
Online Admission Control and
Embedding of Service Chains?

Tamás Lukovszki1 and Stefan Schmid2
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Abstract. The virtualization and softwarization of modern computer
networks enables the definition and fast deployment of novel network
services called service chains: sequences of virtualized network functions
(e.g., firewalls, caches, traffic optimizers) through which traffic is routed
between source and destination. This paper attends to the problem of
admitting and embedding a maximum number of service chains, i.e., a
maximum number of source-destination pairs which are routed via a se-
quence of ` to-be-allocated, capacitated network functions. We consider
an Online variant of this maximum Service Chain Embedding Problem,
short OSCEP, where requests arrive over time, in a worst-case manner.
Our main contribution is a deterministic O(log `)-competitive online al-
gorithm, under the assumption that capacities are at least logarithmic
in `. We show that this is asymptotically optimal within the class of
deterministic and randomized online algorithms. We also explore lower
bounds for offline approximation algorithms, and prove that the offline
problem is APX-hard for unit capacities and small ` ≥ 3, and even Poly-
APX-hard in general, when there is no bound on `. These approximation
lower bounds may be of independent interest, as they also extend to other
problems such as Virtual Circuit Routing. Finally, we present an exact
algorithm based on 0-1 programming, implying that the general offline
SCEP is in NP and, by the above hardness results, it is NP-complete for
constant `.

Keywords: Computer Networks, Network Virtualization, Virtual Cir-
cuit Routing, Online Call Admission, Competitive Analysis

1 Introduction

Today’s computer networks provide a rich set of in-network functions, including
access control, firewall, intrusion detection, network address translation, traffic
shaping and optimization, caching, among many more. While such functionality
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is traditionally implemented in hardware middleboxes, computer networks be-
come more and more virtualized [12, 24]: Network Function Virtualization (NFV)
enables a flexible instantiation of network functions on network nodes, e.g., run-
ning in a virtual machine on a commodity x86 server.

Modern computer networks also offer new flexibilities in terms of how traffic
can be routed through such network functions. In particular, using Software-
Defined Networking (SDN) [19] technology, traffic can be steered along arbitrary
routes, i.e., along routes which depend on the application [13], and which are
not necessarily shortest paths or destination-based, or not even loop-free [11].

These trends enable the realization of interesting new in-network communi-
cation services called service chains [8, 14, 25, 26]: sequences of network functions
which are allocated and stitched together in a flexible manner. For example, a
service chain ci could define that traffic originating at source si is first steered
through an intrusion detection system for security (1st network function), next
through a traffic optimizer (2nd network function), and only then is routed to-
wards the destination ti. Such advanced network services open an interesting
new market for Internet Service Providers, which can become “miniature cloud
providers” [27], specialized for in-network processing.

1.1 Paper Scope

In this paper, we study the problem of how to optimally admit and embed
service chain requests. Given a redundant distribution of network functions and
a sequence σ = (σ1, σ2, . . . , σk), where each σi = (si, ti) for i ∈ [1, k] defines a
source-destination pair (si, ti) which needs to be routed via a sequence of network
function instances, we ask: Which requests σi to admit and where to allocate
their service chains ci? The service chain embedding should respect capacity
constraints as well as constraints on the length (or stretch) of the route from si
to ti via its service chain ci.

Our objective is to maximize the number of admitted requests. We are par-
ticularly interested in the Online Service Chain Embedding Problem (OSCEP),
where σ is only revealed over time. We assume that a request cannot be de-
layed and once admitted, cannot be preempted again. Sometimes, we are also
interested in the general (offline) problem, henceforth denoted by SCEP.

