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Abstract—Virtualized datacenters offer great flexibilities in
terms of resource allocation. In particular, by decoupling ap-
plications from the constraints of the underlying infrastructure,
virtualization supports an optimized mapping of virtual machines
as well as their interconnecting network to their physical coun-
terparts: essentially a graph embedding problem.

However, existing embedding algorithms such as Oktopus
and Proteus often ignore a crucial dimension of the embedding
problem, namely data locality: the input to a cloud application
such as MapReduce is typically stored in a distributed, and
sometimes redundant, file system. Since moving data is costly, an
embedding algorithm should be data locality aware, and allocate
computational resources close to the data; in case of redundant
storage, the algorithm should also optimize the replica selection.

This paper initiates the algorithmic study of data locality
aware virtual cluster embeddings on datacenter topologies. We
show that despite the multiple degrees of freedom in terms of
embedding, replica selection and assignment, many problems
can be solved efficiently. We also highlight the limitations of
such optimizations, by presenting several NP-hardness proofs;
interestingly, our hardness results also hold in uncapacitated
networks of small diameter.

I. INTRODUCTION

Distributed cloud applications, such as batch-processing ap-
plications or scale-out databases, generate a significant amount
of network traffic [25]. For instance, MapReduce consists of a
network intensive shuffle phase, where data is transferred from
the mappers to the reducers. In order to ensure a predictable
application performance, especially in shared cloud environ-
ments, it is important to provide isolation and bandwidth
guarantees between the virtual machines [37], e.g., by making
explicit network reservations [5]. Accordingly, modern batch-
processing applications provide the abstraction of entire virtual
networks [25], defining both the virtual machines as well
as their interconnecting network. The most prominent virtual
network abstraction is the virtual cluster [5], [34].

Virtualized datacenters offer great flexibilities on where
these virtual networks can be instantiated or embedded. In
order to maximize the resource utilization in the datacenter, it
is in principle desirable to map the virtual machines of a given
virtual network as close as possible in the underlying physical
network, as this minimizes communication costs (respectively,
bandwidth reservations) [5], [34].

However, existing systems often ignore a crucial dimension
of the virtual network embedding problem: the fact that
the input data for a cloud application, consisting of atomic
chunks, is typically distributed across different servers and

stored in a distributed file system [6], [17], [32]. In order
to properly minimize communication costs, an embedding
algorithm should hence also be data locality aware [4], [23],
[36], and allocate (or embed) computational resources close
to the to be processed data. Moreover, in case of redundant
storage (batch processing applications often provide a 3-fold
redundancy [32]), an algorithm should also be aware of, and
exploit, replica selection flexibilities.

A. Our Contributions

This paper initiates the formal study of data-locality and
replica aware virtual network embedding problems in data-
centers. In particular, we decompose the general optimization
problem into its fundamental aspects, such as assignment
of chunks, replica selection, and flexible virtual machine
placement, and answer questions such as:

1) Which chunks to assign to which virtual machine?
2) How to exploit redundancy and select good replicas?
3) How to efficiently embed virtual machines and their

inter-connecting network?
4) Can the chunk assignment, replica selection and virtual

machine embedding problems be jointly optimized, in
polynomial time?

We draw a complete picture of the problem space: We
show that even problem variants exhibiting multiple degrees
of freedom in terms of replica selection and embedding,
can be solved optimally in polynomial time, and we present
several efficient algorithms accordingly. However, we also
prove limitations in terms of computational tractability, by
providing reductions from 3-D matching and Boolean sat-
isfiability (SAT). Interestingly, while it is well-known that
(unsplittable) multi-commodity flow problems are NP-hard
in capacitated networks, our hardness results also hold in
uncapacitated networks; moreover, we show that NP-hard
problems already arise in small-diameter networks (as they
are widely used today [2]).

B. Organization

Section II introduces our formal model in detail. Algorithms
are presented in Section III and hardness results are presented
in Section IV. After discussing related work in Section V, we
conclude our work in Section VI.
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Fig. 1. Overview: a 9-server datacenter storing τ = 4 different chunk types
{c1, . . . , c4} (depicted as circles). The chunk replicas need to be selected
and assigned to the two virtual machines v1 and v2; the virtual machines are
depicted as squares, and the network connecting them to chunks (at bandwidth
b1) is dashed. In addition, the virtual machines are inter-connected among
each other at bandwidth b2 (dotted). The objective of the embedding algorithm
is to minimize the overall bandwidth allocation (sum of dashed and dotted
lines).

II. MODEL

To get started, and before introducing our formal model and
its constituting parts in detail, we will discuss the practical
motivation. Figure 1 gives an overview of our model.

A. Background and Practical Motivation

Our model is motivated by batch-processing applications
such as MapReduce. Such applications use multiple virtual
machines to process data, often redundantly stored in a dis-
tributed file system implemented by multiple servers. [4], [11]
The standard datacenter topologies today are (multi-rooted)
fat-tree resp. Clos topologies [2], [20], hierarchical networks
recursively made of sub-trees at each level; servers are located
at the tree leaves. Given the amount of multiplexing over
the mesh of links and the availability of multi-path routing
protocol, e.g. ECMP, the redundant links can be considered as
a single aggregate link for bandwidth reservations [5], [34].

During execution, batch-processing applications typically
cycle through different phases, most prominently, a map phase
and a reduce phase; between the two phases, a shuffling opera-
tion is performed, a phase where the results from the mappers
are communicated to the reducers. Since the shuffling phase
can constitute a non-negligible part of the overall runtime [8],
and since concurrent network transmissions can introduce
interference and performance unpredictability [37], it is impor-
tant to provide explicit minimal bandwidth guarantees [25]. In
particular, we model the virtual network connecting the virtual
machines as a virtual cluster [5], [25], [34]; however, we
extend this model with a notion of data-locality. In particular,
we distinguish between the bandwidth needed between the
assigned chunk and virtual machine (b1) and the bandwidth
needed between two virtual machines (b2).

