
Scheduling Loop-free Network Updates:
It’s Good to Relax!

Arne Ludwig1, Jan Marcinkowski2, Stefan Schmid1,3

1 TU Berlin, Germany
2 Institute of Computer Science, University of Wroc law, Poland

3 Telekom Innovation Laboratories (T-Labs), Germany

ABSTRACT
We consider the problem of updating arbitrary routes in a

software-defined network in a (transiently) loop-free manner.
We are interested in fast network updates, i.e., in schedules
which minimize the number of interactions (i.e., rounds) be-
tween the controller and the network nodes. We first prove
that this problem is difficult in general: The problem of decid-
ing whether a k-round schedule exists is NP-complete already
for k = 3, and there are problem instances requiring Ω(n)
rounds, where n is the network size. Given these negative
results, we introduce an attractive, relaxed notion of loop-
freedom. We prove that O(logn)-round relaxed loop-free
schedules always exist, and can also be computed efficiently.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-

tributed Systems; G.2.2 [Graph Theory]: Network Prob-
lems

General Terms
Algorithms

Keywords
Software-Defined Networking; Graph Algorithms; Schedul-

ing; NP-hardness

1. INTRODUCTION
Computer networks are currently undergoing a phase tran-

sition. The paradigm of Software-Defined Networking (SDN)
introduces interesting new flexibilities in terms of traffic-
engineering and programmatic network control, by outsourc-
ing and consolidating the control over a set of nodes (switches
or routers) to a logically centralized (but potentially dis-
tributed) software controller. The controller can define and
install arbitrary routes (i.e., forwarding rules) which may

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3617-8 /15/07 ...$15.00.
http://dx.doi.org/10.1145/2767386.2767412.

not necessarily be shortest paths or based on destination IP
addresses only.

However, exploiting the benefits of a more dynamic and
logically centralized network management is non-trivial. A
fundamental problem regards the consistent implementation
of route updates: In order to update a route r1 to a route
r2, the controller needs to communicate the new forwarding
rules to all nodes. However, as both the transmission as
well as the installation of rules take time and are subject
to variance [8], inconsistencies can be introduced during the
update: For example, the same packet may still be forwarded
according to the old rules (of r1) at some nodes while it is
forwarded already according to the new rules (of r2) at
others. The resulting actual routes may transiently violate
basic consistency properties such as loop-freedom [13].

One possible solution is to use a 2-Phase Commit Proto-
col (2PC) and (packet) tagging [17]: In a first round, the
controller communicates the new rules of r2 to all nodes.
However, the rules only apply to packets with a certain tag
(say, “new”), and hence existing packets without the new tag
are still forwarded according to r1. Once all nodes confirmed
the successful installation of the new rules, in a second round,
the controller instructs the ingress ports of the network to
tag all packets with “new”, forcing the packets to use the
new route r2. The 2PC protocol ensures a strong per-packet
consistency [17]: each packet will be forwarded according to
r1 (exclusive-)or r2, and loops are avoided. However, the use
of tagging is undesirable, as it consumes header space in the
packets and requires the installation of additional forward-
ing rules (matching the tagged packets), wasting precious
switch memory; moreover, tagging can be problematic in the
presence of middleboxes which change headers. [3]

An alternative approach to ensure loop-free updates, with-
out tagging, is to communicate updates to nodes in a staged
manner: The controller first updates only a safe subset of
nodes V1 ⊆ V . After these nodes asynchronously installed the
new rules, they send an acknowledgement to the controller,
which then schedules the next subset V2 ⊆ V of nodes to
update, until the final subset Vk completes the route update.
This protocol does not require packet tagging, and, as has
been argued in [13], also has the advantage that some of the
edges of r2 become available earlier to packets: there is no
need to wait for the full installation of r2.

1.1 Our Contributions
This paper initiates the study of fast loop-free network

updates, i.e., updates which require a minimal number of
controller interactions while providing transient consistency

guarantees. We consider a model where network routes can
follow arbitrary paths and are not necessarily destination-
based (arguably a key benefit of SDN [4]). We ask: How
many communication rounds k are needed to update a network
in a (transiently) loop-free manner?

We show that answering this question is difficult. In partic-
ular, we show that while deciding whether a k-round schedule
exists is trivial for k = 2, it is already NP-complete for k = 3.
Moreover, we show that there exist problem instances which
require Ω(n) rounds, where n is the network size. In the
Appendix, we will also show that just aiming to “greedily” up-
date a maximum number of nodes in each round (as proposed
in previous work [13], however, for a different model) may
result in Ω(n)-round schedules in instances which actually
can be solved in O(1) rounds; even worse, a single greedy
round may inherently delay the schedule by a factor of Ω(n)
more rounds.

Given these negative results, we propose an attractive
alternative to the utterly strict loop-free requirement: relaxed
loop-freedom. Relaxed loop-freedom is motivated by the
observation that loops are only really problematic if they
occur on the (changing) path between source and destination:
topological loops in other parts of the network will never
receive any new packets. We argue that relaxed loop-freedom
not only expresses better the actually desired consistency
in practice, but we also show that it comes with interesting
benefits: We prove that O(logn)-round relaxed loop-free
schedules always exist, and can also be computed efficiently,
and we present an elegant algorithm accordingly.

1.2 Organization
The remainder of this paper is organized as follows. Sec-

tion 2 introduces our formal model. Section 3 studies the
strong consistency model for transient loop-freedom, and Sec-
tion 4 studies relaxed loop-freedom. After reviewing related
literature in Section 5, we conclude our work in Section 6.