1.2 Our Contribution

We formulate the online and offline problems OSCEP and SCEP, and make the
following contributions:

1. We present a deterministic online algorithm ACE1 which, given that node
capacities are at least logarithmic, achieves a competitive ratio O(log `) for
OSCEP. This result is practically interesting, as the number of to be tra-
versed network functions ` is likely to be small in practice. In our analysis,
we adapt a proof strategy known from virtual circuit routing [22]. Note how-
ever that in contrast to virtual circuit routing, where the end nodes have to
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be connected by a path in the network, in the SCEP, the path must traverse
a sequence of ` nodes, such that the ith node of this sequence hosts network
function fi. Furhermore, in the SCEP, the path length must be bounded by
r hops. So far, only heuristic and offline approaches to solve the service chain
embedding problem have been considered [6, 4, 20, 26].

2. We prove that ACE is asymptotically optimal in the class of both determin-
istic and randomized online algorithms, by adapting a proof strategy from
virtual circuit routing in [2]. Moreover, we initiate the study of lower bounds
for the offline version of our problem, and show that no good approximation
algorithms exist, unless P = NP : for unit capacities and already small `,
the offline problem SCEP is APX-hard. For arbitrary `, the problem can
even become Poly-APX-hard. These results also apply to the offline version
of classic online call control problems, which to the best of our knowledge
have not been studied before.

3. We present a 0-1 program for SCEP, which also shows that SCEP is in NP
for constant ` and, taking into account our hardness result, that SCEP is NP-
complete for constant `. More precisely, if the number of all possible chains
that can be constructed over the network function instances is polynomial in
the network size n, then the number of variables in the 0-1 program is also
polynomial, and thus the problem is in NP. If mi is the number of instances
of network function fi in the network, i = 1, ..., `, and m = maxi{mi}, then
the size of the 0-1 program is polynomial for m` = poly(n). For example,
this always holds for constant `. When m is constant, then it holds for
` = O(log n).

1.3 Outline

This paper is organized as follows. Section 2 introduces our model and puts
the model into perspective with respect to classic online optimization problems.
Section 3 presents and analyzes the O(log `)-competitive algorithm, Section 4
presents our lower bound, and in Section 5 we present the 0-1 linear program.
We summarize our results and conclude our work in Section 6.

2 Model

We are given an undirected network G = (V,E) with n = |V | nodes and
m = |E| edges. On this graph, we need to route a sequence of requests
σ = (σ1, σ2, . . . , σk): σi for any i represents a node pair σi = (si, ti) ∈ V × V .
Each pair σi needs to be routed (from si to ti) via a sequence of ` network
functions (F1, . . . , F`). For each network function type Fi, there exist multiple

instantiations f
(1)
i , f

(2)
i , . . . in the network. (We will omit the superscript if it is

irrelevant or clear in the context.) Each of these instances can be applied to σi
along the route from si to ti. However, in order to minimize the detour via these
functions and in order to keep the route from si to ti short, a “nearby instance”

f
(j)
i should be chosen, for each i. A service chain instance for (si, ti) is denoted

by ci = (f
(x1)
1 , f

(x2)
2 , . . . , f

(x`)
` ), for some function instances f

(xy)
j , j ∈ [1, `].
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Fig. 1. Illustration of the model: The communication from s1 to t1 and from s2 to t2
needs to be routed via a service chain (F1, F2). In this example, function F1 is instan-
tiated once, and function F2 is instantiated twice. Resources for (s1, t1) are allocated
only at the second instance of F2 (the upper one).

For ease of presentation, we will initially assume that requests σi are of
infinite duration. We will later show how to generalize our results to scenarios
where requests can have arbitrary and unknown durations.

Concretely, in order to satisfy a request σi = (si, ti), a route of the following
form must be computed:

1. The route must start at si, traverse a sequence of network functions

(f
(x1)
1 , f

(x2)
2 , . . . , f

(x`)
` ), and end at ti. Here, f

(xy)
j , j ∈ [1, `] is an instance of

the network function of type Fj .
2. The route must not violate capacity constraints on any node v ∈ V . Nodes
v ∈ V are capacitated and resources need to be allocated for each network
function which is used, for any (si, ti) pair. Multiple network functions may
be available on the same physical machine, and only consume resources once
they are used in certain service chains. The capacity κ(v) of each node v ∈ V
hence defines the maximum number of requests σi for which v can apply its
network functions. However, node v can always simply serve as a regular
forwarding node for other requests, without applying the function.