B. Formal Model

Let us now introduce our model more formally. It consists
of three fundamental parts: (1) the substrate network (the
servers and the connecting physical network), (2) the input
which needs to be processed (divided into data chunks), and
(3) the virtual network (the virtual machines and the logical

network connecting the machines to each other as well as to
the chunks).

The Substrate Network. The substrate network (also known
as the host graph) represents the physical resources: a set S of
nS = |S| servers interconnected by a network consisting of a
set R of routers (or switches) and a set E of (symmetric) links;
we will often refer to the elements in S ∪ R as the vertices.
We will assume that the inter-connecting network forms an
(arbitrary, not necessarily balanced or regular) tree, where the
servers are located at the tree leaves. Each server s ∈ S can
host a certain number of virtual machines (available server
capacity cap(s)), and each link e ∈ E has a certain bandwidth
capacity cap(e).

The Input Data. The to be processed data constitutes the
input to the batch-processing application. The data is stored
in a distributed manner; this spatial distribution is given and
not subject to optimization. The input data consists of τ
different chunk types {c1, . . . , cτ}, where each chunk type ci
can have ri ≥ 1 instances (or replicas) {c(1)i , . . . , c

(ri)
i }, stored

at different servers. A single server may host multiple chunks.
It is sufficient to process one replica, and we will sometimes
refer to this replica as the active (or selected) replica.

The Virtual Network. The virtual network consists of
a set V of nV = |V | virtual machines, henceforth often
simply called nodes. Each node v ∈ V can be placed (or,
synonymously, embedded) on a server; this placement can be
subject to optimization.

Depending on the available capacity cap(s) of server s,
multiple nodes may be hosted on s. We will denote the server
s hosting node v by π(v) = s. Since these nodes process
the input data, they need to be assigned and connected to the
chunks. Concretely, for each chunk type ci, exactly one replica
c
(j)
i must be processed by exactly one node v; which replica
c
(k)
i is chosen is subject to optimization, and we will denote

by µ the assignment of nodes to chunks.
In order to ensure a predictable application performance,

both the connection to the chunks as well as the interconnec-
tion between the nodes may have to ensure certain minimal
bandwidth guarantees; we will refer to the first type of virtual
network as the (chunk) access network, and to the second type
of virtual network as the (node) inter-connect; the latter is
modeled as a complete network (a clique). Concretely, we
assume that an active chunk is connected to its node at a
minimal (guaranteed) bandwidth b1, and a node is connected
to any other node at minimal (guaranteed) bandwidth b2.

C. Optimization Objective

Our goal is to develop algorithms which accept and embed
a request whenever this is possible, and minimize the resource
footprint: the amount of resources which have to be dedicated
to a request, in order to realize its guarantees.

Formally, let dist(v, c) denote the distance (in the underlying
physical network T ) between a node v and its assigned
(active) chunk replica c, and let dist(v1, v2) denote the distance



between the two nodes v1 and v2. We define the footprint F(v)
of a node v as follows:

F(v) =
∑
c∈µ(v)

b1 · dist(v, c)+
1

2
·
∑

v′∈V \{v}

b2 · dist(v, v′)

︸ ︷︷ ︸
only for inter-connect

,

where µ(v) is the set of chunks assigned to v. Our goal is to
minimize the overall footprint F =

∑
v∈V F(v).

D. Problem Decomposition

In order to chart the landscape of the computational
tractability and intractability of different problem variants, we
decompose our problem into its fundamental aspects, namely
replica selection (RS), multiple chunk assignment (MA),
flexible node placement (FP), node interconnect (NI), and
bandwidth constraints (BW), as described in the following. In
this paper, we will consider all possible 32 problem variants,
where each of these five aspects can either be enabled or
disabled.

Replica Selection (RS). The first fundamental problem is
replica selection: if the input data is stored redundantly, the
algorithm has the freedom to choose a replica for each chunk
type, and assign it to a virtual machine (i.e., node). In the
following, we will refer to a scenario with redundant chunks
by RS; in the RS-only scenario, the number of chunk types
is equal to the number of nodes. Otherwise, we will add the
+MA property discussed next.

Multiple Assignment (MA). If the number of chunk types
τ is larger than the number of nodes, each node needs to be
assigned multiple chunks. We will refer to such a scenario
by MA. Since all nodes are identical and no additional
information regarding the chunks is available at request time,
we assume that each node will process an identical integer
number of chunks m = τ/nV .

Flexible Placement (FP). While the nodes are placed a
priori in some cases, the node placement (or synonymously:
embedding) of nodes on physical servers can also be subject
to optimization. We will refer to this degree of freedom by
FP.

Node Interconnect (NI). We distinguish between scenarios
where bandwidth needs to be reserved both from each node
to its assigned chunks as well as to the other nodes (i.e.,
b1 > 0 and b2 > 0), and scenarios where only the (chunk)
access network requires bandwidth reservation (i.e., b1 > 0
and b2 = 0). We will refer to the former scenario where
bandwidth needs to be reserved also for the inter-connect, by
NI. The node interconnect is modelled as a complete graph,
to account for the all to all communication patterns of batch
processing applications such as MapReduce.

Bandwidth Capacities (BW). We distinguish between an
uncapacitated and a capacitated scenario where the links of
the substrate network come with bandwidth constraints, and
will refer to the bandwidth-constrained version by BW; the
capacity of servers (the number of nodes which can be hosted
concurrently) is always limited. Note that capacity constraints

introduce infeasible problem instances, where it is impossible
to allocate sufficient resources to satisfy an embedding request.