2. MODEL
We are given a network and two routes r1 (the old route)

and r2 (the new route). Both r1 and r2 are simple directed
paths. Initially, packets are forwarded (using the old rules,
henceforth also called old edges) along r1, and eventually they
should be forwarded according to the new rules of r2. Packets
should never be delayed or dropped at a node: whenever a
packet arrives at a node, a matching forwarding rule should
be present.

Without loss of generality, we assume that r1 and r2 lead
from a source s to a destination d. Since nodes appearing only
in one or none of the two paths are trivially updatable, we
focus on the networkG induced by the nodes V which are part
of both routes r1 and r2, i.e., V = {v ∶ v ∈ r1 ∧ v ∈ r2}. Thus,
we can represent the routes as r1 = (s = v1, v2, . . . , v` = d) and
r2 = (s = v1, π(v2), . . . , π(v`−1), v` = d), for some permutation
π ∶ V ∖ {s, d} → V ∖ {s, d} and some number `. In fact,
we can represent routes in an even more compact way: we
are actually only concerned about the nodes U ⊆ V which
need to be updated. Let, for each node v ∈ V , out1(v)
(resp. in1(v)) denote the outgoing (resp. incoming) edge
according to route r1, and out2(v) (resp. in2(v)) denote
the outgoing (resp. incoming) edge according to route r2.
Moreover, let us extend these definitions for entire node sets
S, i.e., outi(S) = ⋃v∈S outi(v), for i ∈ {1, 2}, and analogously,
for ini. We define s to be the first node (say, on r1) with

out1(v) ≠ out2(v), and d to be the last node with in1(v) ≠
in2(v). We are interested in the set of to-be-updated nodes
U = {v ∈ V ∶ out1(v) ≠ out2(v)}, and define n = ∣U ∣. Given
this reduction, in the following, we will assume that V only
consists of interesting nodes (U = V).

2.1 Strong Loop-Freedom
We want to find a schedule U1, U2, . . . , Uk with minimum

k, i.e., a sequence of subsets Ut ⊆ U where the subsets form a
partition of U (i.e., U = U1 ⊍U2 ⊍ . . .⊍Uk), with the property
that for any round t, given that the updates Ut′ for t′ < t
have been made, all updates Ut can be performed “asyn-
chronously”, that is, in an arbitrary order without violating
loop-freedom. That is, consistent paths will be maintained
for any subset of updated nodes, independently of how long
individual updates may take.

More formally, let U<t = ⋃i=1,...,t−1Ui denote the set of
nodes which have already been updated before round t, and
let U≤t, U>t etc. be defined analogously. Since updates during
round t occur asynchronously, an arbitrary subset of nodes
X ⊆ Ut may already have been updated while the nodes
X = Ut ∖X still use the old rules, resulting in a temporary
forwarding graph Gt(U,X,Et) over nodes U , where Et =
out1(U>t ∪X) ∪ out2(U<t ∪X). We require that the update
schedule U1, U2, . . . , Uk fulfills the property that for all t and
for any X ⊆ Ut, Gt(U,X,Et) is loop-free.

Later in this paper, we will sometimes refer to this def-
inition of loop-freedom as the Strong Loop-Freedom (SLF),
to distinguish it from Relaxed Loop-Freedom (RLF). By de-
fault, throughout this paper, the term loop-freedom without
additional qualifier will refer to the strong variant.

Example. Fig. 1 illustrates our model: We are given
two routes (the old rules of r1 are solid, the new ones of r2
are dashed), see Fig. 1 (left). We focus on the updateable
nodes which are shared by the two routes. Thus, in our
example, the update problem can be reduced to the 5-node
chain graph in Fig. 1 (right). Throughout this paper, we will
stick to this representation, and will indicate the old route
r1 using solid lines, and the new route r2 using dashed lines.
Moreover, we will depict the initial network configuration
(before the update) such that the old route goes from left to
right. In the following we will call an edge (u, v) of the new
route r2 forward, if v is closer (with respect to r1) to the
destination, resp. backward, if u is closer to the destination. It
is also convenient to name nodes after their outgoing dashed
edges (e.g., forward or backward); similarly, it is sometimes
convenient to say that we update an edge when we update
the corresponding node. Finally, we will treat the terms edge
and rule, as synonyms in this paper.

2.2 Weak Loop-Freedom
In this paper, we will also propose a weaker notion of

loop-freedom: Relaxed Loop-Freedom (RLF). Relaxed loop-
freedom is motivated by the practical observation that tran-
sient loops are not very harmful if they do not occur between
the source s and the destination d. If relaxed loop-freedom
is preserved, only a constant number of packets can loop: we
will never push new packets into a loop“at line rate”. In other
words, even if switches acknowledge new updates late (or
never), new packets will not enter loops. Concretely, and sim-
ilar to the definition of SLF, we require the update schedule
to fulfill the property that for all rounds t and for any subset
X, the temporary forwarding graph Gt(U,X,E′

t) is loop-free.

Figure 1: Overview of model and reduction. The network on the left is reduced to the line representation on
the right. The solid lines show the old route r1 and the dashed lines show the new route r2. Nodes shown in
white are the only ones which are part on both paths, and hence relevant for the problem.

Figure 2: RLF vs SLF: An SLF schedule needs to up-
date backward edges one by one from left to right,
requiring Ω(n) rounds; for RLF, an O(1)-round sched-
ule exists.