3. The route should be of (hop) length at most r (or have a bounded stretch).

Otherwise, a request σi must be rejected. For ease of notation, in the following,
we will sometimes assume that for a rejected request σi, ci = ∅. Also note that
the resulting route may not form a simple path, but more generally describes a
walk : it may contain forwarding loops (e.g., visit a network function and come
back).

Our objective is to maximize the number of satisfied requests σi, resp. to
embed a maximum number of service chains. We are mainly interested in the
online variant of the problem, where σ is revealed over time. More precisely, and



as usual in the realm of online algorithms and competitive analysis, we seek to
devise an online algorithm which minimizes the so-called competitive ratio: Let
ON(σ) denote the number of accepted requests of a given online algorithm for
σ and let OFF(σ) denote the number of accepted requests of an optimal offline
algorithm. The competitive ratio ρ is defined as the worst ratio (over all possible
σ) of the value of ON compared to OFF. Formally, ρ = maxσOFF(σ)/ON(σ).

Note that solving this optimization problem consists of two subtasks:

1. Admission control: Which requests σi to admit, and which to reject?
2. Assignment and routing: We need to assign σi = (si, ti) pairs to a sequence

of network functions and route the flow through them accordingly.

See Figure 2 for an illustration of our model.

2.1 Putting the Model into Perspective
From an algorithmic perspective, the models closest to ours occur in the context
of online call admission respectively virtual circuit routing. There, the fundamen-
tal problem is to decide, in an online manner, which “calls” resp. “virtual cir-
cuits” or entire networks, to admit and how to route them, in a link-capacitated
graph. [2, 3, 9, 10, 22]

Instead of routes, in our model, service functions have to be allocated and
connected to form service chains. In particular, in our model, nodes have a lim-
ited capacity and can only serve as network functions for a bounded number
of source-destination pairs. The actual routes taken in the network play a sec-
ondary role, and may even contain loops. In particular, our model supports the
specification of explicit constraints on the length of a route, but also on the
stretch: the factor by which the length of a route from a source to a destination
can be increased due to the need to visit certain network functions.

Nevertheless, as this paper shows, several techniques from classic literature
on online call control can be applied to our model. At the same time, to the
best of our knowledge, some of our results also provide new insights into the
classic variants of call admission control. For example, our lower bounds on the
approximation ratio also translate to classic problems, which so far have mainly
been studied from an online perspective.

3 Competitive Online Algorithm

We present an online algorithm ACE for OSCEP. ACE admits and embeds
at least a Ω(log `)-fraction of the number of requests embedded by an optimal
offline algorithm OFF.

Let us first introduce some notation. Let Aj be the set of indices of the
requests admitted by ACE just before considering the jth request σj . The index
set of all admitted requests after processing all k requests in σ, will be denoted
by Ak+1 resp. A.

The relative load λv(j) at node v before processing the jth request, is defined
by the number of service chains ci in which v participates, divided by v’s capacity:

λv(j) =
|{ci : i ∈ Aj , v ∈ ci}|

κ(v)
.



We seek to ensure the invariant that capacity constraints are enforced at each
node, i.e., ∀ v ∈ V, j ≤ k + 1 : λv(j) ≤ 1.

We define µ = 2`+ 2, and in the following, will assume that

min
v
{κ(v)} ≥ logµ (1)

3.1 Algorithm

In a preprocessing step we compute the length d(u, v) of the shortest path be-
tween all pairs of nodes u, v ∈ V in the network G. Then we compute the set
of all possible chains C that can be constructed from the network function in-
stances C = {c = (f1, ..., f`) :

∑`
i=2 d(fi−1, fi) ≤ r, f1 ∈ F1, ..., f` ∈ F`}.

For a request σj = (sj , tj), let Cj be the set of chains, such that σj can
be routed through the chains c ∈ Cj on a path of length at most r, i.e.

Cj = {c = (f1, ..., f`) ∈ C : d(sj , f1) + d(f`, tj) +
∑`
i=2 d(fi−1, fi) ≤ r}.

