therefore, any failure in the path
between a spanning tree root and an Openflow node can
be detected by examining the contents of a BPDU.

Moreover, since any failure will change the value
of a root in the BPDU, SHEAR can localize the
failure in the segment between the expected root and
the current root. Therefore, for a single edge failure,
if following a failure the newly elected root will be
adjacent to the failed edge, SHEAR can localize the
failure immediately upon detection. When configuring
MSTP, it is possible to set a root priority value for every
MSTP node. Therefore, by assigning root priorities in
a monotonously increasing fashion from the root to an
Openflow node, it is possible to guarantee that for any
single edge failure, the failure will be localized.

As MSTP is based on RSTP (where multiple in-
stances of RSTP use the same BPDU), an update BPDU
is triggered immediately upon detection of a change in
a spanning tree instance: either by a node detecting a
failure of the edge leading to the root, or by a change
in the value of the root. In Section V, we show that the
time it takes for a change in a spanning tree to propagate
by MSTP to an Openflow node, is in order of 100 ms.

After detecting the failure, the centralized controller
can immediately localize the failure, and then performs

two tasks: (i) re-route all affected traffic around the
failure (if possible), and (ii) notify the network op-
erator about the failure. SHEAR avoids the normal
(distributed) protocol reconvergence by imposing the
controller’s failover and rerouting mechanism: this is
not only faster, but given our tree decomposition, also
provides a more flexible selection of paths (stitching
together the pathlets). As the centralized controller is
aware of all the installed paths (flow table entries) whose
traffic is affected by the failure, it can immediately
compute new paths around the failure if such paths exist.
This capability is unparalleled by any packet switching
system, apart from MPLS-TE with FRR (which is
cumbersome to plan and configure). In addition, the
ability to notify the network operator about a failure and
its location, is unmatched in enterprise networks without
the use of specialized network management systems and
configuration of SNMP traps in all nodes.

Spanning Tree Embedding. In general, the spanning
tree embedding problem can be seen as an interesting
new variant of network tomography problems, where
placeable endpoints can only observe shortest distances
to certain “beacons”: the STP roots. While comput-
ing the minimal number of spanning trees ensuring
this property can be computationally hard in general,
ensuring detectability given the resulting trees of the
Openflow node deployment computed by SHEAR is
easy, as we will see in the following. Let T be a tree
decomposition. We first extend the decomposition T
to include all edges of G (recall that some of them
are missing due to the Openflow switch removal): the
trees T ∈ T can be completed arbitrarily with these
missing links, resulting in set T ∗. We then proceed
tree by tree. Let T ∈ T ∗ be an arbitrary tree. In order
to ensure that each physical link occurs on at least one
shortest path between a spanning tree root (the beacon)
and an Openflow switch (the observability point), we
embed ` many spanning trees on T , where ` is the
number of leaves of T ; each spanning tree is rooted at a
different leaf. If there are no leaves in T (e.g., a line with
Openflow nodes at both edges), then we embed a single
spanning tree rooted at an arbitrary node (preferably as
far away as possible from all the Openflow nodes).

This approach for placement of spanning tree is the
opposite of current best practices and conceptions about
spanning tree embedding: in SHEAR we place the
roots as far as possible from the Openflow nodes, while
current best practices say to place the roots as near as
possible to the Openflow nodes.

Example. In order to give an example, consider
Figure 3: the figure shows one tree of the tree decompo-
sition. Since the tree has `= 4 leaves, it is sufficient to
place a single observability point (Openflow node) (at
the tree root), and embed four spanning trees, with one

Sw1

Sw2 Sw3

Sw4 Sw5Sw6

Sw7Sw8

OF

r1

r2

r3

r4

Figure 3: Example: One component of the tree decom-
position. By placing one Openflow switch at the root
and by embedding four spanning trees, with one root per
leaf, it is ensured that each link occurs on a shortest path
between a root and the Openflow switch, facilitating fast
detection.