The difference is that we only care about the subset E′
t of

Et consisting of edges reachable from the source s.
Example. To highlight the difference between SLF and

RLF, Fig. 2 presents an example where a relaxed 3-round
loop-free update schedule exists: in round 1 all forward edges
are updated, in round 2 all backward edges except for the
last one (vl−1, vl−2) are updated, and in round 3, the last
backward edge is updated. In contrast, a strong loop-free
schedule needs to go through the backward edges one by
one, v3, v4,⋯, vl−1: updating vi before vi−1 results in a loop.
Thus, n − 1 rounds are required in this case: a factor Ω(n)
more than RLF. This is worst possible.

3. FAST UPDATES ARE DIFFICULT
How many rounds are needed to update a network in a

(strongly) loop-free manner? On the one hand, the problem
seems difficult: the problem of breaking cycles even in a
single round, is related to the well-known NP-hard Feedback
Arc Set Problem. On the other hand, our graphs have a
very special structure, as they essentially only consist of two
simple paths (namely the old and the new route).

In this section, we show that updating networks quickly is
difficult, even for such simple graphs: while problem instances
allowing for 2-round schedules are trivial (Section 3.1), de-
ciding whether 3-round schedules exist is NP-complete (Sec-
tion 3.2). Also recall our example from Fig. 2 which shows
that there exist problem instances which cannot be updated
in less than Ω(n) rounds. In Appendix A, we will addition-
ally prove that applying a greedy strategy which maximizes
the number of node updates in each round, can lead—already
after one round—to an undesirable configuration from which
Ω(n) rounds are needed to complete the update, although
the problem was initially O(1)-round solvable.

3.1 2-Round is Easy
Before we show how to find 2-round update schedules

efficiently, let us introduce the following edge (resp. node)
classification, which will be useful more generally. We already
discussed the notion of forward and backward dashed edges
(resp. nodes), indicating whether a dashed edge points in the
same direction as the solid edge. This distinction is useful
as, for example, it is always safe to update any number of
forward-pointing edges: they can never introduce any loops.
However, we can also classify edges from the other side, from
the destination and “looking backward in time”: as if we
were updating edges from the dashed (“new” r2) rules to the
solid (“old” r1) ones, starting with the last round. Given this
backward perspective, we can classify the old (solid) rules as
backward or forward relative to the new ones (dashed): we
just need to draw the new route as a straight path and see,
if the old rule points forward or backward.

Based on this classification, we propose two-letter codes
to describe the nodes—the first letter will denote, whether
the outgoing dashed edge points forward (F) or backward
(B). Similarly, the second letter will describe the solid edge
relative to the dashed path. Now, it is easy to see that in
the last round, we can update any subset of rules which are
either BF or FF, just like in the first round where we can
update any FB or FF. An example can be seen in Fig. 3 on
the left.

Given this intuition, we can determine whether two rounds
are sufficient: if there is any BB edge, it can neither be
updated in the first round, nor in the last, so two rounds are
not enough. Otherwise, we update FBs in the first round,
BFs in the second round, and have complete freedom on
when to update the FF nodes.

3.2 3-Round is Hard
Unfortunately, it is already NP-complete to decide whether

a problem instance has a 3-round update schedule.

Theorem 1. Deciding whether a k = 3-round schedule
exists is NP-complete.

The k-round problem is certainly in NP: the correctness
of a schedule can be verified easily. The hardness proof
proceeds as follows. First we make a couple of observations
which allow us to narrow the ground for choosing 3-round
update schedules, reducing the problem to the selection of
edge subsets. Second, we will present a slight modification
of 3-Sat and—using gadgets—transform it into an instance
of the edge selection problem. Finally, the graph built using
the gadgets will be patched up to a proper instance of the

Figure 3: Left: “Looking backward in time”, an example with reversed update pattern (from dashed to solid
path). We obtain the following classification: v1 is FF; v2, v3 are FB; v4 is BB and v5, v6 are BF. Right: Intuition
why node updates can be moved from round 2 to round 1 or 3. There are two different valid update schedules
for the standard scenario. Schedule S1 is updating everything as early as possible, e.g., FB node v2 in round
1 and BF node v6 in round 2. Schedule S2 is updating everything as late as possible, e.g., v2 in round 2 and
v6 in round 3. We depict updated nodes without their outgoing solid edges (no new packets will be sent this
way), and dashed edges turn into solid edges.

network update problem (namely, two paths traversing the
same set of nodes).

3.2.1 Classifying Nodes
When we aim for three rounds, the FB nodes can be

updated in the first or second round. As we will observe in
the following, it is however never necessary to update FB
nodes in the second round: everything can just as well be
done in the first round.

Lemma 1. If there exists a 3-round update schedule S

which updates any nodes V ′ ⊆ V of type FB, then there
is also a 3-round update schedule which updates all nodes of
V ′ in the first round. The same holds true for nodes of type
FF.

Proof. Consider the temporary forwarding graph
Gt(X) = (U,X,Et) during the tth round update of S, for
t ∈ {1,2}. Since S is correct, both G1(X) = (U,X,E1) and
G2(X) = (U,X,E2) are loop-free, for any subset X ⊆ Ut.
By moving updates of forwarding nodes FB and FF from
round 2 to round 1, we will make G2 only sparser, and will
hence not introduce loops. However, also G1 will remain
loop-free, as the forwarding edges F⋅ respect the topological
order of r1.