The key idea of ACE is to assign to each node, a cost which is exponential in
the relative node load. More precisely, with each node we associate a cost wv(j)
just before processing the jth request σj :

wv(j) = κ(v)(µλv(j) − 1).

Our online algorithm ACE simply proceeds as follows:

– When request σj arrives, ACE checks if there exists a chain cj ∈ Cj satisfying
the following condition: ∑

v∈cj

wv(j)

κ(v)
≤ ` (2)

– If such a chain cj exists, then admit σj and assign it to cj . Otherwise,
reject σj .

In order to ensure that chains selected for Condition 2 also fulfill the con-
straint on the maximal route length, ACE simply uses preprocessing. We main-
tain at each node its relative load. When a new request arrives, ACE has to test
the costs of at most O(n`) chains, and the cost can be computed in O(`) time
per chain. The overall runtime of ACE per step is hence bounded by O(` · n`),
which is polynomial for constant `.

3.2 Analysis

For the analysis of ACE, we adapt the proof strategy used in [22] in the con-
text of virtual circuit routing. First, in Lemma 1 we prove that the set A of
requests admitted by ACE are feasible and respect capacity constraints. Sec-
ond, in Lemma 2, we show that at any moment in time, the sum of node costs is
within a factor O(` · logµ) of the number of requests already admitted by ACE.



Third, in Lemma 3, we prove that the number of requests admitted by the opti-
mal offline algorithm OFF but rejected by the online algorithm, is bounded by
the sum of node costs after processing all requests.

Let W be the sum of the node costs after ACE processed all k request, let
AOFF be the indices of the requests admitted by OFF, and let A∗ = AOFF \A.
Then, from Lemma 2 we will obtain a bound |A| ≥ W/(2` · logµ), and from
Lemma 3 that |A∗| ≤W/`.

Thus, even by conservatively ignoring all the requests which ACE might have
admitted which OFF did not, we obtain that the competitive ratio of ACE is
at most O(log `).

Let us now have a closer look at the first helper lemma.

Lemma 1. For all nodes v ∈ V :∑
j∈A:v∈cj

1 ≤ κ(v).

Proof. Let σj be the first request admitted by ACE, such that the relative load
λv(j + 1) at some node v ∈ cj exceeds 1. By definition of the relative load we
have λv(j) > 1− 1/κ(v).

By the assumption that logµ ≤ κ(v), we get

wv(j)

κ(v)
= µλv(j) − 1 > µ1−1/ log µ − 1 = µ/2− 1 = `.

Therefore, by Condition (2), the request σj could not be assigned to cj . We
established a contradiction. ut

Next we show that the sum of node costs is within an O(` · logµ) factor of
the number of already admitted requests.

Lemma 2. Let A be the set of indices of requests admitted by the online algo-
rithm. Let k be the index of the last request. Then

(2` logµ)|A| ≥
∑
v

wv(k + 1).

Proof. We show the claim by induction on k. For k = 0, both sides of the
inequality are zero, thus the claim is trivially true. Rejected requests do not
change either side of the inequality. Thus, it is enough to show that, for each
j ≤ k, if we admit σj , we get:∑

v

(wv(j + 1)− wv(j)) ≤ 2` logµ.

Consider a node v ∈ cj . Then by definition of the costs:

wv(j + 1)− wv(j) = κ(v)(µλv(j)+1/κ(v) − µλv(j))

= κ(v)(µλv(j)(µ1/κ(v) − 1))

= κ(v)(µλv(j)(2(log µ)·1/κ(v) − 1))



By Assumption (1), 1 ≤ κ(v)/ logµ. Since 2x − 1 ≤ x, for 0 ≤ x ≤ 1, it follows:

wv(j + 1)− wv(j) ≤ µλv(j) logµ = logµ(wv(j)/κ(v) + 1).