Algorithm 2 SHEAR Tree Embedding

1: compute T ∗ from T
2: for all T ∈T ∗ do
3: let v be T ’s Openflow switch
4: for all leaf w ∈ T do
5: embed STP in T , rooted at w
6: monotonically order IDs along the path
7: if T has no leaves then
8: choose a node w ∈ T
9: monotonically order IDs along the paths in

every direction

root per leave. The resulting tree embeddings have the
property that each link occurs on at least (in this case:
exactly) one shortest path between one of the roots and
the Openflow node.

While the algorithm described so far is good enough
for the fast detection of failures, SHEAR uses a trick
to even support a fast localization: by ordering the
IDs between a root and a switch in a monotonically
increasing order, the new root after a failure implicitly
provides information on where a link failure took place.
Note that the monotonic order also ensures a very fast
reconvergence: the link failure triggers a BPDU, and the
new root immediately propagates through the network to
the Openflow switch, without encountering a competing
root candidate.

The algorithm is summarized in Algorithm 2.

Topology Number of nodes Nodes to upgrade Ratio
Clos, k = 8 80 31 0.3875
Clos, k = 16 320 136 0.425
Clos, k = 32 1280 565 0.4414
Cisco medium 122 11 0.0901
Cisco large 242 20 0.0826
Enterprise 1577 29 0.0183

Table I: Number of nodes to upgrade for different
topologies

IV. Simulations

We use extensive simulations to study the deployment
cost and scalability of SHEAR. In the following, we
will first focus on the number of to-be-deployed Open-
flow switches in order to achieve the desired loop-free
network decomposition, in different synthetic and real
enterprise networks. Second, we well also consider the
resource requirements of SHEAR in terms of VLANs.

For comparison, we will use the same methodology
and simulation environment as used in prior work
in [10]. In particular, while SHEAR has a different
objective and provides less SDN functionality than
Panopticon, for the sake of comparison, we consider
a simulation scenario where all traffic is waypoint-
enforced, through Openflow switches, using VLANs.
Interestingly, as we will see, SHEAR’s deployment
strategy outperforms the one by Panopticon even in this
case.

A. Scalable Deployment

We study how many Openflow switches are needed
to decompose a network into trees. We implemented the
tree decomposition algorithm using a python program
which accepts a graph (in graphml format) and returns
a list of nodes to be upgraded to Openflow switch. The
program uses the NetworkX library for computing the
cycle basis of graphs (and to read graphml files).

We consider six different topologies: 1) Three syn-
thetic data center oriented topologies: essentially fat-
tree resp. Clos topologies of different sizes. 2) Two
Cisco recommended enterprise topologies [3]. 3) A
private large scale campus network (topology of a real
network).

We would intuitively expect that the deployment cost
will depend on the connectivity and density of the
underlying network.

We begin by exploring the well-known, highly con-
nected fat-tree (or Clos) topology [9]. The fat-tree is
a three tiered topology, where for a topology with
5k2

/
4 nodes: k2

/
2 nodes are located at the lowest tier

(access), k2
/

2 nodes are located at the medium tier
(aggregation/distribution), and k2

/
4 nodes are located

at the highest tier (core). We therefore expect that
SHEAR will need to upgrade around 40% of the nodes:

choosing to upgrade all the aggregation nodes is an
obvious solution. We show the results for three instances
of fat-tree, with k = 8,16,32, in Table I: the values
are close to the expected 40%, for k = 8 the result is
slightly better than 40%, and for k = 16,32 the results
are slightly worse.

However, the vast majority of enterprise and campus
networks are not fat-tree based: they do not have to
provide full bisection bandwidth, and are less-well
connected. We therefore next explore a second syn-
thetic topology: Cisco’s recommended high availability
campus network topology [3]. This topology is also 3-
tiered, where the number of core nodes is 2 and the
number of aggregation nodes is a fraction of the number
of edge nodes. We generated two synthetic topologies
based on Cisco’s recommendations, one with 100 edge
nodes and one with 200 edge nodes. For both instances
we chose the ratio of aggregation nodes to edge nodes to
be 1 : 5. Again, as upgrading all the aggregation nodes is
a valid solution, we expected a roughly 20% deployment
(due to the 1 : 5 ratio). The results as seen in Table I
are lower: SHEAR needs to upgrade only half of the
aggregation nodes in order to remove all cycles, that is,
less than 10% of the nodes need to be upgraded. These
solutions do not partition the topologies into multiple
connected components.