The same argument also holds in the other direction, using
our “backward perspective”: We can move BF (and FF) up-
dates to the last round. Therefore, without loss of generality,
we focus our analysis on schedules where all the BB nodes
are updated in the middle (i.e. second) round, all FB nodes
in the first round, and all the BF nodes in the last round.
Thus, the problem boils down to finding a distribution of
the FF updates to the first and the third round. As we will
show in the following, finding such a distribution is NP-hard.

Fig. 3 provides intuition for why FB updates can be moved
into the first round and BF updates in the third round. The
right part shows two different 3-round schedules for a given
scenario. The FB node v3 needs to be updated in the first
round in any valid 3-round schedule, since the only BB
node v4 needs to be updated in the second round. Schedule
S2 updates the FB node v2 in round 2 and schedule S1

shows that it would also be possible to update it in the

Figure 4: Choosing the right set of FF nodes is im-
portant. An update of only v4 would enable the BB
node v6 to be updated in the second round. An addi-
tional update of v3 would then lead to a loop (note
that v5 will definitely not be updated in the first
round).

first round. The BF node v6 is updated in round 2 in
S1 and delayed to round 3 in S3. According to Lemma 1,
there also exists a schedule S3 updating every FB node
in the first round and every BF node in the third round
(U1 = {v1, v2, v3}, U2 = {v4}, U3 = {v5, v6}).

In order to be able to update every BB node in the second
round, one needs to be careful which (of the FF) nodes to
update in the first and which in the third round. Fig. 4
shows a snippet of a line where the BB node v6 needs to
be updated in the second round. An update of FF node v4
in the first round would enable this update for the second
round, but updating the FF node v3 as well would render
an update of v6 impossible. Node v5 is B⋅ and cannot be
updated in the first round, and hence an update of v6 would
result in a loop (v3 → v5 → v6 → v3).

3.2.2 Modifying 3-CNF
For our reduction, we take an instance of the 3-Sat prob-

lem, C, which we will eventually transform into an instance
of a network update problem that is updatable in 3 rounds,
if and only if the formula is satisfiable. However, we will first
modify C, using a standard construction, and replace each
appearance of a variable in C using a new variable: concretely,
a variable appearing λ times in C decays into λ + 4 new vari-
ables. By this trick, we will reduce the number of times any
(new) variable appears in the (new) formula, allowing us to
implement the low in- and out-degree requirements of our
network update problem.

We create the following clauses:

1. For every variable x, we create variables

x0, x1, . . . , xpx , xl, x0, x1, . . . , xnx , xl,

where px is the number of positive appearances of
x, and nx the number of negative appearances. In
every clause we replace the literals with the appropri-
ate new variables (from the collections x1, . . . , xpx and
x1, . . . , xnx). Also, for every original variable x we add
an “assignment clause” (x0 ∨ x0).

2. For every original variable we add “implication clauses”
(xi → xi+1) for i = 0 . . . px − 1 and (xi → xi+1) for i =
0 . . . nx − 1; the last implications, for i = px resp. i = nx

must lead to xl and xl respectively ((xpx → xl) and
(xnx → xl)).

3. Finally, for every original variable x, we add an “exclu-
sive clause” (¬xl ∨ ¬xl).

For each variable x, with the assignment clause, we ensure
that at least one literal is true; with the exclusive clause
we ensure that at most one literal is true; and with the
implication clause, we ensure that the value is consistently
preserved through all clones.

It is straightforward to translate any satisfying assignment
of variables of one formula to the other, therefore the sat-
isfiability problem for the new formula is equivalent to the
original one. We will refer to the modified formula by C′.

3.2.3 Creating and Connecting the Gadgets
For the reduction, we will create (network) gadgets rep-

resenting the different clauses. Concretely, first, for every
variable xi in C′, we create a node xi, which will be of type
FF (we will refer to the node using the variable’s name).
The idea is that updating the node in the first round will cor-
respond to the positive valuation of the variable. In general,
we will create for each gadget a path of solid edges pointing
upward; eventually, we will connect these paths from left to
right (using solid edges), to establish route r1.

Every clause K is encoded as a gadget in the graph using a
separate solid path (drawn as a vertical line pointing upwards)
with the variable-related (xi) FF nodes on it. Above those
nodes on the path, there is a BB node, vK1 , the starting
point of a backward, dashed edge that will end just below
the variables with a node vK2 (Fig. 5 left). The backward
edge and the solid path form a cycle, which needs to be
disconnected in the first round. The only way to do this,
is by updating at least one of the variable–related edges.
Obviously, the dashed, forward edges starting at the FF
nodes inside the clause must reach outside the clause-related
backward edge (vK1 , vK2). In fact, they will end just below
the nodes representing the variables that are followed in the
implications (see Fig. 5 on the right), so the dashed edge
starting at the node xi will point to the node xi+1 in a gadget
representing another clause (actually it points to a special
node xini+1 that serves as a connecting point: we will present
the details in the next paragraph; the last xi will point to
xl situated in the exclusive gadget clause for x, which we
describe later). For convenience, we order the clauses from
left to right, and name the variables xi, yi, and zi with
increasing i from the left to the right according to this order.
Thus, every dashed edge connecting two different gadgets

Figure 6: Gadget for exclusive clause. An update
of either xl or xl prevents the other one from being
updateable: the BB nodes v2 and v4 would form a
cycle in the second round.

points rightwards when it is a forward F⋅ edge, and leftwards
when it is a backward B⋅ edge.