III. POLYNOMIAL-TIME ALGORITHMS

Despite the various degrees of freedom in terms of embed-
ding and replica selection, we can solve many problem variants
efficiently. This section introduces three general techniques,
which can roughly be categorized into flow (Section III-A),
matching (Section III-B) and dynamic programming (Sec-
tion III-C) approaches. First, let us make a simplifying ob-
servation:

Observation 1. In problems without flexible placement (FP),
the bandwidth required for the inter-connect network (NI) can
be allocated upfront, as it does not depend on the replica
selection and assignment. Accordingly, we can reduce problem
variant RS+MA+NI+BW (as well as all its subproblems)
to RS + MA + BW (resp. its subproblems).

A. Flow Algorithms (RS + MA + NI + BW)

We first present an algorithm to solve the RS + MA +
NI + BW problem. Recall that in this problem variant,
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Fig. 2. Variants solved by flow ap-
proach.

we are given a set of re-
dundant chunks (RS) and
a set of nodes (the nodes)
at fixed locations (no FP).
The number of chunk types
is larger than the number
of nodes (MA), and each
node needs to be connected
to its selected chunks as
well as to other nodes (NI),
while respecting capacity
constraints (BW). Our goal
is to minimize the resource
footprint F, consisting of the bandwidth reservations in the
(chunk) access network and the (node) inter-connect. As we
will see in the following, we can use a flow approach to solve
this problem variant.

Construction of Artificial Graph. In order to solve the
RS + MA + NI + BW problem, we first remove the NI
property using Observation 1. We then construct an artificial
graph T ∗, extending the substrate network T and normalizing
bandwidth capacities, as follows. For T ∗, we normalize the
bandwidth of T to integer multiples of b1, i.e., for each link
e ∈ E(T ), we set its new capacity in T ∗ to bcap(e)/b1c. After
this normalization, we extend the topology T by introducing
an artificial vertex for each chunk type. These artificial vertices
are connected to each leaf (i.e., server) in T where a replica
of the respective chunk type is located, connecting the replica
of the respective chunk type by a link of capacity 1. In
addition, we create a super-source s+, and connect it to each
of the artificial chunk type vertices (with a link of capacity 1).
Moreover, we create an artificial super-sink s− and connect it
to every leaf containing at least one node; the link capacity
represents the number of nodes x hosted on this server, times
the multi-assignment factor m. We additionally assign the



Fig. 3. Example of flow construction: Problem instance with two nodes, four
chunk types, and two replicas per type. The min-cost-max-flow is indicated
by the dashed lines: each line represents one unit of flow.

following costs to edges of T ∗: every edge of the original
substrate network costs one unit, and all other artificial edges
cost nothing.

A solution to the RS + MA + BW problem can now
be computed a from a solution to the Min-Cost-Max-Flow
problem between super-source s+ and super-sink s− on the
artificial graph T ∗.

Example. Figure 3 shows an example of the extended
substrate network T ∗: The sink s− is connected to the two
leaves, which host the nodes. The artificial nodes are depicted
below the leaves, are labeled with their respective chunk types
(e.g., c1), and are connected to the source s+ as well as to
the leaves which contain replicas of their chunk type. The
maximum flow with minimal costs is indicated by the dashed
lines: each line represents one unit of flow. The dotted lines
indicate links which have reduced capacity due to NI.

Algorithm. Our algorithm to solve RS + MA + NI + BW
consists of three parts: First, we construct the normalized and
extended graph T ∗ described above and compute a min-cost-
max-flow solution, e.g., using [18], [33]. Second, we have to
round the resulting, possibly fractional flow, to integer values.
Due to the integrality theorem [1], there always exists an
optimal integer solution on graphs with integer capacities.
However, while algorithms like the successive shortest path
algorithm [24] directly give us such an integral solution (in
polynomial time), the fastest min-cost-max-flow algorithms
(e.g., based on double-scaling methods [18] or minimum
mean-cost cycle algorithms [33], may yield fractional solutions
which need to be rounded to integral solutions (of the same
cost). In order to compute integral solutions, we proceed
as follows: we iteratively pick an arbitrary (loop-free) path
currently having a fractional allocation of value f (f > 0),
and distribute its flow f among all other fractional paths of the

same length; due to the optimality of the fractional solution
and due to the integrality theorem, such paths must always
exist. After distributing this flow, the total allocation on this
path will be 0, and we have increased the number of integer
paths by at least one. We proceed until we constructed the
perfect matching. Third, given an integer min-cost-max-flow
solution, we need to decompose the integer flow into the paths
representing matched chunk-node pairs: The assignment can
be obtained by decomposing the flow allocated in the original
substrate network. In order to identify a matched chunk-node
pair, we take an arbitrary (loop-free) path p carrying a flow of
value ≥ 1 from s+ to s−: the first hop represents the chosen
chunk type, the second hop the chosen replica, and the last but
one hop represents the server: we will assign the replica to an
arbitrary unused node on this server. Having found this pair,
we reduce the flow along the path p by one unit. We continue
the pairing process until every chunk type is assigned.

Analysis. The correctness of our approach follows from
our construction of T ∗, using integer capacities (in our case
bcap(e)/b1c), and the fact that cost optimal integral solutions
always exist [1]. The runtime of our algorithm consists of
four parts: construction of T ∗, computation of the min-cost-
max-flow, flow rounding, and decomposition. The dominant
term in the asymptotic runtime is the flow computation. Using
the state-of-the-art min-cost-max-flow algorithms [18], [33]
we get a runtime of O(n2S · log logmin{U, τ}) where U
is the maximal link capacity; note that in networks with
high capacity and uncapacitated networks, we can simply set
U = τ .