While Cisco’s recommendation may be considered
as best practice, many networks do not adhere to these
recommendations. While topologies of real networks are
not easy obtain, we have access to the topology of a
large enterprise network, comprised of 1577 nodes. For
the large enterprise network, SHEAR needed to convert
only 29 nodes to Openflow switches (Table I): this is
less than 2% of the nodes.

B. Resource Constraints

In order to study the resource requirements of
SHEAR in terms of VLANs and flow table entries,
we use the following methodology. We use traffic ma-
trices from the Lawrence Berkeley National Laboratory
(LBNL) [15] traces. The LBNL data represents over 100
hours of anonymized packet level traces depicting the
activity of several thousand internal hosts. The traces are
aggregated according to source-destination pairs, and
contain sources from 22 subnets. For every edge node
in a topology (edge nodes are defined as nodes which
have hosts connected to them), we choose in a random
round-robin fashion a subnet from the LBNL data to
associate. We choose one node in the topology (which
is not an edge node), to function as the gateway to
outside networks. All traffic to hosts outside of LBNL’s
22 subnets are associated with the node chosen as the
gateway. The resulting traffic matrix is then projected
unto the topology, using the shortest paths between

source-destination pairs in order assign loads to edges
(links). In order to make sure that traffic matrix can be
satisfied by the topology, we conservatively scale the
load generated by the traffic matrix so that the highest
loaded edge has 50% utilization.

For the purpose of comparability with Panopti-
con [10], we consider an extension of SHEAR where
traffic between communicating ports is waypoint-
enforced, i.e., always needs to be routed via an Open-
flow switch. Concretely, similarly to [10], we use
VLANs to connect ports to waypoints. After placing the
Openflow switches and projecting the traffic matrices,
we can quantify the effect of system parameters on
the viability and performance of our architecture. Of
main interest are the number of VLANs used in a con-
nected component (from each communicating port, one
VLAN is used to connect it to all reachable Openflow
switches [10]). These parameters represent limitations
of network equipment: the number of VLANs supported
by Ethernet switches.

In order to highlight this point and to make a fair
comparison to Panopticon, for both architectures we
upgrade the same number of nodes. The comparison is
also interesting because radically different approaches
are used for deployment: while Panopticon’s deploy-
ment strategy depends on the specific traffic matrix,
SHEAR is traffic-agnostic and only depends on topo-
logical properties—an attractive property for long-term
planning.

In the following, we will focus only on the real
enterprise topology, and for every combination of pa-
rameters (number of VLANs per connected component,
number of flow table entries per switch), we generate
20 different traffic matrices by using different random
seeds for the projection of the LBNL data on the
topology. For both SHEAR and Panopticon, we allow
29 nodes to be upgraded.

Impact of VLAN constraints. According to IEEE
802.1Q, the maximum number of VLANs available is
4094: the VLAN tag space size is 12bit, and two tags are
reserved. However, there are many enterprise network
switches which in practice support much less for simul-
taneous use. Therefore it is important to understand the
required number of VLANs per connected component.
For comparison with SHEAR we consider two versions
of Panopticon: the volume-based deployment strategy
VOL which connects each port to all directly reachable
Openflow switches, and the more scalable variant VOL2f
which connects a port only to two switches (see [10]
for details); VOL2f relaxed resource constraints along
the paths in the connected component, but comes at the
price of forcing the traffic to use longer (less efficient)
paths through the network.