Summing up over all the nodes and using the fact that the request σj was
admitted and chain cj was assigned, and that the number of nodes |cj | in cj is
`, we get: ∑

v

(wv(j + 1)− wv(j)) ≤ logµ(`+ |cj |) = 2` logµ.

This proves the claim. ut

We finally prove that ` times the number of requests rejected by ACE but
admitted by the optimal offline algorithm OFF is bounded by the sum of node
costs after processing all requests.

Lemma 3. Let AOFF be the set of indices of the requests that were admitted by
the optimal offline algorithm, and let A∗ = AOFF \ A be the set of indices of
requests admitted by AOFF but rejected by the online algorithm. Then:

|A∗| · ` ≤
∑
v

wv(k + 1).

Proof. For j ∈ A∗, let c∗j be the chain assigned to request σj by the optimal
offline algorithm. By the fact that σj was rejected by the online algorithm, we
have:

` <
∑
v∈c∗j

wv(j)

κ(v)
.

Since the costs wv(j) are monotonically increasing in j, we have

` <
∑
v∈c∗j

wv(j)

κ(v)
≤

∑
v∈c∗j

wv(k + 1)

κ(v)
.

Summing over all j ∈ A∗, we get

|A∗|` ≤
∑
j∈A∗

∑
v∈c∗j

wv(k + 1)

κ(v)
≤

∑
v

wv(k + 1) ·
∑

j∈A∗:v∈c∗j

1

κ(v)
≤

∑
v

wv(k + 1).

The last inequality follows from the fact that capacity constraints need to be
met at any time. ut

Theorem 1. ACE is O(log `)-competitive.

Proof. By Lemma 1, capacity constraints are never violated. It remains to
show that the number of requests admitted by the online algorithm is at least
1/(2 log 2µ) times the number of requests admitted by the optimal offline algo-
rithm. The number of requests admitted by the optimal offline algorithm |AOFF|



can be bounded by the number of requests admitted by the online algorithm |A|
plus the number of requests in A∗ = AOFF \A. Therefore,

|AOFF| ≤ |A|+ |A∗|.

By Lemma 3 this is bounded by

|AOFF| ≤ |A|+
1

`

∑
v

wv(k + 1).

By Lemma 2 this is bounded by

|AOFF| ≤ |A|+ 2 · (logµ) · |A| = (1 + 2 logµ)|A|

Therefore, the number of requests admitted by the optimal offline algorithm is
at most (1 + 2 logµ) times the number of requests admitted by ACE. ut

Remarks. We conclude with some remarks. First, we note that our approach
leaves us with many flexibilities in terms of constraining the routes through the
network functions. For instance, we can support maximal path length require-
ments: the maximal length of the route from s to t via the network functions.
A natural alternative model is to define a limit on the stretch: the factor by
which the “detour” via the network functions can be longer than the shortest
path from s to t. Moreover, so far, we focused on a model where requests, once
admitted, stay forever. Our approach can also be used to support service chain
requests of bounded or even unknown duration. In particular, by redefining µ
to take into account the duration of a request, we can for example apply the
technique from [22] to obtain competitive ratios for more general models.

4 Optimality and Approximation

It turns out that ACE is asymptotically optimal within the class of online al-
gorithms (Theorem 2). This section also initiates the study of lower bounds for
(offline) approximation algorithms, and shows that for low capacities, the prob-
lem is APX-hard even for short chains (Theorem 3), and even Poly-APX-hard
in general, that is, it is as hard as any problem that can be approximated to a
polynomial factor in polynomial time (Theorem 4).

Theorem 2. Any deterministic or randomized online algorithm for OSCEP
must have a competitive ratio of at least Ω(log `).