B. Matching Algorithms (RS+MA+NI and MA+NI+BW)

This section presents faster algorithms to solve
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Fig. 4. Variants solved by matching
approaches.

the two problem variants
RS + MA + NI and MA +
NI + BW which can also
be solved withthe flow ap-
proach introduced above. In
general, we refer to the al-
gorithms presented in this
section as matching ap-
proaches.

1) RS + MA + NI: Let
us first consider the RS +
MA + NI variant. Recall
that in this problem, we are
given a set of redundant chunks (RS) and a set of nodes at
fixed locations. The number of chunk types is larger than the
number of nodes (MA), and each node needs to be connected
to its chunks as well as to other nodes (NI). Our goal is to
minimize the resource footprint F, consisting of the bandwidth
reservations in the access network and the inter-connect.

Algorithm. Due to Observation 1, RS + MA + NI degen-
erates to RS + MA. In order to solve the RS + MA problem
variant, we construct a bipartite graph between the set V of
nodes and the set of chunks. Concretely, we clone each node
m times, as each node needs to process m chunk types, and



Fig. 5. The RS + MA problem on the left is converted into a matching
problem on the right. Since each node has to process two chunks, the nodes
are replicated in the matching representation. The two replicas of each chunk
type are represented by a single node, and all edges connecting to this node
have a weight according to the shorter distance to one of the replicas. This
is visualized for c2.

we collect all copies of a given chunk type in a single “super-
node”. We connect each node to all chunk types using the
lowest hop count to one of the copies as the cost metric
(the link weight). On the resulting bipartite graph, we can
now compute a Minimum Weight Perfect Matching [16]: the
resulting matching describes the optimal assignment of chunks
to nodes.

Example. Before analyzing our algorithm, let us consider
a small example. Figure 5 illustrates an instance where two
nodes are cloned into m = 2 nodes each, resulting in a total of
four nodes in the matching problem representation. The two
replicas of each chunk type are aggregated into a single chunk
type vertex cj in the matching problem; this gives a total of
four chunk type vertices in the matching graph. The costs on
the links between all clones of a specific vertex and a chunk
type are set to the minimum distance. We can observe this for
instance at the edges connecting the two clones of v1 to c2:
both weights are 0.

Analysis. The correctness of our algorithm follows from
the construction and the optimal solution of the minimum
matching. The runtime consists of two parts: the construction
of the matching graph and the actual matching computation.
The constructed graph consists of m · nV · τ many edges,
and for each edge we need to compute its cost, i.e., the
shortest distance which in a tree we can computed in time nS ;
thus, the overall construction time is O(nS · τ2). The state of
the art algorithm to compute matchings are based on scaling
techniques [14]. The runtime translates to O(τ5/2 ·log(τ ·nS));
recall that τ = m · nV .

2) Faster MA + NI and MA + NI + BW: We now show
that we can solve MA+NI even faster, by exploiting locality.
Moreover, we will show that we can even solve MA + NI +
BW problem variants by simply verifying feasibility. In the
following, due to Observation 1, we can focus on the MA
resp. MA + BW problem.

We first introduce the following definition.

Definition 1 (Local Assignment (LA)). We define an as-
signment µ to be local in a specific subtree T ′, iff µ assigns
the maximum number of chunks in the subtree to nodes in the

Fig. 6. Illustration of local assignment: The dashed lines indicate bandwidth
allocations, which occur independently of the chosen assignment. The dotted
lines indicate bandwidth allocation which occur only if c2 is assigned to v1.

same subtree. We define µ to be local when it is local with
respect to all possible subtrees of the substrate network.

Example. Figure 6 illustrates the concept of local assign-
ment: The closest chunk to v2 is c1, and the closest node to
c1 is v2. However, a subtree T ′ exists such that v1 ∈ T ′ and
c1 ∈ T ′, but v2 /∈ T ′. Therefore, a local assignment cannot
assign c1 to v2.

We will see later that optimal solutions to MA have a local
assignment. We exploit this in our algorithms described in the
following.

Algorithm. Our proposed algorithm for MA proceeds in a
bottom-up fashion, traversing the substrate network T from
the leaves toward the root. For each subtree T ′, we maintain
two sets S1, S2 in order to match unmatched chunks S1 in the
subtree T ′ to unmatched nodes S2 in T ′. Both sets are initially
empty.

We first process all the leaves, in an arbitrary order; sub-
sequently, we process arbitrary inner vertices of T , whenever
all their children have been processed. We process any leaf `
by adding any nodes or chunks which are located on ` to the
corresponding sets S1 and S2. A non-leaf vertex u is processed
in the following way: we take the union of the sets of u’s
children, i.e., the sets contain the unmatched chunks and nodes
in this subtree. For both leaves and inner nodes, whenever both
sets are non-empty, we greedily match an arbitrary chunk in
S1 with an arbitrary node in S2, and remove them from the
sets.

Analysis. On a given vertex u, emptying one of the sets,
results in a local assignment (cf Definition 1) in the subtree
rooted at u. The bottom-up strategy ensures that this works
for every subtree in the substrate, rendering the resulting
assignment local. The complexity of this construction is low:
For each vertex in the substrate graph, we build the union of
the children’s sets, and since each vertex can only be the child
of one vertex, the amortized runtime per vertex is constant;
and hence the overall runtime O(nS). The sum of all remove
operations, is equal to the number of chunk types O(τ).



Hence the overall complexity of this construction amounts to
O(nS + τ).

It remains to prove optimality of such local assignments.
We first characterize the bandwidth allocation on uplinks of
subtrees.