For each implication clause K = (xi → xi+1), we already
have the nodes representing the two variables xi and xi+1 (ly-
ing on two separate solid paths belonging to their respective
gadgets) and a dashed edge from the antecedent, xi, to a
new node xini+1 placed below the consequent one. The gadget
(Fig. 5 right) assures that if xi is updated in the first round,
then xi+1 must be updated as well, or there will be a cycle in
the second round (xi → xini+1 → xi+1 → xBB

i+1 → xHi → xini → xi):
we draw a new node xBB

i+1 of type BB slightly above xi+1
(on its solid path) and a dashed edge pointing from it to
another new helper node (to meet the in-degree constraint
of the network update problem), xH

i , slightly below xi (in
the figure we draw it below xini as well).

Then for every exclusive clause Kx = (¬xl ∨ ¬xl) (shown in
Fig. 6), we draw four solid paths. On the first, the FF node
xl is drawn and a dashed edge pointing from it to another
helper node v1 lying on the third solid path. Similarly, xl

on the second path points, with its forward dashed edge,
towards v3, which we place as the last of the four solid paths.
Above v1 and v3 we draw another pair of BB nodes, v2 and
v4 respectively. Then v2 points back to the second solid path
with its backward dashed edge, to another new node, xH

l

placed just below xl on the first path. In the same manner,
the backward edge starting at v4 ends with xHl below xl.
This way, updating both xl and xl in the first round will
result in a cycle in the second round, since, as we know, all
BBs must be updated in the second round. The cycle which
can exist in the second round includes the following nodes
xl, v1, v2, x

H
l , x

in
l , xl, v3, v4, x

H
l , x

in
l , xl. xl and xl have been

updated in the first round, the nodes v2 and v4 have been
updated in the second round and the rest of the nodes in the
cycle (the grey nodes) have not been updated yet. It will be
later assured that they are of type B⋅ and therefore cannot be
updated in the first round, hence making a scenario possible
where they are delayed until the end of the second round.
Therefore an update of both xl and xl is not possible in the
first round.

While the composition of gadgets described so far is not
yet a proper instance of a network update problem, we can
already make some observations about the graph.

Theorem 2. If setting VT ⊂ V ar(C′) to true satisfies the
formula, then there is no cycle (⇒). Moreover, a cycle-free
update schedule gives us a satisfying variable assignment (⇐).

Proof. We prove the two directions ⇒ and ⇐ in turn.
⇒: Cycles are composed of: dashed edges starting at

VT nodes, solid edges starting at any other nodes to get

Figure 5: Left: Gadget for clause xi ∨ yj ∨ zk. At least one node needs to be updated to prevent the loop over
vK1 and vK2 . Right: More details about the gadget including also the implication clause xi → xi+1 representation,
and a second clause xi+1 ∨wj′ ∨ uk′ . It is assured that xi+1 is updated if x1 is updated, otherwise the BB edge

from xBB
i+1 would form a cycle. White nodes will eventually be FF, black nodes BB. The grey nodes will later

be assured to be of type B⋅, to guarantee that they cannot be updated in the first round.

somewhere, and any edges starting at BB nodes to get back.
We will show that by following an arbitrary path consisting
only of the listed edge types, we will never return to the
starting point of the path. If the path ever chooses to take
an FF updated dashed edge (starting at xi), it will need to
continue with edges starting at xi+1 up to xl (this is ensured
by the implications), and there is no way back from there: it
cannot constitute a cycle. Conversely, a path which does not
take any FF dashed edges would not be able to jump from
one of the solid, vertical paths to another one more to the
right, so if it returns to the starting point, it must use nodes
lying on one of the solid paths. At the same time, a cycle on
one of the solid paths would mean that one of the clauses is
not satisfied, which contradicts the definition of VT .
⇐: Clearly, the construction assures that if the formula

C′ is not satisfiable, when we have a selection of FF nodes
which make the situation with all BB edges (which must be
updated) acyclic then each clause must be true: it contains
a true variable showing a path out of the cycle.

3.2.4 Connecting the Pieces
The presented gadgets leave us with a number of indepen-

dent solid paths and many dashed edges starting at nodes
of particular types (FF or BB). In order for the network
to represent a valid problem instance, we need to connect
the solid paths as well as the dashed paths. Our goal is to
connect the solid path from left to right (and vertical lines
are from bottom to top). The dashed path will be more
complicated.

Let us first focus on connecting the dashed edges to a
path. From the endpoint of each dashed edge, we will draw
a backward dashed edge to a completely new node (one for
each) placed far left from our solid paths. Hence, all nodes
in R — the set of new nodes — will appear earlier in the
concluding solid path: edges pointing to R are backward,
edges pointing away from R forward. Then we connect all
the resulting 2-length dashed paths (including the previously
constructed dashed ones, and the new ones pointing to R),
using forward dashed edges starting at the new nodes, as
described in the following.