Proof. We can adapt the proof strategy of Lemma 4.1 in [2] for our model. We
consider a capacity of κ ≥ log `, and we divide the requests in σ into log ` + 1
phases. We assume that n ≥ 2`2, and only focus on a subset L of ` = |L| nodes
which are connected as a chain (v1, . . . , v`) and at which the different service
chains will overlap. In phase 0, a group of κ service chains are requested, all of
which need to be embedded across the nodes L = {v1, . . . , v`}. In phases i ≥ 1,
2i groups of κ identical requests will need to share subsets of L of size `/2i, that
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Fig. 2. Illustration of lower bound construction: The adversary issues service chain
requests in 1+log ` phases, where each phase i consists of 2i groups of κ ≥ log ` requests.
In phase 0 the adversary issues requests that can be assigned to L = (v1, ..., v`). As
intersections of chains in phase i with L are becoming shorter over time, the online
algorithm needs to decide whether to admit service service chain requests in phases,
where each phase consists of groups with κ chains. As chains are becoming shorter over
time, the online algorithm faces the problem whether to admit service chains early (and
hence block precious resources), or late (in which case the adversary stops issuing new
requests).

is, the jth group, 0 ≤ j < 2i, consists of κ requests to be embedded across nodes
[vj`/2i+1, v(j+1)`/2i ]. See Figure 2 for an illustration.

Let xi denote the number of requests an online algorithm ON admits in
phase i. Each request accepted in phase i will occupy `/2i units of capacities of
nodes in L. Overall, the nodes in L have a capacity of ` · κ, so it must hold that

log∑̀
i=0

`

2i
· xi ≤ ` · κ.

Now, for 0 ≤ j ≤ log `, define Sj = `
2j ·

∑j
i=0 xi. Sj is a lower bound on the

occupied capacity on the nodes of L after phase j. Then:

log∑̀
j=0

Sj =

log∑̀
j=0

`

2j

j∑
i=0

xi =

log∑̀
i=0

xi

log∑̀
j=i

`

2j
≤

log∑̀
i=0

xi2
`

2i
= 2`κ.

Hence there must exist a j such that Sj ≤ 2`κ/ log `. Then after phase j, the
number of requests admitted by the online algorithm ON is

j∑
i=0

xi =
2j

`
Sj ≤

2j

`
2`κ/ log ` = 2 · 2jκ/ log `.



The optimal offline algorithm OFF can reject all requests except for those of
phase j. The number of requests in phase j, and thus, the number of requests
admitted by OFF is 2jκ. ut

In the following, we also show that for networks with low capacities, it is not
even possible to approximate the offline version of the Service Chain Embedding
Problem, SCEP, in polynomial time. These lower bounds on the approximation
ratio naturally also constitute lower bounds on the competitive ratio which can
be achieved for OSCEP by any online algorithm.

In particular, we first show that already for short chains in scenarios with
unit capacities, SCEP cannot be approximated well.

Theorem 3. In scenarios where service chains have length ` ≥ 3 and where
capacities are κ(v) = 1, for all v, the offline problem is APX-hard.

Proof. The proof follows from an approximation-preserving reduction from Max-
imum k-Set Packing Problem (KSP). The Maximum Set Packing (SP) is one of
Karp’s 21 NP-complete problems, where for a given collection C of finite sets
a collection of disjoint sets C ′ ⊆ C of maximum cardinality has to be found.
The KSP is the variation of the SP in which the cardinality of all sets in C are
bounded from above by any constant k ≥ 3, is APX-complete [15]. We refer to
such sets as k-sets.

KSP can be reduced to our problem as follows. Let U be the universe and
C be a collection of k-sets of U in the KSP. W.l.o.g., we assume that each k-set
contains exactly k elements, otherwise we can add disjoint auxiliary elements to
the sets in order to obtain exactly k elements in each set in C. For each u ∈ U
in the KSP instance we construct a node vu in the SCEP instance. Furthermore,
for each k-set S in C, we construct a service chain cS , such that cS contains
exactly the nodes {vu : u ∈ S}. Let C be the set of obtained service chains.
For the set of requests σ we require that |σ| ≥ |C| and that each request can
be assigned to each service chain. Due to the unit capacity assumption, the set
of admitted request must be assigned to mutually disjoint service chains. Thus,
the maximum number of admitted requests is at most the maximum number of
disjoint service chains. Since each request can be assigned to each service chain
and |σ| ≥ |C|, an optimal solution for the SCEP determines a maximum set
of mutually disjoint service chains. This maximum set of disjoint service chains
determines a maximum number of disjoint k-sets, and thus, an optimal solution
for the KSP. ut

It turns out that in general, with unit capacities, SCEP cannot even be
approximated within polylogarithmic factors.