We are interested in the question of how many ports

can be supported, i.e., routed by SHEAR, subject to
resource constraints. The simulation results are seen in
Figure 4 (a), where for every strategy three lines are
plotted: the average percentage (solid line), minimal
percentage (dashed line) and the maximal percentage
(dotted line). Clearly, Figure 4 (a) shows that SHEAR
is not limited by the number of VLANs: 32 VLANs
were sufficient to provide a full coverage of the entire
network (using only 29 Openflow switch). In addition,
the different traffic matrices have a negligible effect on
SHEAR (even for 16 VLANs the maximal and minimal
coverage are almost the same). As only 32 VLANs are
needed, there is no connected component which needs
more than 32 spanning tree instances (MSTP can be
used). For comparison, Panopticon is severely limited
by the VLANs, and fares much worse: (1) the default
implementation (VOL) needs 1024 VLANs to get close
to full coverage (the minimal coverage at this point is
about 90 percent); (2) even the implementation tweaked
for using less VLANs (VOLf2) while on average getting
close to full coverage with “only” 512 VLANs, never
gets full coverage, and (3) different traffic matrices
have a significant effect (even though every solution of
VOL and VOLf2 is trying to optimize the hybrid SDN
according to the traffic matrix).

Recall that, due to the loop-free decomposition,
SHEAR generally supports arbitrary forwarding paths.
Therefore, when applying waypoint enforcement, flex-
ibilities may be lost. However, as we will see, using
SHEAR’s deployment strategy, flexible paths can be
maintained even in the waypoint-enforced scenario of
Panopticon: Figure 4 plots the results for the average
stretch (for every traffic matrix an average stretch value
was computed) for SHEAR and Panopticon (the de-
fault implementation VOL). The result show that for
SHEAR:

• There is no significant trade-off between the num-
ber of VLANs and the average stretch.

• SHEAR traffic routing capabilities are very close
to optimal. SHEAR is not optimal almost exclu-
sively for traffic which goes through a single Open-
flow switch (where the direct distance is shorter
than the sum of the distances from the source and
the destination to the Openflow switch). Even when
measuring the 99th percentile stretch (not shown),
at 64 VLANs the maximal stretch is 1: for at least
99% of the traffic the paths are optimal.

On the other hand, the stretch for Panopticon grows with
the number of VLANs (which means the stretch grows
with the SDN coverage), and is much larger than for
SHEAR for most of the range.

16 64 128 256 512 1024
number of VLANs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SD
N

co
ve

ra
ge

SDN coverage as a function of VLANs used

SHEAR
VOL
VOLf2

(a)

16128256 512 1024
number of VLANs

1.010

1.015

1.020

1.025
SHEAR: Averagestretch

avg
max
min

(b)

16128256 512 1024
number of VLANs

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35 VOL: Averagestretch

avg
max
min

(c)

Figure 4: Top: Comparison of required number of VLANs to upgrade a given percentage of the ports to SDN.
SHEAR in blue, Panopticon in green and black. Bottom: Comparison of the stretch: SHEAR on the left, Panopticon
on the right.

V. Prototype Implementation

We implemented a small prototype of SHEAR and ran
experiments in our Openflow testbed.

A. Implementation and Testbed

We implemented the SHEAR controller based on
the RYU platform. As our legacy network is based
on the MSTP protocol, we only had to implement a
parser for MSTP BPDUs: unlike OSPF, a switch sends
its MSTP BPDUs through all the ports which are not
defined as access ports: the controller can listen to
MSTP without actively participating in the protocol.
We also implemented the logic required for localization
of failures (for our topology), and for re-routing traffic
around failures (if an alternative path is available).

Our testbed is comprised of Cisco 3550, Cisco
2960, and Cisco 2950 switches (nodes 1-7). The 2950
switches use an old firmware version (circa 2004)
supporting pre-standard MSTP (the legacy network uses
a mix of standard and pre-standard MSTP implementa-

tions). We use one NEC IP8800 Openflow switch to em-
ulate three SDN nodes, in order to (i) have path diversity
and (ii) listen to MSTP messages at multiple locations.
The topology hosts two spanning tree instances (using
MSTP), with one instance rooted at node 3 and the
second rooted at node 7. We used a server with multiple
NICs to emulate 4 hosts (each emulated host has a
dedicated NIC, and running a separate VM). All the
links in the networks are Gigabit Ethernet links.

Recall that the SHEAR architecture decomposes
the network into connected, undirected, and loop-free
components: topological trees or even linear chains.
However, for the prototype we choose to use a topology
with a single simple cycle, as it allows us to compare
failure recovery times with MSTP. The topology of the
prototype network is shown in Figure 5. This topology
can be converted to a chain by disconnecting node 7.