Some of the nodes in our gadgets were of type BB while
the others were FF. Recall, that these type-properties are
fairly local: we only need to look at the next node on the
solid path and determine if it is preceding on the dashed
path. To preserve the types of the nodes, we must therefore
connect the 2-length paths in a correct order — first come the
FF dashed edges, then the clause-related downward-pointing
BB edges and in the end implication-related horizontal BB
edges. In each of these groups the edges starting more to the
left should precede those more to the right. Also – to ensure,
that all the type assignment clause-related edges indeed start
with a BB node – above each of those nodes vC1 , in their
respective gadgets, we draw a new node vCb . On each of the
four solid paths used in the gadgets for the exclusive clauses
Kx, we do the same: we create nodes vKx

b 1
, . . . , vKx

b 4
. Then

we connect all the vb’s into a dashed path going from right
to left. The path must be connected to the beginning of the
dashed path we composed before, which will ensure the BB
property of the previous nodes: the solid edge now points
backwards relative to the dashed path. Each of the new vCb
nodes will be of type BF. The nodes in R are ordered so
that the dashed path ends at the leftmost node.

The nodes of R are positioned in a row, followed by our
vertical solid paths. We draw a new node above each of them,
connect it with a solid edge and connect the new node with
what is next in the row, from the top of a vertical path to
the bottom of the next one (Fig. 7). This way, we finally
have one solid path. The new nodes are connected by a chain
of forward dashed edges (so they can all be updated). In
the end we add a starting node, which points with the solid
edge to the leftmost R node, and with the dashed edge to
the beginning of the dashed path which is the beginning of
the path we constructed to ensure the BB properties (this
point is BF).

It is important to note that in the last steps we have not
jeopardized the reduction by introducing disconnections of
the gadget-BB edges, nor have we created any loops that
cannot be easily broken (by updating all the empty nodes
in Fig. 7). Therefore, the possibility of making the second

Figure 7: Overview of how the path is connected. The grey nodes are used to connect everything into one
solid path. They also join the dashed path at the last nodes. This way, all nodes in R (white cycles) are of
type FF.

round cycle-free in our instance is still equivalent to the
satisfiability of C′, which makes the 3-round network update
problem NP-hard.

4. RELAXED LOOP-FREE UPDATES ARE
TRACTABLE

Given the potentially large number of rounds required to
update a network in a strongly loop-free manner, we now
propose to relax loop-freedom to only include actually used
paths, between source and destination. We believe that this
is an attractive alternative: although some unlucky packets
currently on transit on an edge may end up in a (temporary)
loop, we will never route any packets entering the network at
the source into a loop. Moreover, as we will see, relaxing the
loop-freedom is also attractive because it enables fast and
computationally tractable updates. (Recall also the example
in Fig. 2 which permitted a 3-round solution for RLF while
SLF required n − 1 rounds.) In particular, we will present a
fast and elegant algorithm which never requires more than
O(logn) rounds: a potentially large gain given the Ω(n)
lower bound for stronger models.

Before presenting the algorithm in detail, let us introduce
some concepts. During its execution, our algorithm will
repeatedly perform node merging : when updating a node v,
we will merge it with the node out2(v) it pointed to with
its dashed edge. This can safely be done after each round,
due to the irrelevance of already updated nodes (they will
simply forward packets to the next node, without influencing
the remaining problem at hand). As we will see, while the
initial network configuration consists of two paths, in later
rounds, the already updated solid edges may no longer form
a line from left to right, but rather an arbitrary directed tree,
with tree edges directed towards the destination d; due to
the node merging, the in-degree (from the solid edges) may
also increase, while the out-degree and in-degree from the

Algorithm 1 Peacock

Input: initial network G0, set of to-be-updated nodes U
Output: (relaxed) loop-free schedule (U1, U2, . . . , Uk)
1: G← G0, t← 0, for all t: Ut ← ∅
2: while (G contains more than one node) do
3: t + +
4: X ← U ∖U<t
5: if (t odd) then
6: sort dashed forward edges in out2(X)
7: for u ∈X, starting with max forward distance do
8: if (∄v ∈ Ut s.t. (v < u < out2(v)) ∨ (v < out2(u) <

out2(v))) then
9: add u to Ut

10: else
11: add to Ut all nodes not on the path from s to d
12: return (U1, U2, . . . , Ut)

dashed edges remains one. We will use the terms forward and
backward also in the context of the tree: they are defined with
respect to the direction of the tree root. However, there also
emerges a third kind of edges: horizontal edges in-between
two different branches of the tree. Moreover, note that while
the destination d will always be the root of the tree, the
source s does not necessarily have to be at the leaf all the
time (due to merging).

The proposed algorithm Peacock1 is based on repeated
node merging, and hence tree shrinking : starting from the
line, it constructs various trees of decreasing sizes, until only
a single node is left. At this point, the update is complete and
the algorithm terminates. As we will see, Peacock manages
to decrease the remaining network size by at least a constant
factor, for each pair of consecutive rounds, resulting in the

1The name of the algorithm is due to its branch resp.“feather”
spreading strategy.

Figure 8: Example execution of Peacock. Updated nodes are shown in white. The initial network is a line
(on the left). An update of the node with the largest distance v4 and the merging of v4 and v9 leads to a tree
shown for round 2. Here the nodes v5 − v8 can be updated since they are not on the s− d path. This results in
a line again, shown for round 3. In round 4, v2 will be updated before the last node, which will be updated
in round 5.

O(logn)-round upper bound.
Concretely, Peacock toggles between two simple strategies:

1. Shortcut: In odd rounds (i.e., in the 1st, 3rd,
etc. round), Peacock tries to reduce the distance be-
tween source s and destination d as much as possible,
by updating a disjoint set of “far-reaching” (dashed)
forward edges: we define the distance of a dashed edge
as the number of solid edges it skips on the current
path from s to d. The idea is that by updating these
far-reaching edges, we obtain a tree with many branches
(of which only one contains the s-d path).