Lemma 1. Given an MA problem and a subtree T ′ contain-
ing x chunks and y nodes, the minimal bandwidth allocation
of any assignment µ on the uplink of T ′ is |x− y ·m| · b1.

Proof. In case the number of chunk types equals the process-
ing capacities of the nodes in the given subtree, the bandwidth
allocation inflicted by the chunk access network on the uplink
can be zero, since we can assign all chunks to nodes in the
same subtree. Otherwise, we distinguish between two cases:
Recall, that in instances without RS, all chunks have to be
processed. In case there are more chunks in the subtree, at least
all of the excess chunks have to be transferred to a different
subtree, which will inflict costs b1 per excess chunk on the
uplink connecting T ′ with the remaining parts of T , which
will inflict costs b1 per excess chunk on the uplink of root of
T ′. Similarly, if the processing capabilities exceed the amount
of available chunks, excess chunks from other subtrees will
have to be transferred to nodes in the subtree T ′, inflicting
bandwidth costs of b1 each. Hence, the minimum bandwidth
allocation for the chunk access on the uplink is the difference
between the number of chunks and the processing capabilities
of the subtree |x − y · m| times the amount of bandwidth
needed, for a single transfer b1.

Theorem 2. Given an MA+NI problem instance, a feasible
assignment µ is optimal iff it is local.

Proof. Local assignments generate exactly the minimal al-
locations on all links, as the assignments which generate
the minimal bandwidth allocations described in the proof of
Lemma 1 are local in the given subtree. Hence each local
assignment has to be optimal. A non-local assignment, has
at least one subtree, in which it is not local. This subtree
will have a higher allocation on the uplink. Since the local
assignment has minimal allocations on all other links, the non
local assignment has a larger footprint.

Combined with a simple postprocessing step, this approach
can also solve MA+BW. The central idea of this extension, is
that local assignments allocate the minimal bandwidth on each
individual edge. In consequence, each bandwidth constraint
which is lower than the allocation of a local assignment on
one link, renders the problem infeasible. Hence, it is sufficient
to temporarily omit the bandwidth limitations, compute an
optimal assignment for an MA instance, and verify that
the resulting allocations do not violate any capacities. The
postprocessing step scales linearly with the number of edges
in the substrate graph.

C. Dynamic Programming (MA + FP + NI + BW)

We now show how to solve the MA + FP + NI + BW
problem variant in polynomial time. Note that this problem

Fig. 8. Two different node placements for the same substrate graph and chunk
locations. For b1 = b2, both solutions have an identical footprint. In other
cases, one solution outperforms the other.

variant requires to find a tradeoff between the desire to place
nodes as close as possible to each other (in order to minimize
communication costs), and the desire to place nodes as close
as possible to the chunk locations.

Example. Figure 8 shows an example: one extreme solu-
tion is to minimize the distance between chunks and nodes,
see mapping π1 in Figure 8 (left): the four nodes are all
collocated with chunks, resulting in a zero-cost chunk ac-
cess network. As a result, the paths between the individ-
ual nodes are longer than in alternative node placements:
each node has a distance of two hops to one other node,
and four hops to two other nodes. Hence the resulting al-
locations for the node interconnect sum up to 20 · b2 .

RS

FP
NI

MA

BW

Fig. 7. Variants solved by dynamic
programming approach.

Figure 8 (right) shows a
different node mapping π2,
which seeks to minimize the
communication costs be-
tween the nodes, and places
all nodes in one subtree. The
distance between all nodes
is two, which results in a to-
tal bandwidth allocation of
12 · b2 for the interconnect.
However, this reduced price
comes at additional costs in
the access network: c3 and
c4 have to be communicated to v3 and v4, which requires a
total bandwidth allocation of 8 · b1.

Basic ideas. Our proposed approach is based on dynamic
programming, and leverages the optimal substructure property
of MA + FP + NI + BW: as we will see, optimal solutions
for subproblems (namely subtrees) can efficiently be combined
into optimal solutions for larger problems. Indeed, the MA +
FP + NI + BW problem exhibits such a structure, and we
show how to exploit it to compute efficient embeddings, even
in scenarios where multiple chunks need to be assigned to
flexibly placeable nodes.

For ease of presentation we will transform the substrate net-
work T into a binary tree, using binarization: we clone every
higher-degree node, iteratively attaching additional clones as
right children and original children as left descendants.

As usual in dynamic programs, we define, over the structure
of the tree, a recursive formula formula f for the minimal
cost solution given any possible number of nodes embedded
in a given subtree. The actual set does not matter, due
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Fig. 9. Empirical runtimes for the dynamic pogram (left) and the flow
algorithm (right).

to symmetry arguments. Our approach is to evaluate this
function in a bottom-up manner. To finally compute the actual
optimal embedding, we traverse the computed minimal-cost
path backwards (according to the optimal values found for f
during the bottom-up computation).

Concretely, the first argument to function f is a subtree
T ′, containing a given number of chunks y(T ′), and the
second argument is the number of nodes to be embedded in
the subtree. Function f is evaluated in a bottom up manner.
We initialize the function at each leaf `, by f(T`, x) = ∞
for all numbers of nodes x which are larger than the server
capacity cap(`); to calculate f(T`, x), for x ≤ cap(`), we
compute the bandwidth allocation on the uplink of T`, referred
to by the function bw(T`, x): bw(Tl, x) = b1· |x − y(T`)|+
b2 · (nV − x) · x, which accounts for the bandwidth allocation
on the uplink of T`. The first term represents the required
bandwidth for the communication between the x nodes on `,
and the nV − x nodes in the remaining parts of the substrate
network. The second term represents the bandwidth, which is
necessary to transport the chunks from their location to the
node which should process the data (see Lemma 1 for more
details).