B. Failure Detection

In terms of performance, we are interested in the
failover latency: the time which elapses between de-

1

2

3

7

4

5

6

OF

OF

OF

B

D

AC

Figure 5: Testbed topology. Nodes 1− 7 are Ethernet
switches (the legacy “island”). The paths between hosts
A-B and C-D use 2 different spanning trees rooted at
nodes 3 and 7 respectively.

tecting a failure (at the Openflow switch observing
the BPDU), communicating the event to the SHEAR
controller, algorithmic failover path selection, new flow
installation and eventually forwarding along the new
routes. As failover paths often need to respect policies
and capacities, computing good failover paths is an
algorithmically hard problem. We hence assume that
failover paths have been precomputed (but not signaled)
by the controller. This mode of operation is very com-
mon in systems requiring fast reaction times.

We distinguish between two types of SHEAR chain
topologies: (i) one where there is a single Openflow
switch at one end of the chain, and (ii) one where there
are two Openflow switches at both ends of the chain.
For the first type, a failure in the legacy connected
component results in unreachability. For the second
type, a single failure in the legacy connected component
may not result in disconnections (assuming there is
some path between the two Openflow switches outside
of the connected component).

Due to issues pertaining mainly to clock synchroniza-
tion between the switches and the SHEAR controller,
for the first type it is not feasible to measure the time
between the occurrence of a failure, and the detection
of the failure by the SHEAR controller. However, for
the second type, by re-routing traffic after the detection
(and localization) of a failure, it is possible to accurately
measure the time between the occurrence of a failure
and the switch-over of traffic to an alternative route (by
measuring in a single host the time during which no
traffic arrives).

We disconnect node 7 of the topology, and generate
traffic between hosts A and B. The traffic is generated

SHEAR1 SHEAR20.00

0.05

0.10

0.15

0.20

t [
se

c]

Recovery Time - Line

SHEAR1 SHEAR20.15

0.20

0.25

0.30

0.35

0.40

0.45

t [
se

c]

Recovery Time - IPERF

SHEAR MSTP1 MSTP20.0

0.5

1.0

1.5

2.0

t [
se

c]

Recovery Time - Cycle

Figure 6: Left: Ping switch over time for failures 2 hops
(left) and three hops (right) from the Openflow switch.
Middle: IPERF switch over time for failures 2 hops
(left) and three hops (right) from the Openflow switch.
Right:Ping switch over time for failures 3 hops from an
Openflow switch for SHEAR (left) and MSTP (right).

by sending ICMP echo request messages (ping) from
A to B, at frequency of 100 messages per second
(approximately 0.01s between consecutive messages).
The default route used nodes 1,2,3,4. Link failures are
induced on edges 3− 4 and 3− 2, which are 3 and 2
hops from the nearest Openflow switch respectively.

We use wireshark to record all the incoming traffic
to host B, and measure the gap between received ping
messages. The results of these measurements, depicted
in Figure 6 (left), show that the time to detect a failure
and re-route the traffic is about 0.1 sec. Further than
that, the results show that (as can be expected) the closer
the failure is to an Openflow switch the sooner it is
detected.

We assume that most of the measured unreachability
time can be attributed to the failure detection phase.
This assumption is corroborated by the difference in
the average times between the two failure scenarios, as
one additional hop translates to about 0.03s on average.

C. Fast Failover

After measuring the time it takes to perform failover
switching (re-route the traffic after detecting a failure),
we proceed to check how the time we measured can be
translated to common network applications, and how it
compares to failover times of current techniques.

Failover times with TCP. As most network applica-
tions are based on TCP, we perform measurements for
the linear chain topology with the traffic being generated
by IPERF. The results are shown in Figure 6 (middle).
The restoration time for IPERF is significantly longer
than measured with ping, as it is dictated by TCP’s
retransmission timeout. The effect of the exponential
backoff can be seen by comparing the restoration time
3 hops away to that 2 hops away (all the measured time
were near to the extremities).