2. Prune (and re-establish line): In the even rounds
(i.e., in the 2nd, 4th, etc. round), Peacock updates all
nodes which are not on the current path from s to
d. Since in the preceding odd round we shortened the
length of the path from s to d, we can now update a
significant number of nodes (namely a constant fraction
of the still to-be-updated ones), and due to the sub-
sequent merging operation, the resulting network size
is significantly reduced. Intriguingly, the even round,
after pruning and merging nodes, will always result in
a simple line network again. Based on this line, we can
easily determine the next set of far-reaching updatable
edges again, enabling a subsequent “productive” even
round.

Algorithm 1 gives the formal listing for Peacock and Fig. 8
illustrates an example. In the first round there is only one
node (v4) updated. Peacock is in the Shortcut phase and
updates the “far reaching” edges. Once it adds node v4
there is no other dashed forward edge remaining which is not
interfering with the update of v4. Hence Peacock switches to
the Prune phase in round 2 and updates every node which
is not on the s− d path (v5, v6, v7, v8). Peacock then uses the
Shortcut strategy again in round 3.

Theorem 3. Peacock solves any problem instance in
O(logn) rounds.

Proof. We will make use of two helper lemmas, one
targeting odd rounds (the extent to which the distance from
s to d can be shortened) and one targeting even rounds

(the number of nodes which can be pruned to produce a
smaller resulting tree). We will see that after each pair of a
consecutive odd and even round, only a constant fraction of
nodes is left due to merging.

Lemma 2. In each odd round, Peacock reduces the number
of nodes on the solid path from s to d by nt/3, where nt is
the number of nodes on the path.

Proof. Peacock orders the nodes in decreasing order of
distance, i.e., the number of solid edges they bridge. Includ-
ing a node v (and its dashed edge), may block other nodes
(resp. their intervals) from being scheduled in this round.
However, due to the descending distance order, the set of
blocked dashed edges span at most twice the distance from v
to out2(v) on the current path: since we choose a maximal
distance edge (say of distance x), edges entering or exiting
the corresponding interval may block at most an additional
distance of 2x. Assuming that these distances cannot be
covered by any other updates, Peacock loses at most twice
the distance which it covered. This leaves, in the worst case,
at most 2nt/3 nodes on the path from s to d.

Lemma 3. Peacock can simultaneously update all nodes
which are not on the path from s to d. The subsequent merge
operation, re-establishes the line topology. .

Proof. First, we observe that by updating these nodes,
we cannot introduce any loop, since we do not touch any
outgoing dashed edges. Dashed edges, at any time, must
form a simple path. Each branch which is currently not on
the s-d path will therefore point with at least one new rule
to the s-d branch. All nodes of the branch can hence be
merged with the respective nodes of the new rules on the s-d
branch: a line topology. Also note that the source s does
not necessarily have to be at the leaf of a tree. But also in
this case, it is possible to update everything on the branch
below s. Imagine a node u′ which is not on the (solid s − d)
path. Due to node merging, this node will be merged with
out(u′), which itself is now either part of the s − d path, or
will be updated together with another node. Thus, we will
successively merge nodes until a node (necessarily) lies on
the s − d path and will not be updated. This leads to a line
with s as a leaf.

Lemma 2 shows that Peacock reduces the number of nodes
on the s-d path by nr/3 if the underlying network is a line.
All of these nodes are not part of the s-d path in the next
round, and on different branches. This shows that an update
of these nodes is possible in even rounds without introducing
a (relaxed) loop. Since, according to Lemma 3, an update of
every node but those on the s-d path leads to a line again, we
have shown that the number of remaining nodes is reduced
by a third every second round. The number of rounds is
hence logarithmic. ◻

5. RELATED WORK
Our work is motivated by the SDN paradigm, and espe-

cially its traffic engineering flexibilities and its support for
a programmatic, dynamic, yet formally verifiable network
management. [6] Indeed, a more flexible traffic engineering,
that is, selection of forwarding routes, is considered one of the
main motivations for SDN, and has been studied intensively
over the last years. [4, 7] Our paper is orthogonal to this line
of research, in the sense that in our model, the routes are
given and can be arbitrary.

The problem of updating [1, 8, 11, 12, 13, 17], synthesiz-
ing [15] and checking [9] policies [16] as well as routes [2]
has also been studied intensively. In their seminal work,
Reitblatt et al. [17] initiated the study of network updates
providing strong, per-packet consistency guarantees, and the
authors also presented a 2-phase commit protocol. This
protocol also forms the basis of the distributed control plane
implementation in [1].

Mahajan and Wattenhofer [13] started investigating weaker
transient consistency properties—in particular also (strong)
loop-freedom—for destination-based routing policies. Ma-
hajan and Wattenhofer proposed an algorithm to “greed-
ily” select a maximum number of edges which can be used
early during the route installation process. Our work builds
upon [13], but focuses on an alternative, round-based model
to measure policy installation times, and also shows that a
greedy strategy can lead to a large number of communication
rounds—an observation which has also been made in [12].
The measurement studies in [8] and [10] provide empirical
evidence for the non-negligible time and high variance of
switch updates, further motivating our work.