After initialization, we proceed to compute f for non-leaf
nodes in a bottom-up manner: We split the x nodes into two
positive integer values, and we put r on the right and x − r
on the left subtree. That is, we take the optimal cost (given
recursively) of placing r nodes in the right subtree RI(T ′) of
T ′ and x − r nodes in left subtree LE(T ′) of T ′. Given the
cheapest combination, we add the bandwidth requirements on
the uplink of T ′ to generate the overall costs for placing x
nodes in T ′.

f(T ′, x) = min
0≤r≤x

{f (LE(T ′), x− r)+f (RI(T ′), r)}+bw(T ′, x)

Again, we set f(T ′, x) to infinity if the required bandwidth
bw exceeds the capacity cap of the uplink of T ′.

Analysis. The correctness and optimality of our dynamic
program is due to the decoupling of the costs induced by the
tree structure of T and the substructure optimality property.
The substructure optimality follows from the observation that
costs can be accounted on the uplink, and the fact that we
check each possible node distribution. For each substrate

vertex (nS many) we have to check the cost of all possible
splits, resulting in an overall complexity of O(nS · n2V ). The
runtime to binarize T is asymptotically negligible.

D. Simple Problems

BW

MA
RS

FP
NI

Fig. 10. Trivially solvable problem
variants.

For the sake of complete-
ness, we also observe that
there are several problems
which allow for a trivial so-
lution. Concretely, problems
with FP plus any combina-
tion of RS and BW (but
without MA and NI) can
easily be solved by mapping
nodes to chunk locations.
Figure 10 shows a Venn di-
agram of the trivial property
combinations.

E. Simulation Study: Runtime

In order to complement our formal worst-case analysis, and
to shed some light on the actual runtimes of our algorithms,
we implemented a simple simulator in Java. We consider a
three-layer substrate tree-topology, where core switches have
degree 16 and pod switches 32. We vary the number of servers
from 211 to 220 ≈ 1048k. We assume that each server can host
up to 4 for virtual machines.

For the dynamic program, we initialize the substrate by
generating a random utilization pattern. In general, we ensure
that a feasible embedding exists. We vary the size n of
the requested virtual clusters from 8 to 1024. Chunks are
distributed uniform at random acorss servers; the same holds
for nodes in scenarios without FP. For each parameter setting,
we repeated 100 experiments, and plot the average in our
figures. All runtime measurements were performed using a
single threaded implementation on an Intel(R) Xeon(R) CPU
L5420 @ 2.50GHz, with Debian 4.6.3-14 utilizing openjdk-7.

Figure 9 (left) shows the runtime of the dynamic program.
The results indicate that even a single threaded implementation
is sufficient to solve instances with 128 nodes in realistic
datacenter scales (32k servers) within seconds. Moreover,
note that the dynamic program can be parallelized almost
perfectly, as all computations on one aggregation level of
the substrate tree can happen in parallel. This renders the
algorithm also attractive for larger scales. The runtimes for
the flow algorithm, which are shown in Figure 9 (right), are
higher, but still within an order of magnitude of the runtimes of
the dynamic program. However, unlike the dynamic program,
the flow algorithm cannot easily be parallelized, and may
hence face limitations. We also implemented the matching
algorithm for MA+NI+BW: as expected, this algorithm is the
fastest, and completes within one milisecond for all described
parameter combinations. Accordingly, we do not show it in
the figure.



IV. NP-HARDNESS RESULTS

We have seen that even problems with multiple dimensions
of flexibility can be solved optimally in polynomial time. This
section now points out fundamental limitations in terms of
computational tractability. In particular, we will show that
problems become NP-hard if flexibly placeable nodes (FP)
have to be assigned to one of multiple replicas (RS), either
with multiple chunks per node (MA in Section IV-B) or
with communication among nodes (NI in Section IV-C). both
results hold even in uncapacitated networks, and even in
small-diameter substrate networks (namely two- or three-level
trees [2]). The hardness of FP+RS+MA and FP+RS+NI
imply the hardness of four additional, more general models,
as summarized in Figure 11:

RS+FP+NI RS+FP+NI+BW

RS+MA+FP+NI RS+MA+FP+NI+BW

RS+MA+FP RA+MA+FP+BW

Fig. 11. The NP-hardness of 2 variants, implies that 4 other variants are also
NP-hard.

A. Introduction to 3D Perfect Matching

Both the hardness of FP+RS+MA and FP+RS+NI are
shown by a reduction from the NP-complete problem of 3D
Perfect Matching [10], which we can see as a generalization
of bipartite matchings to 3-uniform hypergraphs. We will refer
to this problem by 3-DM, and for completeness, review it
quickly: 3-DM is defined as follows. We are given three finite
and disjoint sets X , Y , and Z of cardinality k, as well as
a subset of triples T ⊂ X × Y × Z. Set M ⊆ T is a 3-
dimensional matching if and only if, for any two distinct triples
t1 = (x1, y1, z1) ∈ M and t2 = (x2, y2, z2) ∈ M , it holds
that x1 6= x2, y1 6= y2, and z1 6= z2. Our goal is to decide if
we can construct a M ⊆ T which is perfect, that is, a subset
which covers all elements of X × Y × Z exactly once.

B. Multi-Assignments are hard (FP + RS + MA)

Our proof that FP + RS + MA is NP-hard is based on
the following main ideas. We encode a 3-DM instance as an
FP + RS + MA instance as follows:
• For every element in the universe X∪Y ∪Z, we create a

chunk type. Intuitively, in 3-DM, each element must be
covered, which corresponds to the requirement of FP +
RS + MA that each chunk type is processed.