Theorem 4. In general scenarios where capacities are κ(v) = 1, for all nodes
v, and chain lengths ` ≥ 3, the SCEP is APX-hard, and not approximable within
`ε for some ε > 0. Without a bound on the chain length the SCEP with κ(v) = 1,
for all nodes v, is Poly-APX-hard.



Proof. We reduce the Maximum Independent Set (MIS) problem with maximum
degree ` to the SCEP with capacity κ(v) = 1, for all v ∈ V and chain length `.
For graphs with bounded degree ` ≥ 3, the MIS is APX-complete [21] and cannot
be approximated within `ε for some ε > 0 [1]. By our reduction we obtain the
APX-hardness and non-approximability within `ε for some ε > 0 for the SCEP.
In general, for graphs without degree bound, the MIS is Poly-APX-complete [5],
i.e., it is as hard as any problem that can be approximated to a polynomial
factor. By our reduction we obtain that the SCEP without chain length bound
is Poly-APX-hard.

For an instance G = (V,E) of the MIS problem with maximum degree `, we
construct an instance of the SCEP with capacity κ = 1 and chain length ` as
follows. For each node v ∈ G, let cv be the chain whose nodes correspond to
the edges in G incident to v. If degG(v) < ` then we complete the chain with
` − degG(v) unique auxiliary nodes, in order to have ` nodes in the chain. The
chain set is C = {cv : v ∈ G}. For the set of requests σ, we require that |σ| ≥ |C|
and each request σi ∈ σ can be assigned to each c ∈ C. Assigning a σi to a chain
c ∈ C fills the capacity of all nodes in c and the capacity of all chains c′ ∈ C that
contain a common node with c. Therefore, no further request σj , j 6= i, can be
assigned to those chains. The chains having a common node with cv correspond
exactly the neighbors of v in G. Therefore, nodes u and v are independent in
the MIS instance iff chains cu and cv do not have a common node in the SCEP
instance. Since each request σi can be assigned to each c ∈ C and |σ| ≥ |C|,
a maximum number of admitted requests is determined by a maximum chain
set C ′, such that for all cu, cv ∈ C ′, cu and cv do not contain a common node.
Therefore, C ′ determines a maximum independent set in G. Consequently, an
α-approximation for the SCEP would imply an α-approximation for the MIS
problem. ut

5 Optimal 0-1 Program and NP-Completeness

SCEP can be formulated as a 0-1 integer linear program. If the number of all
possible chains that can be constructed over the network function instances is
polynomial in the network size, then the number of variables in the 0-1 program is
also polynomial, and thus the problem is in NP. 0-1 integer linear programming
is one of Karp’s NP-complete problems [17]. This together with our hardness
results also proves NP-completeness for constant `.

Let σ = {σi = (si, ti) : si, ti ∈ V } be the set of requests, and let C be the set
of possible chains over the network function instances, respecting route length
constraints. We refer by c ∈ C to a potential chain. For all potential chains c ∈ C,
let Sc be the set of connection requests in σ that can be routed through c on a
path of length at most r, i.e., for c = (v1, ..., v`), let Sc = {σi = (si, ti) ∈ σ :

d(si, v1) +
∑k
i=2 d(vi−1, vi) + d(vk, ti) ≤ r}, where d(u, v) denotes the length of

the shortest path between nodes u, v ∈ V in the network G. The shortest paths
between nodes can be computed in a preprocessing step.