Researchers have also started investigating consistent up-
dates for networks which include (network function virtu-
alized) middleboxes [14]. Ludwig et al. presented update
protocols which maintain security critical properties such as
waypoint enforcement via a firewall, in a transiently consis-
tent manner; the authors also showed that the loop-freedom
and waypoint enforcement properties may even conflict. A
different standpoint is promoted by Ghorbani and Godfrey in
their work [5]: the authors argue that in the context of net-
work function virtualization, not weaker but rather stronger
consistency properties are required.

6. CONCLUSION
We believe that our work opens interesting questions for

future research. Most importantly, it would be interesting to
derive ω(1)-round lower bounds, or show that O(1)-round
schedules for relaxed loop-free problems always exist. Our
computational experiments (using mixed integer programs)
indicate that larger problem instances require more rounds.
So far, the worst problem instance (consisting of 1,000 nodes)

we found requires 7 rounds.
Acknowledgments. We would like to thank Matthias

Rost for conducting computational experiments which pro-
vided us with valuable insights into the structure of optimal
schedules, and the anonymous reviewers for their detailed
feedback which helped us to improve the presentation of
this paper. This research was supported by the EU project
UNIFY as well as by the German BMBF Software Campus
grant 01IS12056.

7. REFERENCES[1] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. A
distributed and robust sdn control plane for transactional
network updates. In Proc. 34th IEEE Conference on
Computer Communications (INFOCOM), 2015.

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise. In
Proc. ACM SIGCOMM, 2007.

[3] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul.
Flowtags: Enforcing network-wide policies in the presence of
dynamic middlebox actions. In Proc. ACM SIGCOMM
HotSDN, 2013.

[4] N. Feamster, J. Rexford, and E. Zegura. The road to sdn.
Queue, 11(12):20:20–20:40, 2013.

[5] S. Ghorbani and B. Godfrey. Towards correct network
virtualization. In Proc. ACM HotSDN, pages 109–114, 2014.

[6] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean
slate 4d approach to network control and management.
SIGCOMM Comput. Commun. Rev., 35(5):41–54, 2005.

[7] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan,
B. Schlinker, N. Feamster, J. Rexford, S. Shenker, R. Clark,
and E. Katz-Bassett. Sdx: A software defined internet
exchange. In Proc. ACM SIGCOMM, pages 551–562, 2014.

[8] X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
J. Rexford, R. Wattenhofer, and M. Zhang. Dionysus:
Dynamic Scheduling of Network Updates. In Annual
Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM), Chicago, Illinois, USA,
August 2014.

[9] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network policy
checking using header space analysis. In Proc. 10th USENIX
Conference on Networked Systems Design and
Implementation (NSDI), pages 99–112, 2013.

[10] M. Kuzniar, P. Peresini, and D. Kostic. What you need to
know about sdn flow tables. In Proc. Passive and Active
Measurements Conference (PAM), 2015.

[11] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. A. Maltz. zUpdate: Updating Data Center Networks with
Zero Loss. In Annual Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM),
Hong Kong, August 2013.

[12] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. Good
network updates for bad packets: Waypoint enforcement
beyond destination-based routing policies. In Proc. ACM
Workshop on Hot Topics in Networks (HotNets), 2014.

[13] R. Mahajan and R. Wattenhofer. On Consistent Updates in
Software Defined Networks. In Proc. 12th ACM Workshop
on Hot Topics in Networks (HotNets), 2013.

[14] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici. Clickos and the art of network
function virtualization. In Proc. 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
pages 459–473, 2014.

[15] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Efficient
synthesis of network updates. In Proc. ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 2015.

[16] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing Software Defined Networks. In Proc. NSDI, 2013.

Figure 9: Pattern of a scenario where maximizing the number of updates per round will result in a Ω(n)-round
schedule, although a O(1)-round schedule would be possible. Left: An overview where π≤sk2 shows the edges
of the new route before sk and π>sk2 those behind sk. Right: A detailed representation of the blocks Bi.

[17] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In Proc. ACM
SIGCOMM, pages 323–334, 2012.

APPENDIX
A. IT’S BAD BEING GREEDY

Given the NP-hardness result of Theorem 1, one may won-
der whether simple approximation algorithms exist. While
we cannot prove the opposite, we conjecture that the problem
is generally hard to approximate. To give some intuition,
in the following, we show that a “greedy” approach which
tries to maximize the number of updatable edges in each
round (essentially the model studied in [13]) can fail miser-
ably. In fact, a single greedy round may unrevokably change
the required number of rounds from O(1) to Ω(n).

Fig. 9 shows a scenario where a greedy update takes Ω(n)
rounds even though an O(1) round solution exists. The left
side shows the general structure of the scenario which

consists of several blocks Bi (more details on the right
side). These blocks are connected via backward edges one
by one, e.g., see the edge emerging from i3. If a greedy
algorithm picks all forward edges to be updated in a first
round, it will include the nodes i1 and i2 as well as their
representatives in the other blocks. The update of the i1-
type nodes essentially leads to a situation reminiscent of the
one shown in Fig. 2, where many backward rules must be
updated one after the other. Delaying the i1-type nodes on
the other hand will make it possible to update most of the
backward edges in the next round, since the cycle is broken
by the edges outgoing from the i2-type nodes. This allows
for an update in 4 rounds, independent of n. In case of
the greedy algorithm, each additional block will increase the
number of rounds by two. Each block consists of 4 nodes
within the block and an additional node for connectivity to
the right part of the line, resulting in 2n/5 rounds: up to
n/10 additional rounds are required.