• We will encode each triple as gadget with three leaves
in a substrate tree T . The three leaves are close to each
other in T , and the placement of chunk replicas in FP +
RS + MA corresponds to the elements of the triples in
these leaves.

• The node placement will correspond to the choice of
triples, independently of which leaf the node is mapped
to. A node will process its collocated chunk, as well as
the chunks in other two leaves of the same gadget.

• In order to turn the optimization problem into a decision
problem, we will use a cost threshold Th. The cost
threshold will be met by all assignments which assign all
three chunks of each triple to a node which is collocated
with one of the chunks. Assignments which connect a
chunk to a node in a different triple, will have a larger
footprint, and are considered to be infeasible.

Construction. Given an instance I of 3-DM in which k
triples have to be choosen, we construct an instance I ′ of
FP + RS + MA as follows:
• Tree Construction: We create a tree consisting of a root,

and for each triple, we create a gadget which we directly
attach as child of the root. The gadget is of height 2, and
has the following form: The gadget of each triple consists
of an inner node (a router) and three leaves.

• Chunks and chunk replicas: For each element in X , Y
and Z, we create a chunk type (3 · k in total). Every
gadget contains three chunk replicas, corresponding to the
elements of the triple. Each leave in a gadget, contains
exactly one replica.

• Other properties: We set the number of to-be-embedded
nodes to k, b1 to 1, and the number of chunk slots in
each node to the multi-assignment factor m = 3. We use
a threshold Th = 4 · k.

Example. Figure 12 shows an example of our construction:
An instance I of 3-DM is given: The disjoint sets X , Y
and Z have a cardinality k = 2. We will refer to the two
elements in X as x1 and x2, and use the same notation for
the other two sets. T contains the three triples (x1, y1, z1),
(x2, y1, z2), and (x2, y2, z2). The goal of 3-DM is to find a
subset M ⊆ T , which contains each element in each of the
three sets exactly once. This instance only has one solution:
M = {(x1, y1, z1), (x2, y2, z2))}.

To construct the corresponding instance I ′ of FP + RS +
MA, we create a gadget for each triple in T . For each variable
which occurs in a triple, the corresponding gadget contains a
chunk of the type of the variable. The triple (x2, y1, z2) of
the instance is represented by the middle gadget in Figure 12.
The objective of I ′ is to spawn k = 2 nodes, with the smallest
possible footprint. If the total footprint is ≤ 2 · 2 · k, we can
construct a solution to I from the solution to I ′. The footprint
consists of the costs which occur when a node is embedded
in a gadget, and the three chunks of that gadget which are
assigned to that node: one of the chunks is collocated with
the node, the other two have to be transferred via two hops,
inflicting unitary costs on each hop.

Correctness. Given these concepts, we can now show the
computational hardness.

Theorem 3. FP + RS + MA is NP-hard.

Proof. Let I be an instance of 3-DM and let I ′ be an instance
of FP + RS + MA constructed as described above. We prove



Fig. 12. Left: A 3-DM instance with three triples: (x1, y1, z1), (x2, y1, z2),
and (x2, y2, z2). The solution is indicated by the grey triples; the dashed triple
is not used for the solution. Right: The corresponding problem and solution
of FP + MA + RS.

that I ′ has a solution of cost ≤ Th if (⇒) and only if (⇐) I
has a matching of size k.

(⇒) Let us take a solution to 3-DM. We place a node in
every gadget that corresponds to the chosen triples. In each
of the corresponding gadgets, we match every chunk to the
node in this gadget. This solution has cost exactly Th. As
every element of the universe is covered, every chunk type is
processed.

(⇐) Let us take a solution to FP+RS+MA of cost ≤ Th.
We choose triples that correspond to gadgets where there are
nodes. Since all chunks are processed, every element of X ,
Y and Z is matched. Each node must process chunks that
correspond to the triple, otherwise the cost must be larger
than Th (high costs for chunk transportation).

C. Inter-connects are hard (FP + RS + NI)

Next, we prove that the joint optimization of node placement
and replica selection is NP-hard if an inter-connect has to
be established between nodes. In our terminology, this is the
FP + RS + NI problem.

The proof is similar in spirit to the proof of FP + RS +
MA, however, we modify the construction to account for the
absence of MA: we choose a high value for b1, such that
nodes will be directly collocated with their assigned chunks.
We leverage the fact that any solution which does not assign 0
or 3 chunks to each gadget, will have higher communication
costs.

Construction. Let I be an instance of 3-DM. We will create
an instance I ′ for FP + RS + NI as follows:
• We will construct the same tree as in previous reduction

with chunk replicas placed in the same way.
• The communication cost in the inter-connect is set to
b2 = 1.

• The number of nodes (virtual machines) is nV = 3 · k,
where k is the set cardinality.

• Only solutions which place a node in each leaf of k
gadgets, can be converted into solutions for the 3-DM
problem. We use the cost threshold Th = 6 · k + 18 ·
(k − 1) · k, to verify whether a solution achieves this,
transforming FP + RS + NI into a decision problem. A
detailed explanation of this value can be found in the
proof of Theorem 5.

• We set the access cost b1 to a chunk replica to a high
value W . This will force nodes to be collocated with the
replica. One example of sufficient (and polynomial but
not necessarily minimal) W is the value of the threshold
Th+1. Any solution not assigning chunks to collocated
nodes, have cost > Th: communicating a chunk inflicts
costs W = Th+ 1 over every link.

We focus on instances with unit server capacities.
Proof of correctness. Intuitively, in order to minimize

embedding costs, nodes should be placed on near-by replicas.
We use the following helper lemma.