Baseline Comparison. As it is not possible to use
a L2 restoration scheme in a line topology, it should
be compared to protocols such as VRRP 2. As the

2Virtual Router Redundancy Protocol

restoration time is around 100 ms, it is significantly
better than VRRP (where in default settings around
3 secs are needed). Also of note, the distance from
an Openflow switch affects the restoration time (and
the variation of measured times) in about 30 ms for a
difference of one hop.

In order to compare our results to that of state of the
art L2 restoration schemes we used a topology which
includes a cycle. Note that such a topology is not a pos-
sible result of the SHEAR node placement algorithm,
but the fault detection and localization techniques for
SHEAR work just as well for this topology. For the
topology containing a cycle, we use MSTP as a L2
restoration mechanism (SHEAR itself uses MSTP in
the legacy network to detect failures).

We measured the (ping) time for two link failure
scenarios using two different VLANs and Spanning
Trees for every pair of hosts (the connections between
hosts were edge disjoint as seen in Figure 5), using two
symmetric edges of the cycle. The results depicted in
Figure 6 (right) show the failover time as measured with
the ping methodology for two failure scenarios (only
one shown for SHEAR). The performance of SHEAR
is as it was for the line (as expected), however the
performance of MSTP is an order of magnitude worse.

VI. Related Work

There exists a wide consensus that the transition to
SDN will be incremental [7], [10], [11], [19], and
that hybrid networks posses practical importance [13].
However, reaping SDN benefits in partial deployments
is non-trivial. Today, only very little is known about
how to design and operate hybrid SDNs [19], and
researchers have only started studying the deploy-
ment [10], [19], and traffic engineering [1] challenges
of such networks. The Panopticon architecture [10]
uses a waypoint enforcement approach to implement
a logical SDN abstraction, and hence support existing
SDN control applications also in hybrid networks. In
contrast to Panopticon, SHEAR does not aim to turn
the network into an SDN (and does also not require
waypoint enforcement), but uses the Openflow switches
to render a given network more robust and flexible.
However, as we have argued in this paper, SHEAR
can be used to improve Panopticon itself: SHEAR’s
deployment strategy is not only more cost efficient,
but also facilitates a much more flexible and simple
traffic engineering. Given these flexibilities, in contrast
to Panopticon which was meant as an intermediate
step until full SDNs become available, we understand
SHEAR as a long-term solution.

In terms of robustness and fast failure detection,
SHEAR complements a range of actively discussed

works (see also [17] for a more general survey). Outages
to link failures are not uncommon today, and we are not
the first to observe the benefits of using multiple span-
ning trees [4], [6], [12], [14]. In particular, Viking [6]
implements a reliable Ethernet and fast failover using
multiple spanning trees (however, without implement-
ing a programmable network and fine-grained traffic
engineering). There also exists an interesting proposal
to improve failover times reconvergence (namely IGP)
as a backup [18]. SHEAR shows that a controller-
managed failover can be faster and more informed.
Indeed, SHEAR assumes an interesting new position
in the space of robust architectures as it combines data
plane mechanisms (namely for the fast failure detection)
and control plane mechanisms (namely for fast and
more flexible failover).

VII. Conclusion
This paper proposed a novel network architecture which
uses a small set of Openflow switches as cycle breakers
and observability points to enable a more flexible traffic
engineering and fast failover. SHEAR is purely reactive
and light-weight, and does not require any expen-
sive state polling mechanisms or the manual setup of
(SNMP) traps. It nicely complements ongoing research
on the control plane [8].

We believe that SHEAR is of interest beyond the Eth-
ernet use case. For instance, IP-based networks without
out-of-band control may benefit from the replacement
of a subset of IP routers using (cheaper) Openflow
switches. Note that all which is needed for SHEAR
to be able to detect failures is information about short-
est distances to certain special “beacon” points. Thus,
SHEAR may not only be used on top of STP, but also
on top of IGP protocols, such as OSPF.

Our work opens interesting directions for future re-
search. For instance, it will be interesting to study
whether Openflow local fast failover mechanisms could
be used in addition to the centralized failover scheme,
to further increase the network availability by offloading
functionality to the data plane: due to the local view
and the partial deployment, this is however a non-trivial
extension [2], [16], [18]. Generally, we believe that our
work sheds an interesting new light on the question
of how to split functionality between control and data
planes as well as between legacy and SDN protocols [7],
[10], [11], [19], and can nourish the ongoing discussion.