For all connection requests σi ∈ σ, we introduce the binary variable xi ∈
{0, 1}. The variable xi = 1 indicates that the request i is admitted in the solution.
For all potential network function chains c ∈ C, we introduce the binary variable
xc ∈ {0, 1}. The variable xc = 1 indicates that c is selected in the solution. For
all c ∈ C and σi ∈ σ, we introduce the binary variable xc,i ∈ {0, 1}. The variable
xc,i indicates that the request σi = (si, ti) ∈ σ is routed through the nodes of c,
such that the length of the walk from si to ti through c has length at most r.

maximize
∑
σi∈σ

xi (3)

s.t. xi −
∑
c∈C

xc,i = 0 ∀ σi ∈ σ (4)∑
c∈C:σi 6∈Sc

xc,i = 0 ∀ σi ∈ σ (5)

xc ≤ xv ∀ v ∈ V,∀ c ∈ C : v ∈ c (6)∑
c∈C:v∈c

xc ≥ xv ∀ v ∈ V (7)∑
σi∈σ

∑
c∈C:v∈c

xc,i ≤ κ(v) · xv ∀ v ∈ V (8)

xi, xv, xc, xc,i ∈ {0, 1} ∀ v ∈ V,∀ c ∈ C,∀ σi ∈ σ (9)

The objective function (3) asks for admitting a request set of maximum
cardinality. The Constraints (4) enforce that each admitted request σi ∈ σ is
assigned to exactly one chain c ∈ C, and rejected requests are not assigned to
any chain, i.e., for each σi with xi = 1, there is exactly one chain c with xc,i = 1,
and for each i with xi = 0, we have xc,i = 0 for all c. Constraints (5) state that
each σi ∈ σ can only be assigned to a chain c ∈ C with σi ∈ Sc. By definition of
Sc, the nodes si and ti can be routed through c by a path of length at most r.
Constraints (6) ensure that if a node v ∈ V is contained in a selected chain c
(i.e., xc = 1), then xv = 1. Constraints (7) enforce that if a node v ∈ V is not
contained in any selected chain, i.e., xc = 0 for all chains c with v ∈ c, then
xv = 0. Therefore, Constraints (6) and (7) together imply that xv = 1 iff v
is contained in a selected chain c. Constraints (8) describe that the number of
requests routed through a node v of a selected chain is limited by the capacity
κ(v) of v. Furthermore, (8) ensures that if v is not contained in any selected
chain (i.e., xv = 0) then no request q is assigned to any chain c with v ∈ c.

The solution of this 0-1 program defines a maximum cardinality set of ad-
mitted requests σadmit = {σi : xi = 1}, and an assignment of each request
σi ∈ σadmit to a chain c ∈ C. Each request σi ∈ σadmit is assigned to a chain
c ∈ C iff xc,i = 1. This assignment guarantees that (i) the request σi = (si, ti)
can be routed through c on a path of length at most r, (ii) the number of pairs
routed through any node v ∈ V of a selected chain is limited by the capacity κ(v)
of v, and (iii) none of the requests σi ∈ σadmit are assigned to a non selected



chain. Furthermore, it is guaranteed that rejected requests σi ∈ σ \ σadmit are
not assigned to any chain.

6 Summary and Conclusion

Over the last decades, a large number of middleboxes have been deployed in
computer networks, to increase security and application performance, as well as
to offer new services in the form of static and dynamic in-network processing (see
the services by Akamai, Google Global Cache, Netflix Open Connect). However,
the increasing cost and inflexibility of hardware middleboxes (slow deployment,
complex upgrades, lack of scalability), motivated the advent of Network Func-
tion Virtualization (NFV) [7, 12, 16, 18, 23], which aims to run the functionality
provided by middleboxes as software on commodity hardware. The transition to
NFV is discussed within standardization groups such as ETSI, and we currently
also witness first deployments, e.g., TeraStream [28]. Especially the possibility to
chain individual network functions to form more complex services has recently
attracted much interest, both in academia [20, 26], as well as in industry [25].

Our paper made a first step towards a better understanding of the algorithmic
problem underlying the embedding of service chains. Our main contribution is a
deterministic and asymptotically optimal online algorithm ACE which achieves
a competitive ratio of O(log `) for OSCEP. This is an encouraging result, as the
number ` of to-be-chained network functions is likely to be a small constant in
practice.
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