Lemma 4. In every valid solution of I ′ of cost ≤ Th, each
gadget falls in one of two categories: k gadgets have exactly
3 nodes, and n− k gadgets remain empty.

Proof. Since W is large enough, the 3 · k nodes have to be
placed directly on different chunks, resulting in 0 costs for the
access network. Consider any pair of nodes communicating
over the inter-connect; due to our construction, the communi-
cation cost for each such pair is either 2 hops (if they belong
to the same gadget) or 4 hops (if they belong to different
gadgets). The lemma then follows from the observation that
Th is chosen such that it is never possible to distribute nodes
among more than k gadgets.

Theorem 5. FP + RS + NI is NP-hard.

Proof. Let I be an instance of 3-DM and let I ′ be an instance
of FP + RS + NI constructed as described above. We prove
that I ′ has solution of cost ≤ Th if (⇒) and only if (⇐) I
has a solution.

(⇒) In order to compute a solution for I ′ given a solution
for I , we proceed as follows. Given an exact covering set
of triples S = {t1, t2, . . . , tk}, we place three nodes in each
gadget that corresponds to every triple of S. Chunks are
matched to the nodes which are located on the same server.

The solution has the following cost: (1) the communication
cost inside a gadget is 2 ·

(
3
2

)
, as every pair contributes two

hops; (2) the communication cost from each gadget to all other
gadgets is 4 · 3 · 3 · (k − 1)/2, where the factor 4 is for the
communication over 4 hops, the factor 3 corresponds to the
number of nodes per gadget, and 3 · (k− 1) is the number of
nodes in remote gadgets; as we count each pair twice, we need
to divide by two in the end. Summing up over all k gadgets,
we get exactly Th.

(⇐) Given a solution for I ′, we can exploit Lemma 4 to
construct a solution for I . We know that in any solution of
cost at most Th, k gadgets contain exactly 3 nodes. These
gadgets correspond to a valid 3D Perfect Matching: exactly
one replica of every chunk type is processed and hence every
element is covered exactly once.

V. RELATED WORK

There has recently been much interest in programming mod-
els and distributed system architectures for the processing and
analysis of big data (e.g. [3], [11], [35]). The model studied



in this paper is motivated by MapReduce [11] like batch-
processing applications, also known from the popular open-
source implementation Apache Hadoop. These applications
generate large amounts of network traffic [8], [25], [37], and
over the last years, several systems have been proposed which
provide a provable network performance, also in shared cloud
environments, by supporting relative [26], [27], [31] or, as
in the case of our paper, absolute [5], [21], [28], [29], [34]
bandwidth reservations between the virtual machines.

The most popular virtual network abstraction for batch-
processing applications today is the virtual cluster, introduced
in the Oktopus paper [5], and later studied by many oth-
ers [25], [30], [34]. Several heuristics have been developed
to compute “good” embeddings of virtual clusters: embed-
dings with small footprints (minimal bandwidth reservation
costs) [5], [25], [30], [34]. The virtual network embedding
problem has also been studied for more general graph ab-
stractions (e.g., motivated by wide-area networks). [9], [15]

From a theoretical perspective, the virtual network em-
bedding problem can be seen as a generalization of classic
VPN graph embedding problems [19], [22], in the sense that
in virtual network embedding problems, also the embedding
endpoints are flexible. In this sense, the virtual network
embedding problem can also be seen as a generalization of
the classic NP-hard Minimum Linear Arrangement problem
which asks for the embedding of guest graphs on a simple
line topology (rather than tree-like topologies as studied in
this paper) [12], [13].

However, to the best of our knowledge, we are the first to
provide an algorithmic study of the virtual cluster embedding
problem which takes into account data locality as well as the
possibility to select replicas—aspects which so far have only
been studied from a best-effort perspective and using coarse-
grained metrics (e.g., same rack or same server), thus limiting
the flexibility of the system [4], [23], [36].

VI. SUMMARY AND CONCLUSION

At the heart of locality and replica aware virtual cluster
embeddings lie fundamental algorithmic problems. This paper
has shown that despite the multiple dimensions of flexibility
in terms of chunk assignment and node placement, and despite
the large scale of modern datacenters, many problems can
be solved efficiently. However, we have also shown that
several embedding problems are NP-hard already in two- and
three-level trees—a practically relevant result given today’s
datacenter topologies [2]).

Our results are summarized in Table I. One interesting take-
away from this figure regards the question which properties
render the problem NP-hard. For instance, we see that, BW
does not influence the hardness of any problem variant, while
RS is crucial for NP-hardness. MA only affects hardness if
combined with RS. NI is trivial without FP, and FP requires
more sophisticated algorithms when combined with NI or
MA; in combination with RS and MA or NI, FP renders
the problem NP-hard.

NP-hard

5 combinations RS + MA + FP + NI + BW

4 combinations RS + MA + FP + NI;
RS + MA + FP + BW;
RS + FP + NI + BW

3 combinations RS + MA + FP; RS + FP + NI

Flow

4 combinations RS + MA + NI + BW

3 combinations RS + NI + BW;
RS + MA + BW

2 combinations RS + BW

DP

4 combinations MA + FP + NI + BW

3 combinations MA + FP + NI;
MA + FP + BW;
FP + NI + BW

2 combinations MA + FP; FP + NI;

Matching

3 combinations RS + MA + NI; MA + NI + BW

2 combinations RS + MA; RS + NI; MA + NI;
MA + BW; NI + BW

1 combinations RS; MA; NI; BW

0 Cost

3 combinations RS + FP + BW

2 combinations RS + FP; FP + BW

1 combinations FP

TABLE I
FASTEST ALGORITHMS FOR DIFFERENT RESPECTIVE PROBLEM VARIANTS.
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