Acknowledgments. We would like to thank Marco
Canini, Dan Levin, and Sebastian Lohff for many dis-
cussions, as well as our shepherd Volker Hilt. Research
partially supported by the European Institute of Inno-
vation & Technology (EIT) project Software Defined
Networking project (13153).

References

[1] S. Agarwal, M. Kodialam, and T. V. Lakshman. Traffic
Engineering in Software Defined Networks. In INFO-
COM, 2013.

[2] M. Borokhovich, L. Schiff, and S. Schmid. Provable data
plane connectivity with local fast failover: Introducing
openflow graph algorithms. In Proc. ACM HotSDN,
2014.

[3] Cisco. Campus Network for High Availability Design
Guide, 2008. http://bit.ly/1ffWkzT.

[4] A. De Sousa. Improving load balance and resilience
of ethernet carrier networks with ieee 802.1s multiple
spanning tree protocol. In International Conference on
Systems, 2006.

[5] G. Even, J. (Seffi) Naor, B. Schieber, and M. Sudan.
Approximating minimum feedback sets and multi-cuts
in directed graphs. Algorithmica, 20(2):151–174, 1998.

[6] M. Golash. Reliability in ethernet networks: A survey
of various approaches. Bell Labs Technical Journal,
11(3):161–171, Fall 2006.

[7] R. Hand and E. Keller. Closedflow: Openflow-like
control over proprietary devices. In Proc. ACM HotSDN,
2014.

[8] C. Jin, C. Lumezanu, Q. Xu, Z.-L. Zhang, and G. Jiang.
Telekinesis: Controlling legacy switch routing with
openflow in hybrid networks. In Proc. 1st ACM SIG-
COMM Symposium on Software Defined Networking
Research (SOSR), pages 20:1–20:7, 2015.

[9] C. E. Leiserson. Fat-trees: universal networks for
hardware-efficient supercomputing. Computers, IEEE
Transactions on, 100(10):892–901, 1985.

[10] D. Levin, M. Canini, S. Schmid, F. Schaffert, and
A. Feldmann. Panopticon: Reaping the benefits of
incremental sdn deployment in enterprise networks. In
USENIX Annual Technical Conference (ATC), 2014.

[11] H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee, and
G. Jiang. Hybnet: Network manager for a hybrid network
infrastructure. In Proc. ACM/IFIP/USENIX Middleware
Industry, 2013.

[12] G. Mirjalily, F. Sigari, and R. Saadat. Best multiple
spanning tree in metro ethernet networks. In Confer-
ence on Computer and Electrical Engineering (ICCEE),
volume 2, pages 117–121, 2009.

[13] ONF. Hybrid Working Group. http://bit.ly/Lu4XOw.

[14] M. Padmaraj, S. Nair, M. Marchetti, G. Chiruvolu, and
M. Ali. Traffic engineering in enterprise ethernet with
multiple spanning tree regions. In Systems Communica-
tions, pages 261–266, 2005.

[15] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson,
and B. Tierney. A first look at modern enterprise
traffic. In 5th ACM SIGCOMM Conference on Internet
Measurement (IMC), 2005.

[16] L. Schiff, M. Borokhovich, and S. Schmid. Reclaiming
the brain: Useful openflow functions in the data plane.
In ACM Workshop on Hot Topics in Networks (HotNets),
2014.

[17] M. Steinder and A. S. Sethi. A survey of fault local-
ization techniques in computer networks. Science of
Computer Programming, 53(2):165 – 194, 2004.

[18] O. Tilmans and S. Vissicchio. Igp-as-a-backup for robust
sdn networks. In 10th International Conference on
Network and Service Management (CNSM), 2014.

[19] S. Vissicchio, L. Vanbever, and O. Bonaventure. Op-
portunities and Research Challenges of Hybrid Software
Defined Networks. ACM Computer Communication
Review, 44(2), April 2014.

http://bit.ly/1ffWkzT
http://bit.ly/Lu4XOw

